metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­chloridobis(tri­phenyl­phosphane-κP)palladium(II) benzene hemisolvate

aInstitut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 21 March 2012; accepted 22 March 2012; online 31 March 2012)

The title complex, [PdCl2(C18H15P)2]·0.5C6H6, has the PdII ion in a square-planar coordination mode (r.m.s. deviation for Pd, P and Cl atoms = 0.024 Å) with the PPh3 and Cl ligands mutually trans. The benzene solvent mol­ecule is located about a crystallographic inversion centre. The title complex is isostructural with trans-dichloridobis(triphenyl­phosphane)­palladium(II) 1,4-dichloro­benzene sesquisolvate [Kitano et al. (1983[Kitano, Y., Kinoshita, Y., Nakamura, R. & Ashida, T. (1983). Acta Cryst. C39, 1015-1017.]). Acta Cryst. C39, 1015–1017].

Related literature

For the synthetic background, see: Lerner (2005[Lerner, H.-W. (2005). Coord. Chem. Rev. 249, 781-798.]); Meyer-Wegner et al. (2009[Meyer-Wegner, F., Scholz, S., Sänger, I., Schödel, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2009). Organometallics, 28, 6835-6837.], 2011[Meyer-Wegner, F., Nadj, A., Bolte, M., Auner, N., Wagner, M., Holthausen, M. C. & Lerner, H.-W. (2011). Chem. Eur. J. 17, 4715-4719.]). For trans-dichlorido-bis­(triphenyl­phosphane)palladium(II) sesqui(p-dichloro­benzene), see: Kitano et al. (1983[Kitano, Y., Kinoshita, Y., Nakamura, R. & Ashida, T. (1983). Acta Cryst. C39, 1015-1017.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C18H15P)2]·0.5C6H6

  • Mr = 740.89

  • Monoclinic, P 21 /n

  • a = 11.4530 (7) Å

  • b = 18.4493 (8) Å

  • c = 16.4696 (10) Å

  • β = 104.979 (5)°

  • V = 3361.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 173 K

  • 0.26 × 0.08 × 0.08 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.812, Tmax = 0.936

  • 42186 measured reflections

  • 6302 independent reflections

  • 5104 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.095

  • S = 1.03

  • 6302 reflections

  • 397 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.76 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, we have shown that the degradation of Cl3SiSiCl3 in the presence of donors, such as amines NR3 (R = Me, Et) and phosphanes PR3 (R = tBu) and the isoelectronic silanide [SitBu3]- (Lerner, 2005), in the first step gives dichlorsilylene SiCl2 and ultimately produces the perchlorinated neopentasilane Si(SiCl3)4 and in the case of the silanide the silatetrahedrane (tBu3Si)4Si4, respectively (Meyer-Wegner et al., 2009, 2011). Moreover, we verified that the donor-induced degradation of Cl3SiSiCl3 in the presence of the silylene trapping agent 2,3-dimethyl-1,3-butadiene gives the [4 + 1] cycloadduct (Meyer-Wegner et al., 2011). We are currently interested in dichlorsilylene transition metal complexes. To this end, we thought that such complexes can be prepared using the reaction between Cl3SiSiCl3 and [Pd(PPh3)4]. However, the reaction of Cl3SiSiCl3 with [Pd(PPh3)4] gives exclusively [PdCl2(PPh3)2] (Fig. 1). Apparently no dichlorsilylene transition metal complex was formed thereby. Single crystals composed of one have molecule of benzene and one molecule of [PdCl2(PPh3)2] could be isolated from the reaction solution.

The title complex (Fig. 2) has the Pd centre in a quadratic planar (r.m.s. deviation for Pd, P and Cl atoms: 0.024 Å) coordination mode with the PPh3 and Cl ligands mutually trans. The solvent benzene molecule is located about a crystallographic inversion centre. The title compound is isomorphous with trans-dichlorido-bis(triphenylphosphane)palladium(II) sesqui(p-dichlorobenzene) (Kitano et al., 1983). The packing diagram (Fig. 3) shows how the benzene molecules fill the empty space between the complexes. There are no unusual features.

Related literature top

For the synthetic background, see: Lerner (2005); Meyer-Wegner et al. (2009, 2011). For trans-dichlorido-bis(triphenylphosphane)palladium(II) sesqui(p-dichlorobenzene), see: Kitano et al. (1983).

Experimental top

Pd(PPh3)4 (0.19 g, 0.16 mmol) was suspended in benzene (5 ml) and then treated with one equivalent of Si2Cl6 (0.028 ml, 44 mg, 0.16 mmol) in benzene (0.5 ml) at ambient temperature. The solution immediately became clear and turned from yellow to dark red. Crystals of the title compound were obtained by slow evaporation of the solvent at ambient temperature.

Refinement top

H atoms were refined using a riding model, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). The C—C distances in the solvent benzene molecule were restrained to 1.39 (1) Å.

Structure description top

Recently, we have shown that the degradation of Cl3SiSiCl3 in the presence of donors, such as amines NR3 (R = Me, Et) and phosphanes PR3 (R = tBu) and the isoelectronic silanide [SitBu3]- (Lerner, 2005), in the first step gives dichlorsilylene SiCl2 and ultimately produces the perchlorinated neopentasilane Si(SiCl3)4 and in the case of the silanide the silatetrahedrane (tBu3Si)4Si4, respectively (Meyer-Wegner et al., 2009, 2011). Moreover, we verified that the donor-induced degradation of Cl3SiSiCl3 in the presence of the silylene trapping agent 2,3-dimethyl-1,3-butadiene gives the [4 + 1] cycloadduct (Meyer-Wegner et al., 2011). We are currently interested in dichlorsilylene transition metal complexes. To this end, we thought that such complexes can be prepared using the reaction between Cl3SiSiCl3 and [Pd(PPh3)4]. However, the reaction of Cl3SiSiCl3 with [Pd(PPh3)4] gives exclusively [PdCl2(PPh3)2] (Fig. 1). Apparently no dichlorsilylene transition metal complex was formed thereby. Single crystals composed of one have molecule of benzene and one molecule of [PdCl2(PPh3)2] could be isolated from the reaction solution.

The title complex (Fig. 2) has the Pd centre in a quadratic planar (r.m.s. deviation for Pd, P and Cl atoms: 0.024 Å) coordination mode with the PPh3 and Cl ligands mutually trans. The solvent benzene molecule is located about a crystallographic inversion centre. The title compound is isomorphous with trans-dichlorido-bis(triphenylphosphane)palladium(II) sesqui(p-dichlorobenzene) (Kitano et al., 1983). The packing diagram (Fig. 3) shows how the benzene molecules fill the empty space between the complexes. There are no unusual features.

For the synthetic background, see: Lerner (2005); Meyer-Wegner et al. (2009, 2011). For trans-dichlorido-bis(triphenylphosphane)palladium(II) sesqui(p-dichlorobenzene), see: Kitano et al. (1983).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Reaction scheme.
[Figure 2] Fig. 2. A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms and the benzene molecule are omitted for clarity.
[Figure 3] Fig. 3. Packing diagram of the title compound. H atoms omitted for clarity.
trans-Dichloridobis(triphenylphosphane-κP)palladium(II) benzene hemisolvate top
Crystal data top
[PdCl2(C18H15P)2]·0.5C6H6F(000) = 1508
Mr = 740.89Dx = 1.464 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 28523 reflections
a = 11.4530 (7) Åθ = 3.3–26.1°
b = 18.4493 (8) ŵ = 0.83 mm1
c = 16.4696 (10) ÅT = 173 K
β = 104.979 (5)°Rod, yellow
V = 3361.8 (3) Å30.26 × 0.08 × 0.08 mm
Z = 4
Data collection top
Stoe IPDS II two-circle
diffractometer
6302 independent reflections
Radiation source: Genix 3D IµS microfocus X-ray source5104 reflections with I > 2σ(I)
Genix 3D multilayer optics monochromatorRint = 0.089
ω scansθmax = 25.7°, θmin = 3.3°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 1313
Tmin = 0.812, Tmax = 0.936k = 2222
42186 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0537P)2]
where P = (Fo2 + 2Fc2)/3
6302 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.45 e Å3
4 restraintsΔρmin = 0.76 e Å3
Crystal data top
[PdCl2(C18H15P)2]·0.5C6H6V = 3361.8 (3) Å3
Mr = 740.89Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.4530 (7) ŵ = 0.83 mm1
b = 18.4493 (8) ÅT = 173 K
c = 16.4696 (10) Å0.26 × 0.08 × 0.08 mm
β = 104.979 (5)°
Data collection top
Stoe IPDS II two-circle
diffractometer
6302 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
5104 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.936Rint = 0.089
42186 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0414 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
6302 reflectionsΔρmin = 0.76 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.45706 (2)0.831821 (14)0.206242 (15)0.01813 (9)
Cl10.42899 (9)0.70941 (5)0.19156 (6)0.0353 (2)
Cl20.48343 (8)0.95572 (5)0.21552 (6)0.0292 (2)
P10.25111 (7)0.83867 (5)0.20060 (5)0.01825 (18)
P20.65875 (7)0.81933 (5)0.20311 (5)0.01921 (18)
C110.1927 (3)0.75972 (18)0.2434 (2)0.0210 (7)
C120.2494 (3)0.7383 (2)0.3252 (2)0.0255 (7)
H120.31930.76320.35610.031*
C130.2041 (4)0.6805 (2)0.3619 (2)0.0320 (9)
H130.24170.66690.41820.038*
C140.1042 (4)0.6429 (2)0.3163 (3)0.0363 (9)
H140.07290.60350.34130.044*
C150.0500 (4)0.6625 (2)0.2346 (3)0.0339 (8)
H150.01710.63570.20270.041*
C160.0930 (3)0.7213 (2)0.1988 (2)0.0284 (8)
H160.05360.73530.14300.034*
C210.1665 (3)0.84101 (19)0.0905 (2)0.0221 (7)
C220.2071 (4)0.8002 (2)0.0328 (2)0.0307 (8)
H220.27990.77330.05050.037*
C230.1417 (4)0.7986 (2)0.0508 (2)0.0387 (10)
H230.16900.76950.08980.046*
C240.0377 (4)0.8389 (2)0.0778 (2)0.0363 (9)
H240.00660.83780.13510.044*
C250.0017 (4)0.8810 (3)0.0206 (2)0.0375 (10)
H250.07240.90980.03920.045*
C260.0608 (3)0.8817 (2)0.0633 (2)0.0288 (8)
H260.03190.90970.10240.035*
C310.1919 (3)0.91423 (19)0.2491 (2)0.0208 (7)
C320.1352 (3)0.9029 (2)0.3138 (2)0.0276 (8)
H320.12720.85530.33350.033*
C330.0908 (4)0.9614 (2)0.3490 (3)0.0348 (9)
H330.05230.95350.39290.042*
C340.1013 (4)1.0303 (2)0.3217 (2)0.0330 (9)
H340.07021.06990.34640.040*
C350.1580 (3)1.0425 (2)0.2574 (2)0.0282 (8)
H350.16571.09050.23850.034*
C360.2029 (3)0.98475 (19)0.2212 (2)0.0231 (7)
H360.24130.99310.17730.028*
C410.7013 (3)0.73483 (19)0.1600 (2)0.0246 (7)
C420.6964 (4)0.6693 (2)0.2010 (3)0.0361 (9)
H420.67300.66910.25230.043*
C430.7250 (4)0.6044 (2)0.1681 (3)0.0427 (10)
H430.72160.56020.19700.051*
C440.7585 (4)0.6041 (2)0.0931 (3)0.0424 (11)
H440.77720.55980.06990.051*
C450.7642 (4)0.6682 (3)0.0528 (3)0.0424 (10)
H450.78710.66810.00140.051*
C460.7371 (4)0.7336 (2)0.0858 (2)0.0312 (8)
H460.74320.77760.05740.037*
C510.7630 (3)0.82704 (19)0.3072 (2)0.0218 (7)
C520.8674 (3)0.7857 (2)0.3317 (2)0.0285 (8)
H520.88750.75290.29300.034*
C530.9426 (3)0.7919 (2)0.4122 (2)0.0327 (9)
H531.01350.76300.42840.039*
C540.9154 (3)0.8397 (2)0.4689 (2)0.0329 (9)
H540.96700.84370.52410.039*
C550.8125 (4)0.8818 (2)0.4449 (2)0.0349 (9)
H550.79400.91520.48370.042*
C560.7358 (3)0.8758 (2)0.3645 (2)0.0291 (8)
H560.66500.90480.34860.035*
C610.7014 (3)0.89120 (18)0.1407 (2)0.0211 (7)
C620.8040 (3)0.9323 (2)0.1700 (2)0.0288 (8)
H620.85770.92150.22300.035*
C630.8293 (4)0.9893 (2)0.1227 (3)0.0367 (9)
H630.90041.01730.14330.044*
C640.7520 (4)1.0056 (2)0.0460 (3)0.0375 (9)
H640.76961.04490.01380.045*
C650.6488 (4)0.9648 (2)0.0157 (2)0.0318 (8)
H650.59580.97590.03740.038*
C660.6223 (3)0.9076 (2)0.0625 (2)0.0261 (7)
H660.55110.87970.04180.031*
C10.4356 (5)1.0112 (4)0.4195 (3)0.0687 (19)
H10.39021.01940.36330.082*
C20.4811 (6)0.9443 (4)0.4426 (4)0.077 (2)
H20.46820.90590.40280.093*
C30.5455 (6)0.9327 (4)0.5236 (4)0.080 (2)
H30.57740.88590.54070.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01820 (13)0.01790 (14)0.01891 (13)0.00024 (10)0.00593 (9)0.00096 (10)
Cl10.0365 (5)0.0263 (5)0.0458 (6)0.0019 (4)0.0154 (4)0.0002 (4)
Cl20.0279 (4)0.0214 (4)0.0400 (5)0.0020 (3)0.0116 (4)0.0015 (4)
P10.0186 (4)0.0204 (4)0.0166 (4)0.0005 (3)0.0061 (3)0.0001 (3)
P20.0191 (4)0.0201 (4)0.0190 (4)0.0008 (3)0.0060 (3)0.0011 (3)
C110.0201 (16)0.0188 (17)0.0254 (17)0.0008 (13)0.0082 (13)0.0007 (13)
C120.0251 (18)0.0266 (19)0.0256 (18)0.0041 (14)0.0079 (14)0.0004 (14)
C130.043 (2)0.027 (2)0.0301 (19)0.0080 (16)0.0168 (17)0.0063 (15)
C140.043 (2)0.024 (2)0.050 (2)0.0011 (17)0.028 (2)0.0041 (17)
C150.0290 (19)0.030 (2)0.045 (2)0.0075 (16)0.0129 (16)0.0047 (18)
C160.0248 (18)0.031 (2)0.0299 (19)0.0036 (15)0.0084 (15)0.0018 (15)
C210.0277 (18)0.0216 (18)0.0184 (16)0.0039 (14)0.0087 (13)0.0007 (13)
C220.035 (2)0.035 (2)0.0235 (18)0.0072 (16)0.0096 (15)0.0008 (16)
C230.053 (3)0.041 (2)0.0216 (18)0.001 (2)0.0084 (17)0.0061 (17)
C240.043 (2)0.041 (2)0.0197 (17)0.0112 (19)0.0011 (16)0.0035 (16)
C250.027 (2)0.048 (3)0.031 (2)0.0006 (17)0.0037 (16)0.0011 (18)
C260.0220 (17)0.041 (2)0.0227 (17)0.0002 (15)0.0040 (14)0.0057 (15)
C310.0177 (16)0.0265 (18)0.0176 (15)0.0009 (13)0.0034 (12)0.0051 (13)
C320.0304 (19)0.029 (2)0.0265 (18)0.0022 (15)0.0134 (15)0.0000 (15)
C330.039 (2)0.038 (2)0.034 (2)0.0046 (17)0.0219 (17)0.0028 (17)
C340.033 (2)0.039 (2)0.0275 (19)0.0101 (17)0.0094 (16)0.0057 (16)
C350.0285 (18)0.027 (2)0.0283 (18)0.0056 (15)0.0057 (15)0.0017 (15)
C360.0189 (16)0.0287 (19)0.0216 (16)0.0020 (13)0.0052 (13)0.0003 (14)
C410.0194 (17)0.0253 (19)0.0270 (18)0.0019 (13)0.0018 (14)0.0003 (14)
C420.037 (2)0.032 (2)0.043 (2)0.0045 (17)0.0184 (18)0.0009 (18)
C430.039 (2)0.029 (2)0.060 (3)0.0024 (17)0.014 (2)0.002 (2)
C440.034 (2)0.037 (2)0.052 (3)0.0040 (18)0.0030 (19)0.015 (2)
C450.045 (2)0.048 (3)0.035 (2)0.012 (2)0.0112 (18)0.006 (2)
C460.035 (2)0.034 (2)0.0255 (19)0.0057 (16)0.0103 (16)0.0032 (15)
C510.0206 (16)0.0272 (18)0.0189 (15)0.0007 (14)0.0077 (12)0.0061 (14)
C520.0262 (18)0.037 (2)0.0238 (17)0.0055 (15)0.0090 (14)0.0043 (15)
C530.0216 (18)0.046 (2)0.0304 (19)0.0048 (16)0.0055 (15)0.0069 (18)
C540.0286 (19)0.049 (3)0.0196 (17)0.0083 (17)0.0039 (14)0.0028 (17)
C550.037 (2)0.042 (2)0.0264 (19)0.0038 (18)0.0099 (16)0.0045 (17)
C560.0265 (18)0.029 (2)0.0285 (18)0.0058 (15)0.0019 (15)0.0000 (15)
C610.0208 (16)0.0213 (17)0.0238 (16)0.0032 (13)0.0108 (13)0.0002 (13)
C620.0252 (18)0.032 (2)0.0302 (19)0.0013 (15)0.0090 (15)0.0051 (16)
C630.030 (2)0.034 (2)0.048 (2)0.0062 (16)0.0120 (17)0.0080 (18)
C640.046 (2)0.032 (2)0.042 (2)0.0038 (18)0.0244 (19)0.0128 (18)
C650.040 (2)0.031 (2)0.0256 (18)0.0090 (17)0.0109 (16)0.0078 (15)
C660.0294 (19)0.0261 (19)0.0233 (17)0.0034 (14)0.0075 (14)0.0012 (14)
C10.037 (3)0.137 (6)0.029 (2)0.005 (3)0.0023 (19)0.000 (3)
C20.069 (4)0.113 (6)0.062 (4)0.034 (4)0.039 (3)0.031 (4)
C30.069 (4)0.092 (5)0.096 (5)0.016 (4)0.053 (4)0.028 (4)
Geometric parameters (Å, º) top
Pd1—Cl12.2851 (10)C36—H360.9500
Pd1—Cl22.3056 (9)C41—C461.386 (5)
Pd1—P22.3351 (9)C41—C421.392 (6)
Pd1—P12.3399 (9)C42—C431.388 (6)
P1—C111.819 (3)C42—H420.9500
P1—C311.822 (3)C43—C441.384 (7)
P1—C211.822 (3)C43—H430.9500
P2—C611.820 (4)C44—C451.366 (7)
P2—C511.824 (3)C44—H440.9500
P2—C411.830 (4)C45—C461.391 (6)
C11—C161.383 (5)C45—H450.9500
C11—C121.394 (5)C46—H460.9500
C12—C131.389 (5)C51—C521.387 (5)
C12—H120.9500C51—C561.396 (5)
C13—C141.383 (6)C52—C531.386 (5)
C13—H130.9500C52—H520.9500
C14—C151.377 (6)C53—C541.378 (6)
C14—H140.9500C53—H530.9500
C15—C161.383 (6)C54—C551.381 (6)
C15—H150.9500C54—H540.9500
C16—H160.9500C55—C561.392 (5)
C21—C221.383 (5)C55—H550.9500
C21—C261.395 (5)C56—H560.9500
C22—C231.388 (5)C61—C621.377 (5)
C22—H220.9500C61—C661.402 (5)
C23—C241.376 (6)C62—C631.383 (5)
C23—H230.9500C62—H620.9500
C24—C251.383 (6)C63—C641.375 (6)
C24—H240.9500C63—H630.9500
C25—C261.383 (5)C64—C651.381 (6)
C25—H250.9500C64—H640.9500
C26—H260.9500C65—C661.385 (5)
C31—C361.396 (5)C65—H650.9500
C31—C321.400 (5)C66—H660.9500
C32—C331.382 (5)C1—C3i1.376 (6)
C32—H320.9500C1—C21.355 (7)
C33—C341.364 (6)C1—H10.9500
C33—H330.9500C2—C31.365 (7)
C34—C351.396 (6)C2—H20.9500
C34—H340.9500C3—C1i1.376 (6)
C35—C361.383 (5)C3—H30.9500
C35—H350.9500
Cl1—Pd1—Cl2177.80 (4)C34—C35—H35120.0
Cl1—Pd1—P290.75 (3)C35—C36—C31120.0 (3)
Cl2—Pd1—P289.20 (3)C35—C36—H36120.0
Cl1—Pd1—P186.35 (3)C31—C36—H36120.0
Cl2—Pd1—P193.58 (3)C46—C41—C42118.1 (4)
P2—Pd1—P1175.72 (3)C46—C41—P2121.7 (3)
C11—P1—C31103.13 (16)C42—C41—P2120.2 (3)
C11—P1—C21104.49 (16)C43—C42—C41121.1 (4)
C31—P1—C21104.77 (16)C43—C42—H42119.5
C11—P1—Pd1114.15 (11)C41—C42—H42119.5
C31—P1—Pd1120.63 (11)C44—C43—C42120.0 (4)
C21—P1—Pd1108.21 (11)C44—C43—H43120.0
C61—P2—C51105.54 (16)C42—C43—H43120.0
C61—P2—C41105.34 (16)C45—C44—C43119.3 (4)
C51—P2—C41104.81 (16)C45—C44—H44120.4
C61—P2—Pd1110.59 (11)C43—C44—H44120.4
C51—P2—Pd1112.49 (11)C44—C45—C46121.2 (4)
C41—P2—Pd1117.17 (12)C44—C45—H45119.4
C16—C11—C12118.8 (3)C46—C45—H45119.4
C16—C11—P1122.7 (3)C41—C46—C45120.4 (4)
C12—C11—P1118.4 (3)C41—C46—H46119.8
C13—C12—C11120.4 (3)C45—C46—H46119.8
C13—C12—H12119.8C52—C51—C56118.9 (3)
C11—C12—H12119.8C52—C51—P2122.4 (3)
C14—C13—C12119.9 (4)C56—C51—P2118.6 (3)
C14—C13—H13120.0C53—C52—C51120.6 (4)
C12—C13—H13120.0C53—C52—H52119.7
C15—C14—C13119.9 (4)C51—C52—H52119.7
C15—C14—H14120.0C54—C53—C52120.5 (4)
C13—C14—H14120.0C54—C53—H53119.8
C14—C15—C16120.2 (4)C52—C53—H53119.8
C14—C15—H15119.9C53—C54—C55119.5 (3)
C16—C15—H15119.9C53—C54—H54120.3
C11—C16—C15120.8 (4)C55—C54—H54120.3
C11—C16—H16119.6C54—C55—C56120.7 (4)
C15—C16—H16119.6C54—C55—H55119.7
C22—C21—C26119.3 (3)C56—C55—H55119.7
C22—C21—P1118.9 (3)C55—C56—C51119.9 (3)
C26—C21—P1121.8 (3)C55—C56—H56120.1
C21—C22—C23120.2 (4)C51—C56—H56120.1
C21—C22—H22119.9C62—C61—C66119.5 (3)
C23—C22—H22119.9C62—C61—P2122.2 (3)
C24—C23—C22120.6 (4)C66—C61—P2118.2 (3)
C24—C23—H23119.7C61—C62—C63120.4 (4)
C22—C23—H23119.7C61—C62—H62119.8
C23—C24—C25119.4 (3)C63—C62—H62119.8
C23—C24—H24120.3C64—C63—C62120.3 (4)
C25—C24—H24120.3C64—C63—H63119.8
C24—C25—C26120.6 (4)C62—C63—H63119.8
C24—C25—H25119.7C63—C64—C65120.0 (4)
C26—C25—H25119.7C63—C64—H64120.0
C25—C26—C21119.9 (4)C65—C64—H64120.0
C25—C26—H26120.0C64—C65—C66120.3 (4)
C21—C26—H26120.0C64—C65—H65119.9
C36—C31—C32119.2 (3)C66—C65—H65119.9
C36—C31—P1119.5 (3)C65—C66—C61119.5 (3)
C32—C31—P1121.2 (3)C65—C66—H66120.2
C33—C32—C31119.8 (4)C61—C66—H66120.2
C33—C32—H32120.1C3i—C1—C2120.9 (5)
C31—C32—H32120.1C3i—C1—H1119.6
C34—C33—C32121.0 (4)C2—C1—H1119.6
C34—C33—H33119.5C1—C2—C3119.3 (6)
C32—C33—H33119.5C1—C2—H2120.4
C33—C34—C35119.9 (4)C3—C2—H2120.4
C33—C34—H34120.0C1i—C3—C2119.9 (6)
C35—C34—H34120.0C1i—C3—H3120.1
C36—C35—C34120.1 (4)C2—C3—H3120.1
C36—C35—H35120.0
Cl1—Pd1—P1—C1131.06 (13)C32—C33—C34—C350.2 (6)
Cl2—Pd1—P1—C11151.14 (12)C33—C34—C35—C360.3 (6)
Cl1—Pd1—P1—C31154.76 (13)C34—C35—C36—C310.2 (5)
Cl2—Pd1—P1—C3127.44 (13)C32—C31—C36—C350.0 (5)
Cl1—Pd1—P1—C2184.79 (12)P1—C31—C36—C35179.8 (3)
Cl2—Pd1—P1—C2193.00 (12)C61—P2—C41—C4610.0 (3)
Cl1—Pd1—P2—C61139.03 (12)C51—P2—C41—C46121.1 (3)
Cl2—Pd1—P2—C6138.77 (12)Pd1—P2—C41—C46113.4 (3)
Cl1—Pd1—P2—C51103.24 (13)C61—P2—C41—C42171.1 (3)
Cl2—Pd1—P2—C5178.96 (13)C51—P2—C41—C4260.0 (3)
Cl1—Pd1—P2—C4118.33 (13)Pd1—P2—C41—C4265.5 (3)
Cl2—Pd1—P2—C41159.48 (13)C46—C41—C42—C430.8 (6)
C31—P1—C11—C16100.7 (3)P2—C41—C42—C43178.2 (3)
C21—P1—C11—C168.6 (3)C41—C42—C43—C440.4 (7)
Pd1—P1—C11—C16126.6 (3)C42—C43—C44—C450.7 (7)
C31—P1—C11—C1277.8 (3)C43—C44—C45—C460.0 (7)
C21—P1—C11—C12172.9 (3)C42—C41—C46—C451.6 (6)
Pd1—P1—C11—C1254.9 (3)P2—C41—C46—C45177.4 (3)
C16—C11—C12—C131.8 (5)C44—C45—C46—C411.2 (6)
P1—C11—C12—C13176.7 (3)C61—P2—C51—C5296.0 (3)
C11—C12—C13—C141.7 (6)C41—P2—C51—C5215.0 (3)
C12—C13—C14—C150.2 (6)Pd1—P2—C51—C52143.4 (3)
C13—C14—C15—C162.0 (6)C61—P2—C51—C5684.8 (3)
C12—C11—C16—C150.0 (5)C41—P2—C51—C56164.3 (3)
P1—C11—C16—C15178.5 (3)Pd1—P2—C51—C5635.9 (3)
C14—C15—C16—C111.9 (6)C56—C51—C52—C530.9 (6)
C11—P1—C21—C2285.4 (3)P2—C51—C52—C53178.3 (3)
C31—P1—C21—C22166.5 (3)C51—C52—C53—C540.6 (6)
Pd1—P1—C21—C2236.6 (3)C52—C53—C54—C550.3 (6)
C11—P1—C21—C2693.3 (3)C53—C54—C55—C560.7 (6)
C31—P1—C21—C2614.8 (3)C54—C55—C56—C510.3 (6)
Pd1—P1—C21—C26144.7 (3)C52—C51—C56—C550.5 (6)
C26—C21—C22—C231.4 (6)P2—C51—C56—C55178.8 (3)
P1—C21—C22—C23177.3 (3)C51—P2—C61—C628.2 (3)
C21—C22—C23—C241.7 (7)C41—P2—C61—C62102.4 (3)
C22—C23—C24—C250.2 (7)Pd1—P2—C61—C62130.1 (3)
C23—C24—C25—C261.5 (7)C51—P2—C61—C66167.8 (3)
C24—C25—C26—C211.7 (6)C41—P2—C61—C6681.6 (3)
C22—C21—C26—C250.3 (6)Pd1—P2—C61—C6645.9 (3)
P1—C21—C26—C25179.0 (3)C66—C61—C62—C630.2 (6)
C11—P1—C31—C36170.3 (3)P2—C61—C62—C63176.1 (3)
C21—P1—C31—C3661.2 (3)C61—C62—C63—C640.2 (6)
Pd1—P1—C31—C3660.9 (3)C62—C63—C64—C650.3 (6)
C11—P1—C31—C329.6 (3)C63—C64—C65—C660.3 (6)
C21—P1—C31—C32118.7 (3)C64—C65—C66—C610.3 (6)
Pd1—P1—C31—C32119.2 (3)C62—C61—C66—C650.2 (5)
C36—C31—C32—C330.1 (5)P2—C61—C66—C65176.3 (3)
P1—C31—C32—C33179.7 (3)C3i—C1—C2—C30.5 (10)
C31—C32—C33—C340.0 (6)C1—C2—C3—C1i0.5 (10)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[PdCl2(C18H15P)2]·0.5C6H6
Mr740.89
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)11.4530 (7), 18.4493 (8), 16.4696 (10)
β (°) 104.979 (5)
V3)3361.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.26 × 0.08 × 0.08
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correctionMulti-scan
(X-AREA; Stoe & Cie, 2001)
Tmin, Tmax0.812, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
42186, 6302, 5104
Rint0.089
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.095, 1.03
No. of reflections6302
No. of parameters397
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.76

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), XP (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

This work was supported by the Beilstein Institute as part of the NanoBiC research cooperative (project eNet).

References

First citationKitano, Y., Kinoshita, Y., Nakamura, R. & Ashida, T. (1983). Acta Cryst. C39, 1015–1017.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLerner, H.-W. (2005). Coord. Chem. Rev. 249, 781–798.  Web of Science CrossRef CAS Google Scholar
First citationMeyer-Wegner, F., Nadj, A., Bolte, M., Auner, N., Wagner, M., Holthausen, M. C. & Lerner, H.-W. (2011). Chem. Eur. J. 17, 4715–4719.  Web of Science CAS PubMed Google Scholar
First citationMeyer-Wegner, F., Scholz, S., Sänger, I., Schödel, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2009). Organometallics, 28, 6835–6837.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds