organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3,3-Di­chloro­all­yl­oxy)-2-nitro­benzene

aSecurity and Environment Engineering College, Capital University of Economics and Business, Beijing 10070, People's Republic of China
*Correspondence e-mail: nanoren@126.com

(Received 3 March 2012; accepted 7 March 2012; online 14 March 2012)

In the title compound, C9H7Cl2NO3, the dihedral angle between the benzene ring and the plane of the nitro group is 50.2 (1)°, and that between the benzene ring and the best plane through the dichloro­allyl fragment is 40.1 (1)°.

Related literature

For the synthesis and applications of the title compound, see: Walker et al. (2005[Walker, E. R., Leung, S. Y. & Barrett, A. G. M. (2005). Tetrahedron Lett. 46, 6537-6540.]). For bond-length data, see: Allen et al. (1987)[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.].

[Scheme 1]

Experimental

Crystal data
  • C9H7Cl2NO3

  • Mr = 248.06

  • Monoclinic, P 21 /c

  • a = 4.0210 (8) Å

  • b = 21.506 (4) Å

  • c = 12.333 (3) Å

  • β = 96.41 (3)°

  • V = 1059.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.841, Tmax = 0.943

  • 4390 measured reflections

  • 1941 independent reflections

  • 1416 reflections with I > 2σ(I)

  • Rint = 0.063

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.164

  • S = 1.00

  • 1941 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 1-(3,3-dichloroallyloxy)-2-nitrobenzene is an important intermediate in the synthesis of phenanthrenes (Walker et al., 2005). Here we report here the molecular and crystal structure of the title compound (Fig. 1).

There are no classic hydrogen bonds found, but a short intramolecular contact C7—H7B···Cl2 is observed (C7—H7B: 0.97 Å, H7B···Cl2: 2.700 Å, C7···Cl2: 3.139 (3) Å, C7—H7B···Cl2: 108.00).

The dihedral angle between the benzene ring (C1—C6) and the plane of the nitro group is 50.2 (1)°, and between the benzene ring and the best plane through the dichloroallyl fragment (C7—C9, Cl1, Cl2) 40.1 (1)°.

The packing is shown in Figure 2 and contains a short Cl1···Cl2 (x + 1, y, z) contact (3.6668 (16) Å).

Related literature top

For the synthesis and applications of the title compound, see: Walker et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Walker et al., 2005). The crystals were obtained by dissolving (I) (0.1 g) in methanol (30 ml) and evaporating the solvent slowly at room temperature for about 8 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H and 0.96 Å for alkyl H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for other H.

Structure description top

The title compound, 1-(3,3-dichloroallyloxy)-2-nitrobenzene is an important intermediate in the synthesis of phenanthrenes (Walker et al., 2005). Here we report here the molecular and crystal structure of the title compound (Fig. 1).

There are no classic hydrogen bonds found, but a short intramolecular contact C7—H7B···Cl2 is observed (C7—H7B: 0.97 Å, H7B···Cl2: 2.700 Å, C7···Cl2: 3.139 (3) Å, C7—H7B···Cl2: 108.00).

The dihedral angle between the benzene ring (C1—C6) and the plane of the nitro group is 50.2 (1)°, and between the benzene ring and the best plane through the dichloroallyl fragment (C7—C9, Cl1, Cl2) 40.1 (1)°.

The packing is shown in Figure 2 and contains a short Cl1···Cl2 (x + 1, y, z) contact (3.6668 (16) Å).

For the synthesis and applications of the title compound, see: Walker et al. (2005). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I) viewed down the a-axis.
1-(3,3-Dichloroallyloxy)-2-nitrobenzene top
Crystal data top
C9H7Cl2NO3F(000) = 504
Mr = 248.06Dx = 1.555 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 4.0210 (8) Åθ = 10–13°
b = 21.506 (4) ŵ = 0.60 mm1
c = 12.333 (3) ÅT = 293 K
β = 96.41 (3)°Block, colourless
V = 1059.8 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1416 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 25.4°, θmin = 1.9°
ω/2θ scansh = 04
Absorption correction: ψ scan
(North et al., 1968)
k = 2525
Tmin = 0.841, Tmax = 0.943l = 1414
4390 measured reflections3 standard reflections every 200 reflections
1941 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.2P]
where P = (Fo2 + 2Fc2)/3
1941 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C9H7Cl2NO3V = 1059.8 (4) Å3
Mr = 248.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.0210 (8) ŵ = 0.60 mm1
b = 21.506 (4) ÅT = 293 K
c = 12.333 (3) Å0.30 × 0.20 × 0.10 mm
β = 96.41 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1416 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.063
Tmin = 0.841, Tmax = 0.9433 standard reflections every 200 reflections
4390 measured reflections intensity decay: 1%
1941 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.00Δρmax = 0.36 e Å3
1941 reflectionsΔρmin = 0.29 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.0930 (8)0.17453 (13)0.1420 (2)0.0607 (7)
Cl10.6644 (2)0.46194 (4)0.18851 (7)0.0679 (3)
C10.1777 (8)0.19522 (14)0.4390 (2)0.0509 (7)
H1A0.28530.22410.48700.061*
O10.0106 (14)0.13642 (18)0.0804 (2)0.1309 (16)
Cl20.3945 (3)0.44863 (4)0.39369 (7)0.0729 (3)
C20.0679 (9)0.13945 (15)0.4779 (3)0.0591 (8)
H2A0.09870.13150.55250.071*
O20.2241 (10)0.22293 (15)0.1110 (2)0.0977 (10)
O30.2229 (6)0.26084 (9)0.28095 (15)0.0551 (6)
C30.0868 (9)0.09520 (15)0.4083 (3)0.0612 (9)
H3A0.15890.05790.43580.073*
C40.1329 (9)0.10674 (14)0.2985 (3)0.0568 (8)
H4A0.23320.07710.25070.068*
C50.0295 (8)0.16271 (13)0.2596 (2)0.0469 (7)
C60.1265 (7)0.20796 (12)0.3279 (2)0.0430 (6)
C70.4163 (8)0.30524 (12)0.3477 (2)0.0480 (7)
H7A0.60640.28530.38910.058*
H7B0.28080.32500.39820.058*
C80.5296 (7)0.35136 (14)0.2706 (2)0.0491 (7)
H8A0.60860.33610.20770.059*
C90.5280 (8)0.41198 (13)0.2834 (2)0.0495 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0812 (19)0.0533 (16)0.0480 (13)0.0130 (14)0.0079 (14)0.0101 (12)
Cl10.0832 (6)0.0472 (5)0.0752 (6)0.0049 (4)0.0172 (5)0.0102 (4)
C10.0600 (18)0.0462 (16)0.0462 (14)0.0020 (13)0.0041 (14)0.0025 (11)
O10.220 (5)0.112 (3)0.0666 (17)0.022 (3)0.040 (2)0.0235 (17)
Cl20.1011 (7)0.0526 (5)0.0672 (5)0.0023 (4)0.0188 (5)0.0173 (4)
C20.074 (2)0.0536 (18)0.0500 (16)0.0020 (16)0.0084 (16)0.0078 (13)
O20.135 (3)0.095 (2)0.0579 (15)0.003 (2)0.0152 (16)0.0072 (14)
O30.0769 (15)0.0431 (11)0.0442 (10)0.0160 (10)0.0011 (10)0.0008 (8)
C30.079 (2)0.0393 (16)0.0656 (19)0.0027 (15)0.0118 (17)0.0086 (13)
C40.067 (2)0.0393 (15)0.0654 (19)0.0041 (14)0.0134 (16)0.0075 (13)
C50.0562 (17)0.0428 (16)0.0429 (13)0.0000 (12)0.0112 (12)0.0062 (11)
C60.0482 (15)0.0364 (14)0.0451 (13)0.0027 (11)0.0082 (12)0.0041 (10)
C70.0560 (17)0.0402 (15)0.0464 (14)0.0034 (12)0.0003 (13)0.0040 (11)
C80.0521 (17)0.0419 (15)0.0537 (15)0.0033 (12)0.0078 (14)0.0035 (11)
C90.0548 (18)0.0421 (16)0.0512 (16)0.0006 (12)0.0042 (14)0.0020 (11)
Geometric parameters (Å, º) top
N—O11.189 (4)O3—C71.432 (3)
N—O21.209 (4)C3—C41.368 (5)
N—C51.466 (4)C3—H3A0.9300
Cl1—C91.723 (3)C4—C51.378 (4)
C1—C21.382 (4)C4—H4A0.9300
C1—C61.390 (4)C5—C61.390 (4)
C1—H1A0.9300C7—C81.481 (4)
Cl2—C91.710 (3)C7—H7A0.9700
C2—C31.382 (5)C7—H7B0.9700
C2—H2A0.9300C8—C91.313 (4)
O3—C61.352 (3)C8—H8A0.9300
O1—N—O2122.3 (3)C4—C5—N118.1 (3)
O1—N—C5118.8 (3)C6—C5—N119.7 (3)
O2—N—C5118.9 (3)O3—C6—C1124.7 (2)
C2—C1—C6119.7 (3)O3—C6—C5117.4 (2)
C2—C1—H1A120.1C1—C6—C5117.8 (3)
C6—C1—H1A120.1O3—C7—C8105.3 (2)
C1—C2—C3121.4 (3)O3—C7—H7A110.7
C1—C2—H2A119.3C8—C7—H7A110.7
C3—C2—H2A119.3O3—C7—H7B110.7
C6—O3—C7118.5 (2)C8—C7—H7B110.7
C4—C3—C2119.5 (3)H7A—C7—H7B108.8
C4—C3—H3A120.3C9—C8—C7125.6 (3)
C2—C3—H3A120.3C9—C8—H8A117.2
C3—C4—C5119.4 (3)C7—C8—H8A117.2
C3—C4—H4A120.3C8—C9—Cl2124.0 (2)
C5—C4—H4A120.3C8—C9—Cl1122.1 (2)
C4—C5—C6122.2 (3)Cl2—C9—Cl1113.89 (17)
C6—C1—C2—C31.3 (5)C2—C1—C6—O3180.0 (3)
C1—C2—C3—C40.1 (6)C2—C1—C6—C51.3 (4)
C2—C3—C4—C51.1 (5)C4—C5—C6—O3178.9 (3)
C3—C4—C5—C61.1 (5)N—C5—C6—O32.1 (4)
C3—C4—C5—N177.9 (3)C4—C5—C6—C10.1 (4)
O1—N—C5—C450.7 (5)N—C5—C6—C1179.1 (3)
O2—N—C5—C4130.1 (4)C6—O3—C7—C8170.5 (2)
O1—N—C5—C6130.2 (4)O3—C7—C8—C9136.4 (3)
O2—N—C5—C649.0 (5)C7—C8—C9—Cl20.4 (5)
C7—O3—C6—C15.5 (4)C7—C8—C9—Cl1179.8 (2)
C7—O3—C6—C5173.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···Cl20.972.703.139 (3)108

Experimental details

Crystal data
Chemical formulaC9H7Cl2NO3
Mr248.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.0210 (8), 21.506 (4), 12.333 (3)
β (°) 96.41 (3)
V3)1059.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.841, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
4390, 1941, 1416
Rint0.063
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.164, 1.00
No. of reflections1941
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.29

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···Cl20.972.703.139 (3)108
 

Acknowledgements

This study was supported financially by the Capital University of Economics and Business (00891162721716) and the Scientific Research Level Project of Beijing Education Commission Foundation. The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalker, E. R., Leung, S. Y. & Barrett, A. G. M. (2005). Tetrahedron Lett. 46, 6537–6540.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds