organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1251-o1252

2-Hy­dr­oxy-N′-[2-(6-meth­­oxy­naphthalen-2-yl)propano­yl]benzohydrazide

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dSchool of Research, Enterprise & Innovation, Manchester Metropolitan University, Manchester M1 5GD, England
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 18 March 2012; accepted 23 March 2012; online 31 March 2012)

In the title compound, C21H20N2O4, the naphthalene ring system makes a dihedral angle of 84.5 (3)° with the benzene ring, and the –C(=O)–N(H)–N(H)–C(=O)– torsion angle is 70.7 (7)°, so that the mol­ecule is twisted. An S(6) ring motif is formed via an intra­molecular O—H⋯O hydrogen bond. In the crystal, mol­ecules are linked by N—H⋯O and C–H⋯O hydrogen bonds into supra­molecular layers in the ab plane.

Related literature

For the pharmaceutical applications of naproxen [systematic name: (+)-6-meth­oxy-α-methyl-2-naphthalene acetic acid], see: Teplyakov et al. (1993[Teplyakov, A. V., Lammers, A. A. & Dijkstra, B. W. (1993). J. Mol. Biol. 230, 681-683.]); Bozdag et al. (2001[Bozdag, S., Çalis, S., Kas, H. S., Ercan, M. T., Peksoy, I. & Hincal, A. A. (2001). J. Microencapsul. 18, 443-456.]). For the synthesis of potential biologically active compounds based on the structure of naproxen, see: Sharma et al. (2003[Sharma, J., Singla, A. K. & Dhawan, S. (2003). Int. J. Pharm. 260, 217-227.]); Kumar et al. (2010[Kumar, S., Tyagi, D. K. & Gupta, A. (2010). Asian J. Pharm. Clin. Res. 3, 208-211.]). For related structures, see: Yathirajan et al. (2007[Yathirajan, H. S., Narayana, B., Sunil, K., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2565.]); Liang et al. (2008[Liang, Q.-F., Feng, H.-M. & Li, F.-Q. (2008). Acta Cryst. E64, o1008.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20N2O4

  • Mr = 364.39

  • Orthorhombic, P 21 21 21

  • a = 4.851 (6) Å

  • b = 10.407 (12) Å

  • c = 36.65 (4) Å

  • V = 1850 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.14 × 0.05 × 0.01 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.987, Tmax = 0.999

  • 5963 measured reflections

  • 2303 independent reflections

  • 1169 reflections with I > 2σ(I)

  • Rint = 0.102

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.189

  • S = 1.09

  • 2303 reflections

  • 257 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.87 (3) 2.19 (3) 2.974 (8) 149 (5)
N2—H2N⋯O4ii 0.86 (5) 2.31 (5) 3.072 (8) 149 (5)
O4—H4⋯O3 0.82 (5) 1.83 (5) 2.618 (7) 161 (6)
C12—H12⋯O2i 0.98 2.36 3.274 (9) 155
C21—H21⋯O3iii 0.93 2.54 3.465 (9) 174
Symmetry codes: (i) x-1, y, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

A commonly prescribed non-steroidal anti-inflammatory drug (NSAID) is naproxen [(+)-6-methoxy-α-methyl-2-naphthalene acetic acid] (Teplyakov et al., 1993; Bozdag et al., 2001). It is used in the treatment of painful and inflammatory conditions like rheumatoid arthritis, spondilytis, and osteoarthritis (Sharma et al., 2003; Kumar et al., 2010). As part of our study on the functionalization of naproxen moiety, we report the structure of the title compound, (I), with the aim of synthesising potential biologically active compounds based on the core structure. of naproxen

In the title compound (I), (Fig. 1), the N1—N2 bond length of 1.427 (8) Å, indicates a single bond. All bond lengths in (I) are within normal ranges (Yathirajan et al., 2007; Liang et al., 2008). The naphthalene ring (C1—C10) is planar, with a maximum deviation of -0.007 (7) Å for the C4 atom. This ring makes a dihedral angle of 84.5 (3)° with the hydroxybenzene ring. The —C14(O)—N1(H)—N2(H)—C15(O)— torsion angle is 70.7 (7) °.

An intramolecular O—H···O hydrogen bond which generates an S(6) ring motif (Etter et al., 1990) is observed in the molecular structure (Table 1). The crystal structure is stabilized by intermolecular N—H···O and C—H···O hydrogen bonds (Table 1, Fig. 2) which connect molecules into supramolecular layers in the ab plane.

Related literature top

For the pharmaceutical applications of naproxen [systematic name: (+)-6-methoxy-α-methyl-2-naphthalene acetic acid], see: Teplyakov et al. (1993); Bozdag et al. (2001). For the synthesis of potential biologically active compounds based on the structure of naproxen, see: Sharma et al. (2003); Kumar et al. (2010). For related structures, see: Yathirajan et al. (2007); Liang et al. (2008). For hydrogen-bond motifs, see: Etter et al. (1990).

Experimental top

A mixture of 0.01 mol of 2-(6-methoxy-2-naphthyl)propanoyl chloride and 0.01 mol 2-hydroxybenzohydrazide in tetrahydrofuran was heated at 339 K for three hours. The reaction progress was monitored by TLC until completed. The mixture was then poured on cold water to afford the solid product which was filtered off, dried and recrystallized from ethanol in 72% yield with M.pt: at 482–484 K. Suitable crystals for X-ray diffraction were obtained by slow evaporation of a diluted ethanolic solution of the product over two days.

Refinement top

The hydroxyl- and amide-H atoms were located in difference density maps, and were refined with the (O, N)—H distance restraints of 0.82 (2) Å and 0.86 (2) Å, respectively, and with free Uiso. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93, 0.96 and 0.98 Å for aromatic-, methyl- and methine-H, respectively, with Uiso(H) = 1.2 or 1.5 Ueq(C).

The crystal used was very small (0.01 x 0.05 x 0.14) but was the best available after repeated recrystallizations. As such a reasonable number of the higher angle diffractions were indistinguishable from the background noise. The crystal was exposed to the X-rays for as long as required until reached a level where increasing the exposure did not result in the observation of further high angle data. From the reflections collected the structure could be readily determined, such that hydrogen atom positions could be seen in the difference map, even though most were later fixed using standard riding positions (the OH and NH hydrogen atoms were allowed some freedom of position whilst restraining their distances to 0.82 Å and 0.86 Å, respectively). In the absence of significant anomalous scattering, 1052 Friedel pairs were averaged. One poorly fitted reflection (0 1 1) was omitted from the refinement.

Structure description top

A commonly prescribed non-steroidal anti-inflammatory drug (NSAID) is naproxen [(+)-6-methoxy-α-methyl-2-naphthalene acetic acid] (Teplyakov et al., 1993; Bozdag et al., 2001). It is used in the treatment of painful and inflammatory conditions like rheumatoid arthritis, spondilytis, and osteoarthritis (Sharma et al., 2003; Kumar et al., 2010). As part of our study on the functionalization of naproxen moiety, we report the structure of the title compound, (I), with the aim of synthesising potential biologically active compounds based on the core structure. of naproxen

In the title compound (I), (Fig. 1), the N1—N2 bond length of 1.427 (8) Å, indicates a single bond. All bond lengths in (I) are within normal ranges (Yathirajan et al., 2007; Liang et al., 2008). The naphthalene ring (C1—C10) is planar, with a maximum deviation of -0.007 (7) Å for the C4 atom. This ring makes a dihedral angle of 84.5 (3)° with the hydroxybenzene ring. The —C14(O)—N1(H)—N2(H)—C15(O)— torsion angle is 70.7 (7) °.

An intramolecular O—H···O hydrogen bond which generates an S(6) ring motif (Etter et al., 1990) is observed in the molecular structure (Table 1). The crystal structure is stabilized by intermolecular N—H···O and C—H···O hydrogen bonds (Table 1, Fig. 2) which connect molecules into supramolecular layers in the ab plane.

For the pharmaceutical applications of naproxen [systematic name: (+)-6-methoxy-α-methyl-2-naphthalene acetic acid], see: Teplyakov et al. (1993); Bozdag et al. (2001). For the synthesis of potential biologically active compounds based on the structure of naproxen, see: Sharma et al. (2003); Kumar et al. (2010). For related structures, see: Yathirajan et al. (2007); Liang et al. (2008). For hydrogen-bond motifs, see: Etter et al. (1990).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the labelling of the non-H atoms and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the packing and hydrogen bonding (dashed lines) of (I) down the a axis, in the unit-cell. H atoms not involved in hydrogen bonds have been omitted for clarity.
2-Hydroxy-N'-[2-(6-methoxynaphthalen-2-yl)propanoyl]benzohydrazide top
Crystal data top
C21H20N2O4F(000) = 768
Mr = 364.39Dx = 1.308 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4928 reflections
a = 4.851 (6) Åθ = 2.0–30.1°
b = 10.407 (12) ŵ = 0.09 mm1
c = 36.65 (4) ÅT = 100 K
V = 1850 (4) Å3Sheet, colourless
Z = 40.14 × 0.05 × 0.01 mm
Data collection top
Rigaku Saturn724+
diffractometer
2303 independent reflections
Radiation source: Rotating Anode1169 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.102
Detector resolution: 28.5714 pixels mm-1θmax = 27.3°, θmin = 2.6°
profile data from ω–scansh = 64
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 1312
Tmin = 0.987, Tmax = 0.999l = 4723
5963 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.084H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.189 w = 1/[σ2(Fo2) + (0.0587P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2303 reflectionsΔρmax = 0.30 e Å3
257 parametersΔρmin = 0.24 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C21H20N2O4V = 1850 (4) Å3
Mr = 364.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.851 (6) ŵ = 0.09 mm1
b = 10.407 (12) ÅT = 100 K
c = 36.65 (4) Å0.14 × 0.05 × 0.01 mm
Data collection top
Rigaku Saturn724+
diffractometer
2303 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
1169 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.999Rint = 0.102
5963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0843 restraints
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.30 e Å3
2303 reflectionsΔρmin = 0.24 e Å3
257 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5719 (10)0.0932 (4)0.02322 (12)0.0513 (17)
O20.8625 (10)0.5761 (4)0.16863 (13)0.0427 (17)
O30.5850 (8)0.7217 (4)0.23922 (11)0.0353 (16)
O40.9808 (11)0.8058 (4)0.28151 (13)0.0387 (16)
N10.4392 (11)0.5286 (5)0.19267 (15)0.0303 (17)
N20.5549 (11)0.5038 (5)0.22776 (15)0.0337 (17)
C10.6354 (15)0.2465 (7)0.05874 (18)0.044 (3)
C20.7799 (17)0.3603 (8)0.0541 (2)0.063 (3)
C30.7265 (17)0.4677 (7)0.07585 (19)0.055 (3)
C40.5185 (14)0.4648 (6)0.10359 (18)0.038 (3)
C50.3727 (14)0.3541 (6)0.10912 (18)0.043 (3)
C60.4279 (15)0.2393 (6)0.08636 (17)0.040 (3)
C70.2788 (17)0.1242 (7)0.09106 (19)0.056 (3)
C80.3346 (17)0.0178 (7)0.06947 (19)0.055 (3)
C90.5405 (17)0.0239 (7)0.04166 (19)0.048 (3)
C100.6932 (17)0.1321 (7)0.03550 (19)0.056 (3)
C110.7870 (15)0.1005 (7)0.00403 (19)0.058 (3)
C120.4624 (13)0.5834 (6)0.12777 (16)0.034 (2)
C130.5530 (16)0.7139 (6)0.11123 (16)0.046 (3)
C140.6096 (15)0.5647 (6)0.16510 (18)0.032 (2)
C150.6505 (12)0.6079 (6)0.24718 (17)0.032 (2)
C160.8385 (13)0.5788 (6)0.27894 (16)0.0300 (19)
C170.9991 (13)0.6797 (6)0.29347 (17)0.032 (2)
C181.1903 (13)0.6545 (6)0.32135 (17)0.036 (2)
C191.2169 (14)0.5287 (6)0.33541 (16)0.035 (2)
C201.0521 (13)0.4295 (6)0.32161 (17)0.037 (2)
C210.8645 (14)0.4527 (6)0.29390 (16)0.033 (2)
H1N0.260 (5)0.521 (6)0.1924 (14)0.027 (18)*
H20.914800.365300.036100.0750*
H2N0.636 (12)0.431 (4)0.2295 (18)0.06 (3)*
H30.827900.542500.072300.0660*
H40.851 (9)0.797 (6)0.2673 (14)0.05 (3)*
H50.238500.350900.127200.0520*
H70.141900.119600.108800.0670*
H80.237200.058100.073100.0660*
H100.828200.134200.017500.0660*
H11A0.787100.184600.014800.0870*
H11B0.962500.084800.007200.0870*
H11C0.754400.037200.022600.0870*
H120.263500.587600.132300.0410*
H13A0.507900.782000.127900.0700*
H13B0.458700.727500.088500.0700*
H13C0.748300.713000.107100.0700*
H181.299200.720500.330500.0430*
H191.343700.511700.353800.0420*
H201.068800.347000.331200.0440*
H210.755400.386200.285000.0390*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.062 (3)0.038 (3)0.054 (3)0.003 (3)0.002 (3)0.010 (2)
O20.022 (3)0.046 (3)0.060 (3)0.000 (2)0.006 (2)0.003 (3)
O30.034 (3)0.022 (2)0.050 (3)0.006 (2)0.002 (2)0.004 (2)
O40.043 (3)0.021 (2)0.052 (3)0.006 (2)0.008 (3)0.003 (2)
N10.016 (3)0.029 (3)0.046 (3)0.003 (3)0.003 (3)0.001 (3)
N20.032 (3)0.026 (3)0.043 (3)0.004 (3)0.011 (3)0.001 (3)
C10.034 (4)0.048 (5)0.049 (4)0.002 (4)0.010 (4)0.004 (4)
C20.050 (5)0.064 (6)0.074 (6)0.001 (5)0.011 (5)0.002 (5)
C30.054 (5)0.052 (5)0.058 (5)0.005 (5)0.009 (5)0.016 (4)
C40.037 (5)0.027 (4)0.049 (4)0.004 (4)0.004 (4)0.004 (3)
C50.044 (5)0.035 (4)0.051 (4)0.011 (4)0.007 (4)0.008 (3)
C60.043 (5)0.041 (4)0.037 (4)0.005 (4)0.015 (3)0.009 (3)
C70.063 (6)0.045 (5)0.060 (5)0.002 (5)0.006 (5)0.003 (4)
C80.076 (6)0.046 (5)0.044 (4)0.021 (5)0.021 (5)0.009 (4)
C90.057 (6)0.039 (4)0.049 (4)0.012 (5)0.016 (4)0.013 (4)
C100.061 (5)0.050 (5)0.056 (5)0.009 (5)0.015 (4)0.019 (4)
C110.058 (5)0.051 (5)0.065 (5)0.002 (5)0.005 (5)0.008 (4)
C120.024 (4)0.034 (4)0.045 (4)0.002 (3)0.004 (3)0.005 (3)
C130.064 (5)0.038 (4)0.037 (4)0.001 (4)0.008 (4)0.005 (3)
C140.038 (5)0.015 (3)0.044 (4)0.001 (3)0.001 (4)0.000 (3)
C150.024 (4)0.033 (4)0.038 (4)0.003 (4)0.006 (3)0.002 (3)
C160.031 (4)0.021 (3)0.038 (3)0.002 (3)0.006 (3)0.011 (3)
C170.034 (4)0.021 (3)0.041 (4)0.007 (3)0.014 (3)0.001 (3)
C180.033 (4)0.024 (4)0.051 (4)0.004 (3)0.010 (4)0.005 (3)
C190.031 (4)0.038 (4)0.036 (4)0.002 (4)0.001 (3)0.002 (3)
C200.041 (4)0.027 (4)0.042 (4)0.001 (4)0.004 (4)0.003 (3)
C210.033 (4)0.024 (4)0.041 (4)0.001 (3)0.003 (3)0.000 (3)
Geometric parameters (Å, º) top
O1—C91.402 (9)C15—C161.509 (9)
O1—C111.446 (9)C16—C211.428 (9)
O2—C141.239 (9)C16—C171.412 (9)
O3—C151.260 (8)C17—C181.405 (9)
O4—C171.386 (8)C18—C191.413 (9)
O4—H40.82 (5)C19—C201.400 (9)
N1—N21.427 (8)C20—C211.385 (9)
N1—C141.359 (9)C2—H20.9300
N2—C151.377 (8)C3—H30.9300
N1—H1N0.87 (3)C5—H50.9300
N2—H2N0.86 (5)C7—H70.9300
C1—C101.491 (10)C8—H80.9300
C1—C21.387 (11)C10—H100.9300
C1—C61.430 (10)C11—H11A0.9600
C2—C31.397 (11)C11—H11B0.9600
C3—C41.433 (10)C11—H11C0.9600
C4—C51.367 (9)C12—H120.9800
C4—C121.544 (9)C13—H13A0.9600
C5—C61.482 (9)C13—H13B0.9600
C6—C71.410 (10)C13—H13C0.9600
C7—C81.388 (10)C18—H180.9300
C8—C91.429 (11)C19—H190.9300
C9—C101.367 (11)C20—H200.9300
C12—C131.551 (9)C21—H210.9300
C12—C141.556 (9)
C9—O1—C11117.2 (5)O4—C17—C16123.3 (6)
C17—O4—H498 (4)C17—C18—C19119.9 (6)
N2—N1—C14118.8 (5)C18—C19—C20120.0 (6)
N1—N2—C15117.1 (5)C19—C20—C21120.8 (6)
C14—N1—H1N129 (4)C16—C21—C20120.0 (6)
N2—N1—H1N113 (3)C1—C2—H2119.00
N1—N2—H2N114 (4)C3—C2—H2119.00
C15—N2—H2N120 (4)C2—C3—H3119.00
C2—C1—C6119.2 (6)C4—C3—H3119.00
C2—C1—C10121.1 (7)C4—C5—H5120.00
C6—C1—C10119.7 (6)C6—C5—H5120.00
C1—C2—C3121.3 (7)C6—C7—H7120.00
C2—C3—C4121.2 (7)C8—C7—H7120.00
C3—C4—C5119.2 (6)C7—C8—H8120.00
C3—C4—C12121.0 (6)C9—C8—H8120.00
C5—C4—C12119.8 (6)C1—C10—H10121.00
C4—C5—C6120.2 (6)C9—C10—H10121.00
C5—C6—C7121.6 (6)O1—C11—H11A109.00
C1—C6—C7119.5 (6)O1—C11—H11B110.00
C1—C6—C5118.9 (6)O1—C11—H11C110.00
C6—C7—C8120.6 (7)H11A—C11—H11B109.00
C7—C8—C9120.5 (7)H11A—C11—H11C110.00
O1—C9—C8112.4 (6)H11B—C11—H11C109.00
C8—C9—C10122.2 (7)C4—C12—H12108.00
O1—C9—C10125.3 (7)C13—C12—H12108.00
C1—C10—C9117.5 (7)C14—C12—H12108.00
C13—C12—C14108.9 (5)C12—C13—H13A109.00
C4—C12—C13115.2 (5)C12—C13—H13B109.00
C4—C12—C14108.9 (5)C12—C13—H13C109.00
O2—C14—N1123.5 (6)H13A—C13—H13B110.00
O2—C14—C12122.3 (6)H13A—C13—H13C109.00
N1—C14—C12114.2 (6)H13B—C13—H13C110.00
O3—C15—N2122.3 (5)C17—C18—H18120.00
N2—C15—C16116.4 (5)C19—C18—H18120.00
O3—C15—C16121.3 (5)C18—C19—H19120.00
C15—C16—C21122.3 (5)C20—C19—H19120.00
C17—C16—C21119.3 (6)C19—C20—H20120.00
C15—C16—C17118.4 (5)C21—C20—H20120.00
O4—C17—C18116.7 (5)C16—C21—H21120.00
C16—C17—C18120.0 (6)C20—C21—H21120.00
C11—O1—C9—C8176.3 (6)C5—C6—C7—C8179.9 (7)
C11—O1—C9—C101.3 (10)C1—C6—C7—C80.9 (11)
N2—N1—C14—O20.8 (9)C6—C7—C8—C91.2 (11)
C14—N1—N2—C1570.7 (7)C7—C8—C9—O1178.8 (7)
N2—N1—C14—C12177.5 (5)C7—C8—C9—C101.2 (12)
N1—N2—C15—C16164.0 (5)O1—C9—C10—C1178.1 (6)
N1—N2—C15—O316.3 (8)C8—C9—C10—C10.8 (11)
C10—C1—C6—C70.5 (10)C4—C12—C14—N1102.1 (6)
C6—C1—C2—C30.0 (11)C13—C12—C14—O251.7 (8)
C2—C1—C6—C50.3 (10)C13—C12—C14—N1131.6 (6)
C2—C1—C10—C9179.6 (7)C4—C12—C14—O274.7 (7)
C6—C1—C10—C90.5 (10)O3—C15—C16—C1717.0 (9)
C10—C1—C2—C3179.9 (7)O3—C15—C16—C21164.9 (6)
C2—C1—C6—C7179.6 (7)N2—C15—C16—C17163.3 (6)
C10—C1—C6—C5179.8 (6)N2—C15—C16—C2114.9 (9)
C1—C2—C3—C40.6 (12)C15—C16—C17—O44.0 (9)
C2—C3—C4—C12179.4 (7)C15—C16—C17—C18175.6 (6)
C2—C3—C4—C50.9 (11)C21—C16—C17—O4177.8 (6)
C5—C4—C12—C1478.8 (7)C21—C16—C17—C182.6 (9)
C3—C4—C12—C1499.7 (7)C15—C16—C21—C20176.1 (6)
C12—C4—C5—C6179.2 (6)C17—C16—C21—C202.0 (9)
C3—C4—C12—C1322.9 (9)O4—C17—C18—C19178.8 (6)
C5—C4—C12—C13158.6 (6)C16—C17—C18—C191.5 (9)
C3—C4—C5—C60.7 (10)C17—C18—C19—C200.2 (9)
C4—C5—C6—C7179.2 (7)C18—C19—C20—C210.8 (9)
C4—C5—C6—C10.1 (10)C19—C20—C21—C160.3 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.87 (3)2.19 (3)2.974 (8)149 (5)
N2—H2N···O4ii0.86 (5)2.31 (5)3.072 (8)149 (5)
O4—H4···O30.82 (5)1.83 (5)2.618 (7)161 (6)
C12—H12···O2i0.982.363.274 (9)155
C21—H21···O3iii0.932.543.465 (9)174
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H20N2O4
Mr364.39
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)4.851 (6), 10.407 (12), 36.65 (4)
V3)1850 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.14 × 0.05 × 0.01
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2011)
Tmin, Tmax0.987, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
5963, 2303, 1169
Rint0.102
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.189, 1.09
No. of reflections2303
No. of parameters257
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.24

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.87 (3)2.19 (3)2.974 (8)149 (5)
N2—H2N···O4ii0.86 (5)2.31 (5)3.072 (8)149 (5)
O4—H4···O30.82 (5)1.83 (5)2.618 (7)161 (6)
C12—H12···O2i0.982.363.274 (9)155
C21—H21···O3iii0.932.543.465 (9)174
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The financial support of the Iraqi Government to carry out this study is gratefully acknowledged. We also thank Manchester Metropolitan University for supporting this study.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBozdag, S., Çalis, S., Kas, H. S., Ercan, M. T., Peksoy, I. & Hincal, A. A. (2001). J. Microencapsul. 18, 443–456.  Web of Science PubMed CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKumar, S., Tyagi, D. K. & Gupta, A. (2010). Asian J. Pharm. Clin. Res. 3, 208–211.  CAS Google Scholar
First citationLiang, Q.-F., Feng, H.-M. & Li, F.-Q. (2008). Acta Cryst. E64, o1008.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSharma, J., Singla, A. K. & Dhawan, S. (2003). Int. J. Pharm. 260, 217–227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeplyakov, A. V., Lammers, A. A. & Dijkstra, B. W. (1993). J. Mol. Biol. 230, 681–683.  PubMed Web of Science Google Scholar
First citationYathirajan, H. S., Narayana, B., Sunil, K., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2565.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1251-o1252
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds