organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzene-1,3,5-tri­carbonyl trichloride

aCollege of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
*Correspondence e-mail: longfei.jin@yahoo.com

(Received 19 March 2012; accepted 24 March 2012; online 31 March 2012)

In the title molecule, C9H3Cl3O3, there are three short interactions involving the benzene H atoms and the chloro­formyl Cl atoms. In the crystal, mol­ecules stack along the a axis with no significant non-bonded inter­actions.

Related literature

For the preparation of the title compound, see: Hamel et al. (1968[Hamel, E. E., Scigliano, J. J. & Weyland, H. H. (1968). Preparation of trimesoyl chloride. GB Patent No 1 127 095.]). For applications of 1,3,5-tri(chloro­form­yl)benzene, see: Buch et al. (2008[Buch, P. R., Jagan Mohan, D. & Reddy, A. V. R. (2008). J. Membr. Sci. 309, 36-44.]); Li et al. (2007[Li, L., Zhang, S. B., Zhang, X. S. & Zheng, G. D. (2007). J. Membr. Sci. 289, 258-267.]). For related structures and hydrogen bonding, see: Leser & Rabinovich (1978a[Leser, J. & Rabinovich, D. (1978a). Acta Cryst. B34, 2253-2256.],b[Leser, J. & Rabinovich, D. (1978b). Acta Cryst. B34, 2260-2263.]); Jeffrey et al. (1985[Jeffrey, G. A., Maluszynska, H. & Mitra, J. (1985). Int. J. Biol. Macromol. 7, 336-348.]).

[Scheme 1]

Experimental

Crystal data
  • C9H3Cl3O3

  • Mr = 265.46

  • Orthorhombic, P 21 21 21

  • a = 6.0230 (13) Å

  • b = 8.3306 (18) Å

  • c = 21.314 (5) Å

  • V = 1069.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.787, Tmax = 0.851

  • 6552 measured reflections

  • 2338 independent reflections

  • 2267 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.170

  • S = 1.22

  • 2338 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 952 Friedel pairs

  • Flack parameter: 0.13 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1 0.93 2.64 3.047 (5) 107
C4—H4⋯Cl2 0.93 2.62 3.036 (4) 108
C6—H6⋯Cl3 0.93 2.62 3.037 (4) 108

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3,5-Tri(chloroformyl)benzene is a commonly used monomer, mainly used in the preparation of reverse osmosis membranes and polyamide nanofiltration membranes (Buch et al., 2008; Li et al., 2007), which has good application prospects in the rapid development of today's film industry. As part of our ongoing studies, the preparation and X-ray structure determination of the title compound, (I), was undertaken.

The molecular structure of the title compound is shown in Figure 1. Bond lengths and angles in (I) show normal values. The geometric parameters of the title molecule agree well with those reported for similar structures (Leser & Rabinovich, 1978a,b). The non-hydrogen atoms of the molecule lie in a nearly plane with an r.m.s deviation of 0.1118 Å. Three intramolecular hydrogen bonds are observed between the C—H of phenyl group and the Cl atom of the chloroformyl group (Jeffrey et al., 1985) (Figure 1 and Table 1). The shortest contacts in the crystal packing are O1···C2i [3.094 (6) Å], O2···Cl3ii [3.191 (5) Å] and O3···C9iii [3.216 (6) Å] [symmetry code (i): -x,1/2 + y,1/2 - z; (ii): 1 + x,1 + y,z; (iii): 1/2 + x,3/2 - y,-z].

Related literature top

For the preparation of the title compound, see: Hamel et al. (1968). For applications of 1,3,5-tri(chloroformyl)benzene, see: Buch et al. (2008); Li et al. (2007). For related structures and hydrogen bonding, see: Leser & Rabinovich (1978a,b); Jeffrey et al. (1985).

Experimental top

Compound (I) was synthesized according to the literature procedure of Hamel et al. (1968). Single crystals suitable for X-ray diffraction were grown by slow evaporation from 4:1 (V/V) mixed solution of petroleum ether and chloroform at room temperature.

Refinement top

All H atoms were included in the riding-model approximation, with C—H distances of 0.93 Å, and the isotropic displacement parameters were set equal to 1.2Ueq of the carrier atom.

Structure description top

1,3,5-Tri(chloroformyl)benzene is a commonly used monomer, mainly used in the preparation of reverse osmosis membranes and polyamide nanofiltration membranes (Buch et al., 2008; Li et al., 2007), which has good application prospects in the rapid development of today's film industry. As part of our ongoing studies, the preparation and X-ray structure determination of the title compound, (I), was undertaken.

The molecular structure of the title compound is shown in Figure 1. Bond lengths and angles in (I) show normal values. The geometric parameters of the title molecule agree well with those reported for similar structures (Leser & Rabinovich, 1978a,b). The non-hydrogen atoms of the molecule lie in a nearly plane with an r.m.s deviation of 0.1118 Å. Three intramolecular hydrogen bonds are observed between the C—H of phenyl group and the Cl atom of the chloroformyl group (Jeffrey et al., 1985) (Figure 1 and Table 1). The shortest contacts in the crystal packing are O1···C2i [3.094 (6) Å], O2···Cl3ii [3.191 (5) Å] and O3···C9iii [3.216 (6) Å] [symmetry code (i): -x,1/2 + y,1/2 - z; (ii): 1 + x,1 + y,z; (iii): 1/2 + x,3/2 - y,-z].

For the preparation of the title compound, see: Hamel et al. (1968). For applications of 1,3,5-tri(chloroformyl)benzene, see: Buch et al. (2008); Li et al. (2007). For related structures and hydrogen bonding, see: Leser & Rabinovich (1978a,b); Jeffrey et al. (1985).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
Benzene-1,3,5-tricarbonyl trichloride top
Crystal data top
C9H3Cl3O3F(000) = 528
Mr = 265.46Dx = 1.649 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3613 reflections
a = 6.0230 (13) Åθ = 2.4–28.2°
b = 8.3306 (18) ŵ = 0.84 mm1
c = 21.314 (5) ÅT = 298 K
V = 1069.4 (4) Å3Block, colorless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2338 independent reflections
Radiation source: fine-focus sealed tube2267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
phi and ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 75
Tmin = 0.787, Tmax = 0.851k = 910
6552 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.5279P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
2338 reflectionsΔρmax = 0.31 e Å3
136 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), 952 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.13 (15)
Crystal data top
C9H3Cl3O3V = 1069.4 (4) Å3
Mr = 265.46Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.0230 (13) ŵ = 0.84 mm1
b = 8.3306 (18) ÅT = 298 K
c = 21.314 (5) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2338 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2267 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.851Rint = 0.088
6552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.170Δρmax = 0.31 e Å3
S = 1.22Δρmin = 0.28 e Å3
2338 reflectionsAbsolute structure: Flack (1983), 952 Friedel pairs
136 parametersAbsolute structure parameter: 0.13 (15)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4413 (7)0.7665 (6)0.83052 (18)0.0582 (10)
C20.3612 (7)0.9176 (6)0.84269 (18)0.0582 (9)
H20.23260.95340.82300.070*
C30.4728 (7)1.0170 (5)0.88445 (19)0.0545 (9)
C40.6638 (6)0.9669 (5)0.91364 (18)0.0497 (8)
H40.73921.03520.94080.060*
C50.7435 (6)0.8124 (5)0.90207 (17)0.0482 (8)
C60.6328 (7)0.7132 (5)0.86085 (19)0.0553 (9)
H60.68600.61020.85320.066*
C70.3370 (9)0.6507 (8)0.7862 (3)0.0834 (16)
C80.3650 (9)1.1749 (6)0.8981 (3)0.0764 (14)
C90.9471 (7)0.7645 (5)0.9372 (2)0.0565 (9)
Cl10.1090 (3)0.7279 (3)0.74344 (9)0.1188 (7)
Cl20.5232 (3)1.30825 (15)0.94387 (9)0.0934 (5)
Cl31.0317 (2)0.56293 (13)0.92527 (7)0.0775 (4)
O10.3901 (9)0.5166 (6)0.7783 (2)0.1201 (18)
O20.1848 (8)1.2126 (6)0.8830 (3)0.130 (2)
O31.0513 (6)0.8462 (4)0.97113 (18)0.0759 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.058 (2)0.072 (3)0.0452 (17)0.0009 (19)0.0046 (17)0.0110 (19)
C20.058 (2)0.066 (2)0.0502 (19)0.008 (2)0.0014 (17)0.0023 (19)
C30.058 (2)0.0495 (19)0.056 (2)0.0058 (17)0.0010 (18)0.0014 (16)
C40.0481 (17)0.0480 (18)0.0530 (18)0.0037 (15)0.0025 (15)0.0009 (16)
C50.0486 (18)0.0464 (18)0.0495 (18)0.0055 (16)0.0044 (15)0.0063 (16)
C60.060 (2)0.048 (2)0.058 (2)0.0056 (17)0.0147 (18)0.0070 (17)
C70.076 (3)0.103 (4)0.070 (3)0.003 (3)0.002 (2)0.034 (3)
C80.082 (3)0.058 (2)0.090 (3)0.018 (2)0.029 (3)0.009 (2)
C90.0507 (19)0.0460 (19)0.073 (2)0.0127 (16)0.0077 (18)0.0032 (19)
Cl10.1086 (11)0.1431 (17)0.1046 (11)0.0062 (12)0.0484 (10)0.0267 (12)
Cl20.0915 (9)0.0520 (6)0.1365 (13)0.0142 (6)0.0241 (9)0.0208 (7)
Cl30.0730 (7)0.0567 (6)0.1028 (9)0.0245 (5)0.0030 (6)0.0003 (6)
O10.123 (3)0.112 (4)0.125 (4)0.020 (3)0.018 (3)0.076 (3)
O20.112 (3)0.093 (3)0.185 (5)0.051 (3)0.071 (3)0.041 (3)
O30.0646 (18)0.0658 (19)0.097 (2)0.0090 (15)0.0232 (18)0.0087 (19)
Geometric parameters (Å, º) top
C1—C21.373 (6)C5—C61.378 (6)
C1—C61.394 (6)C5—C91.491 (5)
C1—C71.489 (7)C6—H60.9300
C2—C31.388 (6)C7—O11.174 (7)
C2—H20.9300C7—Cl11.769 (6)
C3—C41.373 (6)C8—O21.175 (6)
C3—C81.496 (6)C8—Cl21.758 (5)
C4—C51.396 (5)C9—O31.174 (5)
C4—H40.9300C9—Cl31.773 (4)
C2—C1—C6119.6 (4)C4—C5—C9116.1 (4)
C2—C1—C7124.4 (4)C5—C6—C1120.3 (4)
C6—C1—C7115.9 (4)C5—C6—H6119.8
C1—C2—C3119.9 (4)C1—C6—H6119.8
C1—C2—H2120.1O1—C7—C1126.3 (6)
C3—C2—H2120.1O1—C7—Cl1118.9 (5)
C4—C3—C2121.0 (4)C1—C7—Cl1114.8 (4)
C4—C3—C8122.8 (4)O2—C8—C3125.6 (5)
C2—C3—C8116.1 (4)O2—C8—Cl2118.9 (4)
C3—C4—C5119.2 (4)C3—C8—Cl2115.4 (3)
C3—C4—H4120.4O3—C9—C5126.4 (4)
C5—C4—H4120.4O3—C9—Cl3118.9 (3)
C6—C5—C4119.9 (4)C5—C9—Cl3114.7 (3)
C6—C5—C9123.9 (4)
C6—C1—C2—C30.8 (6)C2—C1—C7—O1173.6 (6)
C7—C1—C2—C3179.3 (4)C6—C1—C7—O16.4 (9)
C1—C2—C3—C40.5 (6)C2—C1—C7—Cl15.3 (7)
C1—C2—C3—C8175.9 (4)C6—C1—C7—Cl1174.8 (3)
C2—C3—C4—C51.5 (6)C4—C3—C8—O2166.4 (7)
C8—C3—C4—C5174.7 (4)C2—C3—C8—O210.0 (9)
C3—C4—C5—C61.2 (6)C4—C3—C8—Cl210.6 (6)
C3—C4—C5—C9177.8 (3)C2—C3—C8—Cl2173.0 (4)
C4—C5—C6—C10.1 (6)C6—C5—C9—O3177.2 (4)
C9—C5—C6—C1179.0 (4)C4—C5—C9—O33.8 (6)
C2—C1—C6—C51.1 (6)C6—C5—C9—Cl33.1 (5)
C7—C1—C6—C5179.0 (4)C4—C5—C9—Cl3175.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl10.932.643.047 (5)107
C4—H4···Cl20.932.623.036 (4)108
C6—H6···Cl30.932.623.037 (4)108

Experimental details

Crystal data
Chemical formulaC9H3Cl3O3
Mr265.46
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)6.0230 (13), 8.3306 (18), 21.314 (5)
V3)1069.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.787, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
6552, 2338, 2267
Rint0.088
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.170, 1.22
No. of reflections2338
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.28
Absolute structureFlack (1983), 952 Friedel pairs
Absolute structure parameter0.13 (15)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl10.932.643.047 (5)107.3
C4—H4···Cl20.932.623.036 (4)107.7
C6—H6···Cl30.932.623.037 (4)108.1
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Hubei Province, China (2008CDA067) and the Graduate Student Research Funds of South-Central University for Nationalities.

References

First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationBuch, P. R., Jagan Mohan, D. & Reddy, A. V. R. (2008). J. Membr. Sci. 309, 36–44.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHamel, E. E., Scigliano, J. J. & Weyland, H. H. (1968). Preparation of trimesoyl chloride. GB Patent No 1 127 095.  Google Scholar
First citationJeffrey, G. A., Maluszynska, H. & Mitra, J. (1985). Int. J. Biol. Macromol. 7, 336–348.  CrossRef CAS Web of Science Google Scholar
First citationLeser, J. & Rabinovich, D. (1978a). Acta Cryst. B34, 2253–2256.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLeser, J. & Rabinovich, D. (1978b). Acta Cryst. B34, 2260–2263.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLi, L., Zhang, S. B., Zhang, X. S. & Zheng, G. D. (2007). J. Membr. Sci. 289, 258–267.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds