organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Vinyl­pyridine–tris­­(penta­fluoro­phen­yl)borane hexane monosolvate

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: marcus.klahn@catalysis.de

(Received 14 March 2012; accepted 26 March 2012; online 31 March 2012)

The title compound, C7H7N·B(C6F5)3·C6H14, was obtained by the stoichiometric reaction of 2-vinyl­pyridine and tris­(penta­fluoro­phen­yl)borane in toluene. The formed adduct exhibits a restricted rotation along the B—N bond resulting in an asymmetry, which can be also observed in the 19F NMR spectra. The B—N distance is equivalent to the distances found for 2-methyl­pyridine and 2-ethyl­pyridine B(C6F5)3 adducts. For the final refinement, the contributions of disordered solvent mol­ecules were removed from the diffraction data with SQUEEZE in PLATON [van der Sluis & Spek (1990). Acta Cryst. A46, 194–201; Spek (2009). Acta Cryst. D65, 148–155].

Related literature

For general aspects of related compounds, see: Focante et al. (2006[Focante, F., Mercandelli, P., Sironi, A. & Resconi, L. (2006). Coord. Chem. Rev. 250, 170-188.]); Stephan & Erker (2010[Stephan, D. W. & Erker, G. (2010). Angew. Chem. Int. Ed. 49, 46-76.]); Welch et al. (2007[Welch, G. C., Cabrera, L., Chase, P. A., Hollink, E., Masuda, J. D., Wei, P. & Stephan, D. W. (2007). Dalton Trans. pp. 3407-3414.]). For related structures, see: Geier et al. (2009[Geier, S. J., Gille, A. L., Gilbert, T. M. & Stephan, D. W. (2009). Inorg. Chem. 48, 10466-10474.]). For the use of SQUEEZE in PLATON to remove the contributions of disordered solvent mol­ecules, see: van der Sluis & Spek (1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C25H7BF15N·C6H14

  • Mr = 730.30

  • Monoclinic, P 21 /n

  • a = 12.4173 (2) Å

  • b = 17.1269 (3) Å

  • c = 13.9211 (2) Å

  • β = 100.889 (1)°

  • V = 2907.29 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 150 K

  • 0.35 × 0.33 × 0.25 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.695, Tmax = 0.746

  • 55747 measured reflections

  • 6929 independent reflections

  • 5324 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.113

  • S = 1.04

  • 6929 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The concept of "Frustrated Lewis pairs" has been put forth and coined by Welch et al. (2007). The key feature is the sterical hindrance between the Lewis acids and bases preventing the formation of a classical adduct which gives rise to a unique reactivity due to the interaction of the basic and acidic centers. This characteristic facilitates a lot of reactions with a wide variety of reagents, as it has been overviewed by Stephan & Erker (2010). The substrates can be either small molecules like H2, CO2, and N2O, or larger ones like terminal olefins, alkynes, dienes, B–H bonds, disulfides and the C–O bonds of cyclic ethers. The conversion of 2-vinylpyridine with tris(pentafluorophenyl)borane proceeds similar to the general formation of Lewis acid base adducts presented before by Focante et al. (2006) and Geier et al. (2009). The nature of the adduct (figure 1) is confirmed by the precluded activation of dihydrogen. As found for other pyridine derivatives, the compound gives 19F-NMR spectra with 15 signals, one for each fluorine atom at the borane. This asymmetry results from a restricted rotation of the B–N bond. The B–N distance of the title compound (1.637 (3) Å) is found to be the same as for the analogous compounds 2-methylvinylpyridine/B(C6F5)3 1.639 (2) Å and 2-ethylpyridine/B(C6F5)3 1.638 (2) Å, respectively (Geier et al., 2009). This finding corroborates the assumption that the vinyl group in ortho-position to the nitrogen has no influence on the bonding situation. The boron center exhibits a distorted tetrahedral coordination geometry.

Related literature top

For general aspects of related compounds, see: Focante et al. (2006); Stephan & Erker (2010); Welch et al. (2007). For related structures, see: Geier et al. (2009). For the final refinement the contributions of disordered solvent molecules were removed from the diffraction data with SQUEEZE in PLATON (van der Sluis & Spek, 1990; Spek, 2009).

Experimental top

Solid tris(pentafluorophenyl)borane (0.512 g, 1.0 mmol) and vinylpyridine (0.11 ml, 1.0 mmol) were dissolved in 25 ml of toluene resulting in a colorless solution. The reaction was allowed to stir for 2 h at 40 °C. The solvent was removed in vaccuo and the residue was extracted with n-hexane. Slow evaporation of the solvent resulted in the formation of colorless prisms. Isolated yield for pure crystalline material 0.380 g (62%).

Refinement top

For the final refinement the contributions of disordered solvent molecules were removed from the diffraction data with PLATON / SQUEEZE (van der Sluis & Spek, 1990; Spek, 2009). SQUEEZE estimated the electron counts in the voids of 196 Å3 to be 53. H atoms were placed in idealized positions with d(C—H) = 0.95 Å and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C).

Structure description top

The concept of "Frustrated Lewis pairs" has been put forth and coined by Welch et al. (2007). The key feature is the sterical hindrance between the Lewis acids and bases preventing the formation of a classical adduct which gives rise to a unique reactivity due to the interaction of the basic and acidic centers. This characteristic facilitates a lot of reactions with a wide variety of reagents, as it has been overviewed by Stephan & Erker (2010). The substrates can be either small molecules like H2, CO2, and N2O, or larger ones like terminal olefins, alkynes, dienes, B–H bonds, disulfides and the C–O bonds of cyclic ethers. The conversion of 2-vinylpyridine with tris(pentafluorophenyl)borane proceeds similar to the general formation of Lewis acid base adducts presented before by Focante et al. (2006) and Geier et al. (2009). The nature of the adduct (figure 1) is confirmed by the precluded activation of dihydrogen. As found for other pyridine derivatives, the compound gives 19F-NMR spectra with 15 signals, one for each fluorine atom at the borane. This asymmetry results from a restricted rotation of the B–N bond. The B–N distance of the title compound (1.637 (3) Å) is found to be the same as for the analogous compounds 2-methylvinylpyridine/B(C6F5)3 1.639 (2) Å and 2-ethylpyridine/B(C6F5)3 1.638 (2) Å, respectively (Geier et al., 2009). This finding corroborates the assumption that the vinyl group in ortho-position to the nitrogen has no influence on the bonding situation. The boron center exhibits a distorted tetrahedral coordination geometry.

For general aspects of related compounds, see: Focante et al. (2006); Stephan & Erker (2010); Welch et al. (2007). For related structures, see: Geier et al. (2009). For the final refinement the contributions of disordered solvent molecules were removed from the diffraction data with SQUEEZE in PLATON (van der Sluis & Spek, 1990; Spek, 2009).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom labels and 30% displacement ellipsoids. Hydrogen atoms are omitted for clarity.
2-Vinylpyridine–tris(pentafluorophenyl)borane hexane monosolvate top
Crystal data top
C25H7BF15N·C6H14F(000) = 1416
Mr = 703.30Dx = 1.607 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.4173 (2) ÅCell parameters from 9876 reflections
b = 17.1269 (3) Åθ = 2.3–26.3°
c = 13.9211 (2) ŵ = 0.16 mm1
β = 100.889 (1)°T = 150 K
V = 2907.29 (8) Å3Prism, colourless
Z = 40.35 × 0.33 × 0.25 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
6929 independent reflections
Radiation source: fine-focus sealed tube5324 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.030
Detector resolution: 8.3333 pixels mm-1θmax = 27.9°, θmin = 1.9°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 022
Tmin = 0.695, Tmax = 0.746l = 018
55747 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0312P)2 + 2.2216P]
where P = (Fo2 + 2Fc2)/3
6929 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C25H7BF15N·C6H14V = 2907.29 (8) Å3
Mr = 703.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.4173 (2) ŵ = 0.16 mm1
b = 17.1269 (3) ÅT = 150 K
c = 13.9211 (2) Å0.35 × 0.33 × 0.25 mm
β = 100.889 (1)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
6929 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5324 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.746Rint = 0.030
55747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
6929 reflectionsΔρmin = 0.25 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.90231 (17)0.13181 (12)0.38660 (15)0.0434 (5)
H10.82630.13830.38640.052*
C20.9757 (2)0.16041 (15)0.46482 (18)0.0578 (6)
H20.95120.18650.51690.069*
C31.0860 (2)0.15025 (18)0.4657 (2)0.0713 (8)
H31.13920.16730.52000.086*
C41.11785 (19)0.11521 (16)0.3873 (2)0.0668 (8)
H41.19380.10840.38740.080*
C51.04135 (16)0.08929 (12)0.30710 (19)0.0493 (5)
C61.07643 (17)0.05611 (14)0.2212 (2)0.0565 (6)
H61.03280.01650.18530.068*
C71.1666 (2)0.07912 (17)0.1916 (3)0.0765 (9)
H7A1.21140.11870.22650.092*
H7B1.18650.05610.13530.092*
C80.84554 (14)0.02844 (11)0.19742 (13)0.0334 (4)
C90.90655 (14)0.08385 (11)0.25654 (13)0.0343 (4)
C100.90397 (16)0.16275 (11)0.23593 (14)0.0375 (4)
C110.83804 (18)0.18957 (11)0.15249 (15)0.0415 (4)
C120.77312 (18)0.13771 (13)0.09240 (15)0.0449 (5)
C130.77700 (16)0.05962 (12)0.11631 (14)0.0391 (4)
C140.71442 (14)0.07074 (10)0.25130 (13)0.0313 (4)
C150.69487 (15)0.02992 (11)0.33276 (13)0.0346 (4)
C160.59468 (16)0.02570 (11)0.36130 (15)0.0389 (4)
C170.50623 (15)0.06250 (11)0.30572 (15)0.0396 (4)
C180.51920 (15)0.10188 (11)0.22336 (15)0.0385 (4)
C190.62162 (15)0.10543 (10)0.19769 (13)0.0334 (4)
C200.85181 (15)0.12444 (12)0.13074 (16)0.0412 (5)
C210.83817 (15)0.20401 (12)0.14261 (17)0.0454 (5)
C220.85464 (18)0.25980 (14)0.0756 (2)0.0596 (7)
C230.8865 (2)0.23690 (17)0.0090 (2)0.0714 (8)
C240.9022 (2)0.15996 (17)0.0244 (2)0.0709 (8)
C250.88500 (18)0.10540 (14)0.04498 (18)0.0539 (6)
N10.93177 (12)0.09495 (9)0.30993 (13)0.0385 (4)
B10.83605 (16)0.06510 (12)0.22003 (16)0.0332 (4)
F10.97508 (9)0.06271 (7)0.33938 (8)0.0438 (3)
F20.96667 (11)0.21289 (7)0.29565 (9)0.0499 (3)
F30.83723 (12)0.26568 (7)0.12948 (9)0.0543 (3)
F40.70812 (13)0.16365 (9)0.01098 (9)0.0679 (4)
F50.70978 (11)0.01194 (7)0.05566 (8)0.0511 (3)
F60.77858 (9)0.00810 (7)0.38990 (8)0.0424 (3)
F70.58340 (11)0.01383 (7)0.44164 (9)0.0528 (3)
F80.40755 (10)0.05864 (7)0.33126 (10)0.0553 (3)
F90.43240 (9)0.13657 (7)0.16772 (10)0.0515 (3)
F100.62556 (9)0.14561 (7)0.11527 (8)0.0405 (3)
F110.80562 (10)0.23048 (7)0.22390 (10)0.0492 (3)
F120.83828 (12)0.33561 (8)0.09278 (14)0.0760 (5)
F130.90227 (15)0.29033 (11)0.07537 (15)0.1035 (7)
F140.93402 (17)0.13562 (12)0.10669 (14)0.1034 (7)
F150.90590 (12)0.03096 (8)0.02312 (10)0.0670 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0383 (10)0.0435 (11)0.0467 (11)0.0014 (8)0.0031 (9)0.0103 (9)
C20.0560 (14)0.0589 (14)0.0517 (13)0.0058 (11)0.0068 (11)0.0084 (11)
C30.0509 (14)0.0776 (19)0.0741 (18)0.0134 (13)0.0170 (13)0.0157 (15)
C40.0320 (11)0.0657 (16)0.096 (2)0.0033 (11)0.0044 (12)0.0250 (15)
C50.0305 (9)0.0393 (11)0.0777 (16)0.0015 (8)0.0091 (10)0.0185 (10)
C60.0337 (10)0.0484 (12)0.0917 (18)0.0077 (9)0.0227 (11)0.0178 (12)
C70.0389 (12)0.0733 (18)0.124 (3)0.0028 (12)0.0322 (15)0.0183 (17)
C80.0294 (8)0.0379 (9)0.0360 (9)0.0069 (7)0.0145 (7)0.0077 (8)
C90.0307 (9)0.0378 (9)0.0365 (10)0.0022 (7)0.0119 (7)0.0071 (8)
C100.0409 (10)0.0377 (10)0.0375 (10)0.0086 (8)0.0165 (8)0.0123 (8)
C110.0534 (12)0.0357 (10)0.0400 (10)0.0042 (9)0.0207 (9)0.0020 (8)
C120.0511 (12)0.0507 (12)0.0336 (10)0.0081 (9)0.0096 (9)0.0024 (9)
C130.0413 (10)0.0449 (11)0.0332 (9)0.0138 (8)0.0123 (8)0.0080 (8)
C140.0296 (8)0.0315 (9)0.0343 (9)0.0015 (7)0.0101 (7)0.0002 (7)
C150.0338 (9)0.0348 (9)0.0368 (10)0.0047 (7)0.0111 (7)0.0005 (7)
C160.0441 (10)0.0348 (9)0.0437 (11)0.0004 (8)0.0230 (9)0.0002 (8)
C170.0302 (9)0.0402 (10)0.0530 (12)0.0028 (8)0.0194 (8)0.0107 (9)
C180.0281 (9)0.0361 (10)0.0503 (11)0.0018 (7)0.0049 (8)0.0075 (8)
C190.0331 (9)0.0334 (9)0.0336 (9)0.0001 (7)0.0060 (7)0.0043 (7)
C200.0300 (9)0.0426 (10)0.0546 (12)0.0111 (8)0.0174 (8)0.0184 (9)
C210.0282 (9)0.0458 (11)0.0643 (14)0.0062 (8)0.0141 (9)0.0174 (10)
C220.0381 (11)0.0483 (13)0.0928 (19)0.0064 (9)0.0130 (12)0.0346 (13)
C230.0501 (14)0.0793 (18)0.092 (2)0.0110 (13)0.0333 (14)0.0541 (16)
C240.0630 (15)0.0844 (19)0.0793 (18)0.0288 (14)0.0497 (14)0.0443 (15)
C250.0466 (12)0.0598 (14)0.0642 (14)0.0221 (10)0.0332 (11)0.0265 (11)
N10.0287 (7)0.0349 (8)0.0510 (10)0.0023 (6)0.0047 (7)0.0121 (7)
B10.0282 (9)0.0343 (10)0.0386 (11)0.0050 (8)0.0101 (8)0.0059 (8)
F10.0396 (6)0.0386 (6)0.0494 (7)0.0036 (5)0.0013 (5)0.0087 (5)
F20.0609 (8)0.0361 (6)0.0505 (7)0.0103 (5)0.0047 (6)0.0115 (5)
F30.0768 (9)0.0390 (6)0.0494 (7)0.0074 (6)0.0176 (6)0.0017 (5)
F40.0918 (11)0.0615 (9)0.0424 (7)0.0167 (8)0.0072 (7)0.0129 (6)
F50.0592 (7)0.0535 (7)0.0374 (6)0.0205 (6)0.0008 (5)0.0042 (5)
F60.0417 (6)0.0454 (6)0.0428 (6)0.0078 (5)0.0148 (5)0.0121 (5)
F70.0601 (8)0.0505 (7)0.0585 (8)0.0043 (6)0.0387 (6)0.0083 (6)
F80.0366 (6)0.0537 (7)0.0840 (9)0.0013 (5)0.0326 (6)0.0045 (7)
F90.0266 (5)0.0561 (7)0.0684 (8)0.0036 (5)0.0001 (5)0.0037 (6)
F100.0353 (6)0.0488 (6)0.0367 (6)0.0071 (5)0.0047 (4)0.0059 (5)
F110.0452 (7)0.0373 (6)0.0649 (8)0.0040 (5)0.0100 (6)0.0052 (6)
F120.0589 (9)0.0427 (7)0.1227 (14)0.0026 (6)0.0078 (9)0.0343 (8)
F130.0922 (12)0.1019 (13)0.1287 (16)0.0164 (10)0.0526 (12)0.0824 (12)
F140.1180 (15)0.1220 (15)0.0956 (13)0.0472 (12)0.0845 (12)0.0574 (11)
F150.0828 (10)0.0677 (9)0.0652 (9)0.0380 (8)0.0518 (8)0.0245 (7)
Geometric parameters (Å, º) top
C1—N11.349 (3)C13—F51.345 (2)
C1—C21.372 (3)C14—C191.383 (2)
C1—H10.9500C14—C151.392 (2)
C2—C31.379 (4)C14—B11.652 (3)
C2—H20.9500C15—F61.351 (2)
C3—C41.368 (4)C15—C161.377 (2)
C3—H30.9500C16—F71.337 (2)
C4—C51.395 (4)C16—C171.372 (3)
C4—H40.9500C17—F81.340 (2)
C5—N11.372 (2)C17—C181.366 (3)
C5—C61.462 (4)C18—F91.341 (2)
C6—C71.325 (3)C18—C191.386 (3)
C6—H60.9500C19—F101.347 (2)
C7—H7A0.9500C20—C251.374 (3)
C7—H7B0.9500C20—C211.387 (3)
C8—C91.384 (2)C20—B11.646 (3)
C8—C131.386 (3)C21—F111.350 (3)
C8—B11.641 (3)C21—C221.378 (3)
C9—F11.347 (2)C22—F121.343 (3)
C9—C101.380 (3)C22—C231.368 (4)
C10—F21.338 (2)C23—F131.341 (3)
C10—C111.368 (3)C23—C241.355 (4)
C11—F31.342 (2)C24—F141.346 (3)
C11—C121.373 (3)C24—C251.390 (3)
C12—F41.337 (2)C25—F151.347 (3)
C12—C131.377 (3)N1—B11.637 (3)
N1—C1—C2123.8 (2)F6—C15—C16116.19 (16)
N1—C1—H1118.1F6—C15—C14119.25 (15)
C2—C1—H1118.1C16—C15—C14124.56 (17)
C1—C2—C3118.2 (3)F7—C16—C17120.35 (17)
C1—C2—H2120.9F7—C16—C15120.71 (18)
C3—C2—H2120.9C17—C16—C15118.94 (17)
C4—C3—C2119.0 (2)F8—C17—C18120.38 (18)
C4—C3—H3120.5F8—C17—C16120.16 (18)
C2—C3—H3120.5C18—C17—C16119.44 (16)
C3—C4—C5121.5 (2)F9—C18—C17119.61 (17)
C3—C4—H4119.2F9—C18—C19120.54 (18)
C5—C4—H4119.2C17—C18—C19119.85 (17)
N1—C5—C4118.9 (2)F10—C19—C14121.24 (16)
N1—C5—C6120.1 (2)F10—C19—C18115.15 (16)
C4—C5—C6121.0 (2)C14—C19—C18123.61 (17)
C7—C6—C5122.6 (3)C25—C20—C21113.59 (18)
C7—C6—H6118.7C25—C20—B1127.43 (18)
C5—C6—H6118.7C21—C20—B1118.83 (18)
C6—C7—H7A120.0F11—C21—C22116.2 (2)
C6—C7—H7B120.0F11—C21—C20119.50 (17)
H7A—C7—H7B120.0C22—C21—C20124.3 (2)
C9—C8—C13113.76 (17)F12—C22—C23120.6 (2)
C9—C8—B1127.32 (17)F12—C22—C21120.2 (3)
C13—C8—B1118.49 (16)C23—C22—C21119.2 (2)
F1—C9—C10115.29 (16)F13—C23—C24120.7 (3)
F1—C9—C8120.73 (17)F13—C23—C22120.1 (3)
C10—C9—C8123.98 (18)C24—C23—C22119.3 (2)
F2—C10—C11119.78 (17)F14—C24—C23120.7 (2)
F2—C10—C9120.75 (18)F14—C24—C25119.5 (3)
C11—C10—C9119.46 (17)C23—C24—C25119.9 (2)
F3—C11—C10120.35 (18)F15—C25—C20121.54 (18)
F3—C11—C12120.40 (19)F15—C25—C24114.7 (2)
C10—C11—C12119.25 (18)C20—C25—C24123.7 (2)
F4—C12—C11119.51 (19)C1—N1—C5118.33 (18)
F4—C12—C13121.04 (19)C1—N1—B1119.01 (15)
C11—C12—C13119.44 (19)C5—N1—B1122.47 (18)
F5—C13—C12116.65 (18)N1—B1—C8112.56 (14)
F5—C13—C8119.34 (17)N1—B1—C20102.23 (15)
C12—C13—C8124.01 (18)C8—B1—C20115.78 (16)
C19—C14—C15113.56 (16)N1—B1—C14110.38 (15)
C19—C14—B1126.37 (16)C8—B1—C14102.13 (14)
C15—C14—B1119.61 (15)C20—B1—C14114.08 (14)

Experimental details

Crystal data
Chemical formulaC25H7BF15N·C6H14
Mr703.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)12.4173 (2), 17.1269 (3), 13.9211 (2)
β (°) 100.889 (1)
V3)2907.29 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.35 × 0.33 × 0.25
Data collection
DiffractometerBruker Kappa APEXII DUO
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.695, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
55747, 6929, 5324
Rint0.030
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.113, 1.04
No. of reflections6929
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Leibniz-Institut für Katalyse e.V. an der Universität Rostock.

References

First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFocante, F., Mercandelli, P., Sironi, A. & Resconi, L. (2006). Coord. Chem. Rev. 250, 170–188.  Web of Science CSD CrossRef CAS Google Scholar
First citationGeier, S. J., Gille, A. L., Gilbert, T. M. & Stephan, D. W. (2009). Inorg. Chem. 48, 10466–10474.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephan, D. W. & Erker, G. (2010). Angew. Chem. Int. Ed. 49, 46–76.  Web of Science CrossRef CAS Google Scholar
First citationWelch, G. C., Cabrera, L., Chase, P. A., Hollink, E., Masuda, J. D., Wei, P. & Stephan, D. W. (2007). Dalton Trans. pp. 3407–3414.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds