metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m504-m505

Bis(2-{[(9H-fluoren-2-yl)methyl­­idene]amino}­phenolato-κ2N,O)zinc methanol disolvate

aDepartment of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University, Busan 609-735, Republic of Korea, and bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 20 March 2012; accepted 23 March 2012; online 31 March 2012)

In the title compound, [Zn(C20H14NO)2]·2CH3OH, the ZnII atom lies on a crystallographic twofold rotation axis and is coordinated by two O atoms and two N atoms from two bidentate 2-{[(9H-fluoren-2-yl)methyl­idene]amino}­phenolate ligands within a distorted tetra­hedral geometry. The dihedral angle between the two chelate rings is 82.92 (5)°. In the coordinated ligand, the phenol ring is twisted at 30.22 (9)° from the mean plane of the fluorene ring. In the crystal, O—H⋯O hydrogen bonds link the complex mol­ecules to the methanol solvent mol­ecules.

Related literature

For general background to Schiff base complexes, see: Ji et al. (2012[Ji, Y. F., Wang, R., Ding, S., Du, C. F. & Liu, Z. L. (2012). Inorg. Chem. Commun. 16, 47-50.]); Niu et al. (2012[Niu, W. J., Wang, J. L., Bai, Y. & Dang, D. B. (2012). Spectrochim. Acta Part A, 91, 61-66.]); Liu et al. (2011[Liu, S. B., Bi, C. F., Fan, Y. H., Zhao, Y., Zhang, P. F., Luo, Q. D. & Zhang, D. M. (2011). Inorg. Chem. Commun. 14, 1297-1301.]); Roy et al. (2009[Roy, P., Dhara, K., Manassero, M. & Banerjee, P. (2009). Inorg. Chim. Acta, 362, 2927-2932.]). For the structures and luminescent properties of Hg(II) complexes, see: Kim et al. (2011[Kim, Y.-I., Song, Y.-K., Yun, S.-J., Kim, I.-C. & Kang, S. K. (2011). Acta Cryst. E67, m52-m53.]); Kim & Kang (2010[Kim, Y.-I. & Kang, S. K. (2010). Acta Cryst. E66, m1251.]). For the physical properties of fluorene complexes, see: Scaria et al. (2010[Scaria, R., Muellen, K. & Jacob, J. (2010). Polymer, 51, 5705-5711.]); Loy et al. (2002[Loy, D. E., Koene, B. E. & Thompson, M. E. (2002). Adv. Funct. Mater. 12, 245-249.]); Miteva et al. (2001[Miteva, T., Meisel, A., Knoll, W., Nothofer, H. G., Scherf, U., Müller, D. C., Meerholz, K., Yasuda, A. & Neher, D. (2001). Adv. Mater. 18, 565-570.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C20H14NO)2]·2CH4O

  • Mr = 698.1

  • Monoclinic, C 2/c

  • a = 13.7294 (3) Å

  • b = 13.9123 (2) Å

  • c = 18.8383 (3) Å

  • β = 110.652 (1)°

  • V = 3367.03 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 296 K

  • 0.10 × 0.05 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.922, Tmax = 0.966

  • 10682 measured reflections

  • 3078 independent reflections

  • 2134 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.096

  • S = 1.02

  • 3078 reflections

  • 227 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 1.9239 (17)
Zn1—N8 2.052 (2)
C7—N8 1.433 (3)
N8—C9 1.293 (3)
O1i—Zn1—O1 115.61 (11)
O1i—Zn1—N8 125.99 (8)
O1—Zn1—N8 85.68 (8)
N8—Zn1—N8i 122.53 (11)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O24—H24⋯O1 0.98 (4) 1.82 (5) 2.794 (3) 173 (4)

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff base ligands have attracted attention due to their facile syntheses, easily tunable steric and electronic properties resulting in a good performance in sensor technologies and electroluminescence devices (Ji et al., 2012; Niu et al., 2012; Liu et al., 2011; Roy et al., 2009). Recently, we reported group 12, Hg(II) complexes with Schiff bases with an emphasis on their luminescent properties (Kim & Kang, 2010; Kim et al., 2011). Herein, we designed new Schiff base containing a fluorene moiety since flourene has high triplet energy and good-hole transporting ability (Scaria et al., 2010; Loy et al., 2002; Miteva et al., 2001) and synthesized its Zn(II) complex. The title compound shows a red emission at 611 nm with a quantum yield of 1.2% in a DMF solution upon 300 nm excitation.

In (I), Fig. 1, the ZnII atom lies on a twofold axis and is coordinated by two O atoms and two N atoms of two bidentate 2-((9H-fluoren-2-yl)methyleneamino)phenolato ligands in a distorted tetrahedral geometry. The angles around Zn atom are within the range of 85.68 (8)–125.99 (8) ° (Table 1). The dihedral angle between the O1/Zn1/N8 and O1i/Zn1/N1i [symmetry code: (i) -x + 1, y, -z + 3/2] is 83.48 (6) °. The fluorene moiety (C9—C22) is almost planar, with r.m.s. deviations of 0.018 Å from the corresponding least-squares plane defined by the thirteen constituent atoms. In the 2-((9H-fluoren-2-yl)methyleneamino)phenol ligand, the phenol ring (O1–C7) is twisted at 30.22 (9) ° from the mean plane of the fluorene ring. The presence of intermolecular O24—H24···O1 hydrogen bonds link the complex and solvent molecules (Table 2 and Fig. 1).

Related literature top

For general background to Schiff base complexes, see: Ji et al. (2012); Niu et al. (2012); Liu et al. (2011); Roy et al. (2009). For the structures and luminescent properties of Hg(II) complexes, see: Kim et al. (2011); Kim & Kang (2010). For the physical properties of fluorene complexes, see: Scaria et al. (2010); Loy et al. (2002); Miteva et al. (2001).

Experimental top

Preparation of ligand: 9H-fluorene-2-carbaldehyde (1.94 g, 10 mmol) was slowly added to 2-aminophenol (1.09 g, 10 mmol) in methanol/methylenechloride (1:1 v/v) (40 ml) solution at 50 °C for 5 h to obtain (E)-2-((9H-fluoren-2-yl)methyleneamino)phenol (L) as a yellow powder. Yield: 1.55 g (75%).

Preparation of zinc(II) compound: the reaction of L compound (1.50 g, 10 mmol) with zinc(II) acetate (0.91 g, 5 mmol) in methanol/methylenechloride (1:1 v/v) (40 ml) at 50 °C for 5 h yielded the title compound as an orange powder. The powder was filtered off and washed with hexane. Yield: 0.95 g (30%). Orange crystals of (I) were obtained from its ethanol solution by slow evaporation of the solvent at room temperature.

Refinement top

Atom H24 of the OH group was located from a difference Fourier map and refined freely [refined distance; O—H = 0.98 (4) Å]. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 – 0.97 Å with Uiso(H) = 1.2Ueq(carrier C) for aromatic- and methylene-H, and 1.5Ueq(carrier C) for methyl-H atoms.

Structure description top

Schiff base ligands have attracted attention due to their facile syntheses, easily tunable steric and electronic properties resulting in a good performance in sensor technologies and electroluminescence devices (Ji et al., 2012; Niu et al., 2012; Liu et al., 2011; Roy et al., 2009). Recently, we reported group 12, Hg(II) complexes with Schiff bases with an emphasis on their luminescent properties (Kim & Kang, 2010; Kim et al., 2011). Herein, we designed new Schiff base containing a fluorene moiety since flourene has high triplet energy and good-hole transporting ability (Scaria et al., 2010; Loy et al., 2002; Miteva et al., 2001) and synthesized its Zn(II) complex. The title compound shows a red emission at 611 nm with a quantum yield of 1.2% in a DMF solution upon 300 nm excitation.

In (I), Fig. 1, the ZnII atom lies on a twofold axis and is coordinated by two O atoms and two N atoms of two bidentate 2-((9H-fluoren-2-yl)methyleneamino)phenolato ligands in a distorted tetrahedral geometry. The angles around Zn atom are within the range of 85.68 (8)–125.99 (8) ° (Table 1). The dihedral angle between the O1/Zn1/N8 and O1i/Zn1/N1i [symmetry code: (i) -x + 1, y, -z + 3/2] is 83.48 (6) °. The fluorene moiety (C9—C22) is almost planar, with r.m.s. deviations of 0.018 Å from the corresponding least-squares plane defined by the thirteen constituent atoms. In the 2-((9H-fluoren-2-yl)methyleneamino)phenol ligand, the phenol ring (O1–C7) is twisted at 30.22 (9) ° from the mean plane of the fluorene ring. The presence of intermolecular O24—H24···O1 hydrogen bonds link the complex and solvent molecules (Table 2 and Fig. 1).

For general background to Schiff base complexes, see: Ji et al. (2012); Niu et al. (2012); Liu et al. (2011); Roy et al. (2009). For the structures and luminescent properties of Hg(II) complexes, see: Kim et al. (2011); Kim & Kang (2010). For the physical properties of fluorene complexes, see: Scaria et al. (2010); Loy et al. (2002); Miteva et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. The O—H···O hydrogen bonds are indicated by dashed lines. [symmetry code: (i) -x + 1, y, -z + 3/2].
Bis(2-{[(9H-fluoren-2-yl)methylidene]amino}phenolato- κ2N,O)zinc methanol disolvate top
Crystal data top
[Zn(C20H14NO)2]·2CH4OF(000) = 1456
Mr = 698.1Dx = 1.377 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2869 reflections
a = 13.7294 (3) Åθ = 2.2–25.3°
b = 13.9123 (2) ŵ = 0.78 mm1
c = 18.8383 (3) ÅT = 296 K
β = 110.652 (1)°Block, orange
V = 3367.03 (10) Å30.1 × 0.05 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 916
Tmin = 0.922, Tmax = 0.966k = 1316
10682 measured reflectionsl = 2216
3078 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.3461P]
where P = (Fo2 + 2Fc2)/3
3078 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Zn(C20H14NO)2]·2CH4OV = 3367.03 (10) Å3
Mr = 698.1Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.7294 (3) ŵ = 0.78 mm1
b = 13.9123 (2) ÅT = 296 K
c = 18.8383 (3) Å0.1 × 0.05 × 0.04 mm
β = 110.652 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3078 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2134 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.966Rint = 0.039
10682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.22 e Å3
3078 reflectionsΔρmin = 0.32 e Å3
227 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50.57842 (3)0.750.04130 (18)
O10.40411 (14)0.65210 (12)0.66885 (10)0.0454 (5)
C20.3082 (2)0.61436 (18)0.64660 (16)0.0400 (7)
C30.2277 (2)0.6498 (2)0.58475 (17)0.0515 (8)
H30.24060.70070.55730.062*
C40.1294 (3)0.6119 (2)0.56296 (17)0.0558 (8)
H40.07650.63810.52170.067*
C50.1082 (2)0.5351 (2)0.60185 (17)0.0558 (8)
H50.04190.50830.5860.067*
C60.1861 (2)0.4984 (2)0.66416 (16)0.0499 (8)
H60.17210.44670.69030.06*
C70.2851 (2)0.53798 (18)0.68829 (15)0.0380 (7)
N80.37074 (17)0.50751 (14)0.75354 (12)0.0372 (5)
C90.3537 (2)0.45901 (18)0.80656 (16)0.0433 (7)
H90.28460.44570.79970.052*
C100.4315 (2)0.42353 (17)0.87534 (15)0.0410 (7)
C110.3957 (2)0.38990 (19)0.93208 (16)0.0468 (7)
H110.32450.38820.92250.056*
C120.4632 (2)0.35952 (18)1.00140 (16)0.0456 (7)
H120.43820.33841.03860.055*
C130.5689 (2)0.36100 (17)1.01473 (15)0.0404 (7)
C140.6578 (2)0.33320 (18)1.08148 (15)0.0414 (7)
C150.6623 (3)0.29326 (19)1.15031 (17)0.0507 (8)
H150.60140.28091.15970.061*
C160.7570 (3)0.2723 (2)1.20397 (18)0.0619 (9)
H160.76060.24561.25010.074*
C170.8467 (3)0.2908 (2)1.1897 (2)0.0730 (10)
H170.91060.27661.22690.088*
C180.8446 (3)0.3300 (2)1.1216 (2)0.0697 (10)
H180.9060.3421.11290.084*
C190.7496 (2)0.35077 (19)1.06721 (17)0.0510 (8)
C200.7238 (2)0.3916 (2)0.98824 (17)0.0548 (8)
H20A0.75250.45560.98990.066*
H20B0.750.35060.95740.066*
C210.6071 (2)0.39376 (18)0.95847 (16)0.0411 (7)
C220.5384 (2)0.42345 (18)0.88995 (16)0.0456 (7)
H220.56330.44390.85250.055*
C230.4138 (3)0.9024 (3)0.6538 (2)0.0906 (12)
H23A0.38260.89080.60030.136*
H23B0.48670.88760.67040.136*
H23C0.40490.96880.66410.136*
O240.36624 (18)0.84464 (18)0.69240 (13)0.0716 (7)
H240.385 (3)0.778 (3)0.687 (2)0.141 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0383 (3)0.0397 (3)0.0464 (3)00.0155 (2)0
O10.0421 (13)0.0433 (11)0.0542 (12)0.0024 (9)0.0210 (10)0.0088 (9)
C20.0394 (19)0.0400 (15)0.0429 (18)0.0036 (14)0.0176 (16)0.0002 (14)
C30.052 (2)0.0487 (17)0.053 (2)0.0051 (16)0.0180 (18)0.0143 (15)
C40.046 (2)0.064 (2)0.0497 (19)0.0113 (17)0.0070 (17)0.0078 (16)
C50.044 (2)0.066 (2)0.054 (2)0.0049 (17)0.0124 (18)0.0040 (17)
C60.046 (2)0.0517 (17)0.0512 (19)0.0036 (16)0.0163 (17)0.0059 (15)
C70.0383 (18)0.0370 (14)0.0400 (16)0.0024 (13)0.0155 (15)0.0011 (13)
N80.0392 (14)0.0354 (12)0.0392 (13)0.0002 (11)0.0165 (12)0.0007 (11)
C90.0421 (19)0.0404 (15)0.0502 (19)0.0046 (14)0.0197 (16)0.0011 (14)
C100.0484 (19)0.0363 (14)0.0405 (17)0.0011 (14)0.0184 (15)0.0020 (14)
C110.0410 (19)0.0538 (17)0.0475 (19)0.0024 (14)0.0178 (16)0.0054 (15)
C120.047 (2)0.0503 (17)0.0452 (18)0.0003 (15)0.0232 (16)0.0069 (14)
C130.045 (2)0.0310 (14)0.0466 (18)0.0013 (14)0.0177 (16)0.0020 (13)
C140.046 (2)0.0336 (15)0.0435 (17)0.0020 (13)0.0141 (16)0.0006 (13)
C150.054 (2)0.0461 (17)0.051 (2)0.0051 (15)0.0167 (18)0.0000 (15)
C160.070 (3)0.058 (2)0.053 (2)0.0075 (19)0.015 (2)0.0081 (16)
C170.052 (2)0.078 (2)0.070 (2)0.0054 (19)0.002 (2)0.016 (2)
C180.047 (2)0.078 (2)0.076 (3)0.0037 (18)0.013 (2)0.017 (2)
C190.046 (2)0.0468 (17)0.057 (2)0.0035 (15)0.0131 (18)0.0079 (15)
C200.045 (2)0.0551 (18)0.067 (2)0.0028 (15)0.0223 (17)0.0119 (16)
C210.0400 (18)0.0382 (15)0.0450 (18)0.0013 (13)0.0151 (16)0.0045 (13)
C220.050 (2)0.0434 (16)0.0505 (19)0.0010 (15)0.0262 (17)0.0063 (15)
C230.076 (3)0.095 (3)0.102 (3)0.004 (2)0.032 (3)0.034 (2)
O240.0702 (17)0.0578 (14)0.0988 (18)0.0035 (12)0.0448 (15)0.0010 (13)
Geometric parameters (Å, º) top
Zn1—O1i1.9239 (18)C12—H120.93
Zn1—O11.9239 (17)C13—C211.413 (3)
Zn1—N82.052 (2)C13—C141.462 (4)
Zn1—N8i2.052 (2)C14—C151.392 (4)
O1—C21.341 (3)C14—C191.399 (4)
C2—C31.383 (4)C15—C161.367 (4)
C2—C71.422 (4)C15—H150.93
C3—C41.370 (4)C16—C171.374 (4)
C3—H30.93C16—H160.93
C4—C51.384 (4)C17—C181.385 (4)
C4—H40.93C17—H170.93
C5—C61.376 (4)C18—C191.376 (4)
C5—H50.93C18—H180.93
C6—C71.387 (4)C19—C201.513 (4)
C6—H60.93C20—C211.499 (4)
C7—N81.433 (3)C20—H20A0.97
N8—C91.293 (3)C20—H20B0.97
C9—C101.445 (4)C21—C221.367 (4)
C9—H90.93C22—H220.93
C10—C221.395 (4)C23—O241.392 (4)
C10—C111.404 (3)C23—H23A0.96
C11—C121.374 (4)C23—H23B0.96
C11—H110.93C23—H23C0.96
C12—C131.384 (4)O24—H240.98 (4)
O1i—Zn1—O1115.61 (11)C12—C13—C21120.8 (3)
O1i—Zn1—N8125.99 (8)C12—C13—C14131.0 (3)
O1—Zn1—N885.68 (8)C21—C13—C14108.2 (3)
O1i—Zn1—N8i85.68 (8)C15—C14—C19120.1 (3)
O1—Zn1—N8i125.99 (8)C15—C14—C13131.0 (3)
N8—Zn1—N8i122.53 (11)C19—C14—C13108.9 (2)
C2—O1—Zn1111.18 (15)C16—C15—C14119.5 (3)
O1—C2—C3121.9 (3)C16—C15—H15120.3
O1—C2—C7120.4 (3)C14—C15—H15120.3
C3—C2—C7117.7 (3)C15—C16—C17120.0 (3)
C4—C3—C2121.7 (3)C15—C16—H16120
C4—C3—H3119.2C17—C16—H16120
C2—C3—H3119.2C16—C17—C18121.8 (3)
C3—C4—C5120.5 (3)C16—C17—H17119.1
C3—C4—H4119.8C18—C17—H17119.1
C5—C4—H4119.8C19—C18—C17118.5 (3)
C6—C5—C4119.5 (3)C19—C18—H18120.7
C6—C5—H5120.2C17—C18—H18120.7
C4—C5—H5120.2C18—C19—C14120.1 (3)
C5—C6—C7120.6 (3)C18—C19—C20130.0 (3)
C5—C6—H6119.7C14—C19—C20109.9 (3)
C7—C6—H6119.7C21—C20—C19102.9 (2)
C6—C7—C2119.9 (3)C21—C20—H20A111.2
C6—C7—N8125.2 (2)C19—C20—H20A111.2
C2—C7—N8114.8 (2)C21—C20—H20B111.2
C9—N8—C7120.0 (2)C19—C20—H20B111.2
C9—N8—Zn1132.1 (2)H20A—C20—H20B109.1
C7—N8—Zn1106.68 (16)C22—C21—C13119.4 (3)
N8—C9—C10126.4 (3)C22—C21—C20130.6 (3)
N8—C9—H9116.8C13—C21—C20110.0 (3)
C10—C9—H9116.8C21—C22—C10121.0 (2)
C22—C10—C11118.4 (3)C21—C22—H22119.5
C22—C10—C9124.8 (2)C10—C22—H22119.5
C11—C10—C9116.7 (3)O24—C23—H23A109.5
C12—C11—C10121.7 (3)O24—C23—H23B109.5
C12—C11—H11119.1H23A—C23—H23B109.5
C10—C11—H11119.1O24—C23—H23C109.5
C11—C12—C13118.7 (3)H23A—C23—H23C109.5
C11—C12—H12120.6H23B—C23—H23C109.5
C13—C12—H12120.6C23—O24—H24108 (2)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O24—H24···O10.98 (4)1.82 (5)2.794 (3)173 (4)

Experimental details

Crystal data
Chemical formula[Zn(C20H14NO)2]·2CH4O
Mr698.1
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)13.7294 (3), 13.9123 (2), 18.8383 (3)
β (°) 110.652 (1)
V3)3367.03 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.1 × 0.05 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.922, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
10682, 3078, 2134
Rint0.039
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.096, 1.02
No. of reflections3078
No. of parameters227
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.32

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn1—O11.9239 (17)C7—N81.433 (3)
Zn1—N82.052 (2)N8—C91.293 (3)
O1i—Zn1—O1115.61 (11)O1—Zn1—N885.68 (8)
O1i—Zn1—N8125.99 (8)N8—Zn1—N8i122.53 (11)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O24—H24···O10.98 (4)1.82 (5)2.794 (3)173 (4)
 

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 20110003799).

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJi, Y. F., Wang, R., Ding, S., Du, C. F. & Liu, Z. L. (2012). Inorg. Chem. Commun. 16, 47–50.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, Y.-I. & Kang, S. K. (2010). Acta Cryst. E66, m1251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, Y.-I., Song, Y.-K., Yun, S.-J., Kim, I.-C. & Kang, S. K. (2011). Acta Cryst. E67, m52–m53.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiu, S. B., Bi, C. F., Fan, Y. H., Zhao, Y., Zhang, P. F., Luo, Q. D. & Zhang, D. M. (2011). Inorg. Chem. Commun. 14, 1297–1301.  Web of Science CrossRef CAS Google Scholar
First citationLoy, D. E., Koene, B. E. & Thompson, M. E. (2002). Adv. Funct. Mater. 12, 245–249.  Web of Science CrossRef CAS Google Scholar
First citationMiteva, T., Meisel, A., Knoll, W., Nothofer, H. G., Scherf, U., Müller, D. C., Meerholz, K., Yasuda, A. & Neher, D. (2001). Adv. Mater. 18, 565–570.  Web of Science CrossRef Google Scholar
First citationNiu, W. J., Wang, J. L., Bai, Y. & Dang, D. B. (2012). Spectrochim. Acta Part A, 91, 61–66.  CrossRef CAS Google Scholar
First citationRoy, P., Dhara, K., Manassero, M. & Banerjee, P. (2009). Inorg. Chim. Acta, 362, 2927–2932.  Web of Science CSD CrossRef CAS Google Scholar
First citationScaria, R., Muellen, K. & Jacob, J. (2010). Polymer, 51, 5705–5711.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m504-m505
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds