metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­(μ-purin-9-ido-κ2N7:N9)zinc]

aLUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France
*Correspondence e-mail: karim.adil@univ-lemans.fr

(Received 6 March 2012; accepted 14 March 2012; online 21 March 2012)

In the title compound, [Zn(C5H3N4)2], the ZnII cation is in a nearly regular tetra­hedral coordination by purinate ligands. Each purinate ligand chelates two ZnII cations through two imidazole N atoms of the purinate anion ligand, leading to the formation of a three-dimensional network.

Related literature

For common applications of hybrid materials, see: Cui et al. (2012[Cui, Y., Yue, Y., Qian, G. & Chen, B. (2012). Chem. Rev. 112, 1126-1162.]); Horcajada et al. (2012[Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Férey, G., Morris, R. E. & Serre, C. (2012). Chem. Rev. 112, 1232-1268.]); Li et al. (2012[Li, J.-R., Sculley, J. & Zhou, H.-C. (2012). Chem. Rev. 112, 869-932.]); Stock & Biswas (2012[Stock, N. & Biswas, S. (2012). Chem. Rev. 112, 933-969.]); Suh et al. (2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782-835.]); Sumida et al. (2012[Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T.-H. & Long, J. R. (2012). Chem. Rev. 112, 724-781.]); Yoon et al. (2012[Yoon, M., Srirambalaji, R. & Kim, K. (2012). Chem. Rev. 112, 1196-1231.]). For characteristic zinc–nitro­gen distances in metal-organic framework compounds, see: Cadiau et al. (2011[Cadiau, A., Martineau, C., Leblanc, M., Maisonneuve, V., Hémon-Ribaud, A., Taulelle, F. & Adil, K. (2011). J. Mater. Chem. 21, 3949-3951.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C5H3N4)2]

  • Mr = 303.60

  • Orthorhombic, P 21 21 21

  • a = 9.2332 (5) Å

  • b = 10.1337 (6) Å

  • c = 12.4186 (6) Å

  • V = 1161.96 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 296 K

  • 0.45 × 0.31 × 0.07 mm

Data collection
  • Bruker APEXII Quazar CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.580, Tmax = 0.746

  • 4522 measured reflections

  • 2336 independent reflections

  • 2129 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.053

  • S = 1.01

  • 2336 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: 0.030 (13)

Table 1
Selected bond lengths (Å)

Zn1—N1 2.010 (2)
Zn1—N2 2.006 (2)
Zn1—N3 1.994 (2)
Zn1—N5 1.983 (2)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The emerging class of hybrids materials known as Metal-Organic Frameworks (MOFs) has attracted much attention because of their enormous variety of interesting structural topologies (Stock & Biswas, 2012) and wide potential applications as functional materials, such as gas storage (Suh et al., 2012; Sumida et al., 2012), separation (Li et al., 2012), catalysis (Yoon et al., 2012) and luminescence (Cui et al., 2012). Moreover, there is a growing interest in MOFs for biological application (Horcajada et al., 2012) such as the drug controlled release or using MOFs based on endogenous linkers (nucleobases and amino acids). We report here on the synthesis and crystal structure of a new three-dimensional zinc MOFs material elaborated from purinate linkers.

The asymmetric unit of the title compound consists of one ZnII cation and two non-equivalent purine molecules. Fig. 1 displays in a symmetry-expanded view the full coordination sphere of the Zn atom. Selected geometric parameters are given in Table 1. ZnII are linked to four N atoms from two purinate anions to form quite regular tetrahedra. The coordination Zn—N bond lengths range from 1.983 (2) to 2.009 (3) Å which are in a good agreement with the literature (Cadiau et al., 2011). The structure of Zn(C5H3N4)2 compound can be described as originating from deprotonated purinate anions (C5N4H3-) linked to ZnII cations in order to generate a three-dimensional network as is shown in Fig.2.

Related literature top

For common applications of hybrid materials, see: Cui et al. (2012); Horcajada et al. (2012); Li et al. (2012); Stock & Biswas (2012); Suh et al. (2012); Sumida et al. (2012); Yoon et al. (2012). For characteristic zinc–nitrogen distances in metal-organic framework compounds, see: Cadiau et al. (2011).

Experimental top

Chemicals have been purchased from commercial sources and were used as received without further purification. The title compound was prepared under hydrothermal conditions at 393 K for 48 h using Teflon-lined autoclaves from a started mixture of zinc fluoride (Alfa Aesar), purine (Sigma-Aldrich) and deionized water under the following conditions: ZnF2 (0.067 g, 0.65 mmol), C5H4N4 (0.480 g, 4 mmol), H2O (5 mL). The resulting crystalline product was washed with water and dried in air. Needle yellow crystals suitable for single-crystal X-ray diffraction were selected using an optical microscope.

Refinement top

Hydrogen atoms bonded to the ligands were positioned geometrically and refined using a riding model with C—H = 0.93 Å. These hydrogen atoms were assigned isotropic thermal parameters and Uiso(H) = 1.2×Ueq(C).

Structure description top

The emerging class of hybrids materials known as Metal-Organic Frameworks (MOFs) has attracted much attention because of their enormous variety of interesting structural topologies (Stock & Biswas, 2012) and wide potential applications as functional materials, such as gas storage (Suh et al., 2012; Sumida et al., 2012), separation (Li et al., 2012), catalysis (Yoon et al., 2012) and luminescence (Cui et al., 2012). Moreover, there is a growing interest in MOFs for biological application (Horcajada et al., 2012) such as the drug controlled release or using MOFs based on endogenous linkers (nucleobases and amino acids). We report here on the synthesis and crystal structure of a new three-dimensional zinc MOFs material elaborated from purinate linkers.

The asymmetric unit of the title compound consists of one ZnII cation and two non-equivalent purine molecules. Fig. 1 displays in a symmetry-expanded view the full coordination sphere of the Zn atom. Selected geometric parameters are given in Table 1. ZnII are linked to four N atoms from two purinate anions to form quite regular tetrahedra. The coordination Zn—N bond lengths range from 1.983 (2) to 2.009 (3) Å which are in a good agreement with the literature (Cadiau et al., 2011). The structure of Zn(C5H3N4)2 compound can be described as originating from deprotonated purinate anions (C5N4H3-) linked to ZnII cations in order to generate a three-dimensional network as is shown in Fig.2.

For common applications of hybrid materials, see: Cui et al. (2012); Horcajada et al. (2012); Li et al. (2012); Stock & Biswas (2012); Suh et al. (2012); Sumida et al. (2012); Yoon et al. (2012). For characteristic zinc–nitrogen distances in metal-organic framework compounds, see: Cadiau et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title compound showing the coordination environment of the Zn atom; displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) –x, –0.5+y, 1.5–z; (ii) –0.5+x, 1.5-y, 1–z; (iii) 0.5+x, 1.5–y, 1–z; (iv) –x, 0.5+y, 1.5–z
[Figure 2] Fig. 2. Projection of the structure along the a axis showing the three-dimensional network. The numbers refer to the x-coordinates of the ZnII cations.
Poly[bis(µ-purin-9-ido-κ2N7:N9)zinc] top
Crystal data top
[Zn(C5H3N4)2]F(000) = 608
Mr = 303.60Dx = 1.735 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 896 reflections
a = 9.2332 (5) Åθ = 2–11°
b = 10.1337 (6) ŵ = 2.11 mm1
c = 12.4186 (6) ÅT = 296 K
V = 1161.96 (11) Å3Needle, yellow
Z = 40.45 × 0.31 × 0.07 mm
Data collection top
Bruker APEXII Quazar CCD
diffractometer
2336 independent reflections
Radiation source: ImuS microsource2129 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
ω scansθmax = 29.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.580, Tmax = 0.746k = 1013
4522 measured reflectionsl = 1511
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.014P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2336 reflectionsΔρmax = 0.42 e Å3
172 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.030 (13)
Crystal data top
[Zn(C5H3N4)2]V = 1161.96 (11) Å3
Mr = 303.60Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.2332 (5) ŵ = 2.11 mm1
b = 10.1337 (6) ÅT = 296 K
c = 12.4186 (6) Å0.45 × 0.31 × 0.07 mm
Data collection top
Bruker APEXII Quazar CCD
diffractometer
2336 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2129 reflections with I > 2σ(I)
Tmin = 0.580, Tmax = 0.746Rint = 0.026
4522 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.053Δρmax = 0.42 e Å3
S = 1.01Δρmin = 0.26 e Å3
2336 reflectionsAbsolute structure: Flack (1983)
172 parametersAbsolute structure parameter: 0.030 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.05827 (3)0.83956 (3)0.63470 (2)0.01682 (8)
N10.2523 (2)0.7592 (2)0.60162 (16)0.0211 (5)
N20.0615 (2)0.81227 (19)0.50179 (15)0.0202 (5)
N30.0333 (2)0.7247 (2)0.74592 (16)0.0200 (5)
N40.0678 (3)0.9343 (2)0.3640 (2)0.0310 (5)
N50.0775 (2)1.0294 (2)0.67090 (16)0.0198 (5)
N60.1801 (3)1.3634 (2)0.63818 (19)0.0335 (6)
N70.3055 (3)1.2441 (3)0.4986 (2)0.0356 (6)
C10.3147 (3)0.7551 (3)0.5048 (2)0.0216 (6)
H10.27430.79670.44520.026*
C20.0407 (3)0.8578 (2)0.39896 (19)0.0189 (5)
C30.3449 (3)0.6859 (2)0.66539 (19)0.0214 (6)
C40.1555 (3)0.8505 (4)0.2285 (2)0.0337 (7)
H40.22840.82090.18270.040*
C50.1262 (3)1.2481 (3)0.6690 (2)0.0214 (6)
C60.0102 (3)1.0927 (3)0.7501 (2)0.0201 (6)
H60.04871.04940.79950.024*
C70.0542 (4)0.9665 (3)0.2603 (3)0.0399 (8)
H70.12561.02160.23240.048*
N100.0503 (4)0.9289 (3)0.19110 (19)0.0436 (7)
C90.2668 (4)1.3533 (3)0.5524 (2)0.0386 (8)
H90.30521.43210.52670.046*
C100.2476 (3)1.1293 (3)0.5314 (2)0.0275 (7)
H100.27091.05120.49610.033*
C110.1542 (3)1.1274 (2)0.61731 (19)0.0197 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01916 (15)0.01367 (13)0.01764 (14)0.00023 (14)0.00213 (13)0.00095 (13)
N10.0207 (12)0.0231 (12)0.0196 (12)0.0036 (10)0.0009 (10)0.0011 (10)
N20.0180 (11)0.0203 (12)0.0222 (11)0.0017 (11)0.0017 (10)0.0009 (9)
N30.0238 (14)0.0147 (11)0.0215 (11)0.0011 (10)0.0041 (11)0.0020 (9)
N40.0270 (13)0.0319 (13)0.0342 (13)0.0027 (11)0.0072 (15)0.0007 (12)
N50.0242 (13)0.0150 (11)0.0203 (10)0.0006 (10)0.0010 (10)0.0004 (9)
N60.0483 (15)0.0243 (13)0.0281 (12)0.0110 (11)0.0090 (13)0.0048 (12)
N70.0438 (16)0.0312 (14)0.0316 (12)0.0104 (12)0.0115 (12)0.0034 (11)
C10.0251 (15)0.0198 (13)0.0200 (12)0.0025 (11)0.0016 (12)0.0008 (11)
C20.0159 (14)0.0167 (13)0.0241 (12)0.0052 (11)0.0026 (11)0.0017 (11)
C30.0190 (14)0.0233 (15)0.0220 (14)0.0035 (12)0.0041 (12)0.0031 (11)
C40.0288 (17)0.052 (2)0.0204 (14)0.0018 (17)0.0006 (13)0.0007 (16)
C50.0294 (16)0.0172 (14)0.0175 (13)0.0034 (12)0.0012 (12)0.0016 (11)
C60.0212 (14)0.0187 (13)0.0204 (13)0.0001 (11)0.0027 (11)0.0000 (10)
C70.0324 (18)0.0397 (18)0.0477 (19)0.0041 (18)0.015 (2)0.0052 (15)
N100.0399 (17)0.0639 (19)0.0270 (14)0.0063 (17)0.0099 (15)0.0064 (13)
C90.056 (2)0.0285 (18)0.0313 (16)0.0165 (17)0.0122 (16)0.0052 (14)
C100.0344 (18)0.0237 (17)0.0244 (15)0.0009 (12)0.0039 (14)0.0061 (12)
C110.0245 (15)0.0180 (14)0.0167 (13)0.0019 (10)0.0027 (12)0.0004 (10)
Geometric parameters (Å, º) top
Zn1—N12.010 (2)C1—N2iii1.333 (4)
Zn1—N22.006 (2)C1—H10.9300
Zn1—N31.994 (2)C2—C3i1.397 (4)
Zn1—N51.983 (2)C3—C4iii1.368 (3)
N1—C11.335 (4)C3—C2iii1.397 (4)
N1—C31.382 (3)C4—N101.338 (4)
N2—C1i1.333 (4)C4—C3i1.368 (3)
N2—C21.371 (3)C4—H40.9300
N3—C6ii1.356 (3)C5—N3iv1.381 (3)
N3—C5ii1.381 (3)C5—C111.405 (3)
N4—C71.335 (4)C6—N3iv1.356 (3)
N4—C21.339 (3)C6—H60.9300
N5—C61.328 (3)C7—N101.348 (4)
N5—C111.390 (3)C7—H70.9300
N6—C51.327 (3)C9—H90.9300
N6—C91.337 (4)C10—C111.372 (4)
N7—C91.341 (4)C10—H100.9300
N7—C101.343 (3)
N5—Zn1—N3116.54 (9)N2—C2—C3i108.7 (2)
N5—Zn1—N2111.68 (8)C4iii—C3—N1134.0 (3)
N3—Zn1—N2104.81 (8)C4iii—C3—C2iii117.9 (2)
N5—Zn1—N1111.08 (9)N1—C3—C2iii108.1 (2)
N3—Zn1—N1106.44 (9)N10—C4—C3i119.5 (3)
N2—Zn1—N1105.50 (9)N10—C4—H4120.3
C1—N1—C3103.4 (2)C3i—C4—H4120.3
C1—N1—Zn1125.61 (19)N6—C5—N3iv127.2 (2)
C3—N1—Zn1130.69 (17)N6—C5—C11124.4 (2)
C1i—N2—C2103.6 (2)N3iv—C5—C11108.3 (2)
C1i—N2—Zn1126.39 (18)N5—C6—N3iv115.5 (3)
C2—N2—Zn1129.99 (18)N5—C6—H6122.3
C6ii—N3—C5ii103.8 (2)N3iv—C6—H6122.3
C6ii—N3—Zn1122.31 (19)N4—C7—N10127.8 (3)
C5ii—N3—Zn1133.86 (17)N4—C7—H7116.1
C7—N4—C2112.6 (3)N10—C7—H7116.1
C6—N5—C11104.3 (2)C4—N10—C7117.8 (2)
C6—N5—Zn1126.50 (18)N6—C9—N7128.3 (3)
C11—N5—Zn1129.08 (17)N6—C9—H9115.9
C5—N6—C9112.8 (2)N7—C9—H9115.9
C9—N7—C10117.2 (3)N7—C10—C11119.9 (2)
N2iii—C1—N1116.2 (3)N7—C10—H10120.1
N2iii—C1—H1121.9C11—C10—H10120.1
N1—C1—H1121.9C10—C11—N5134.6 (2)
N4—C2—N2127.0 (2)C10—C11—C5117.4 (2)
N4—C2—C3i124.4 (2)N5—C11—C5108.0 (2)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x, y1/2, z+3/2; (iii) x+1/2, y+3/2, z+1; (iv) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(C5H3N4)2]
Mr303.60
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)9.2332 (5), 10.1337 (6), 12.4186 (6)
V3)1161.96 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.11
Crystal size (mm)0.45 × 0.31 × 0.07
Data collection
DiffractometerBruker APEXII Quazar CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.580, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
4522, 2336, 2129
Rint0.026
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.053, 1.01
No. of reflections2336
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.26
Absolute structureFlack (1983)
Absolute structure parameter0.030 (13)

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Selected bond lengths (Å) top
Zn1—N12.010 (2)Zn1—N31.994 (2)
Zn1—N22.006 (2)Zn1—N51.983 (2)
 

Acknowledgements

The authors are grateful to Marc Leblanc for fruitful discussions.

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCadiau, A., Martineau, C., Leblanc, M., Maisonneuve, V., Hémon-Ribaud, A., Taulelle, F. & Adil, K. (2011). J. Mater. Chem. 21, 3949–3951.  Web of Science CrossRef CAS Google Scholar
First citationCui, Y., Yue, Y., Qian, G. & Chen, B. (2012). Chem. Rev. 112, 1126–1162.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHorcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Férey, G., Morris, R. E. & Serre, C. (2012). Chem. Rev. 112, 1232–1268.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, J.-R., Sculley, J. & Zhou, H.-C. (2012). Chem. Rev. 112, 869–932.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStock, N. & Biswas, S. (2012). Chem. Rev. 112, 933-969.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T.-H. & Long, J. R. (2012). Chem. Rev. 112, 724–781.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYoon, M., Srirambalaji, R. & Kim, K. (2012). Chem. Rev. 112, 1196–1231.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds