metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m383-m384

(Carbonato-κ2O,O′)bis­­(5,5′-di­methyl-2,2′-bi­pyridyl-κ2N,N′)cobalt(III) bromide trihydrate

aDepartment of Chemistry, Loyola College (Autonomous), Chennai 600 034, India
*Correspondence e-mail: dayalan77@gmail.com

(Received 4 February 2012; accepted 29 February 2012; online 7 March 2012)

In the title complex, [Co(CO3)(C12H12N2)2]Br·3H2O, the CoIII cation has a distorted octa­hedral coordination environment. It is chelated by four N atoms of two different 5,5′-dimethyl-2,2′-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water mol­ecules are disordered and their H atoms were not located, there are typical O⋯O distances between 2.8 and 3.0 Å, indicating O—H⋯O hydrogen bonding. The crystal packing is consolidated by C—H⋯O and C—H⋯Br hydrogen bonds, as well as ππ stacking inter­actions between adjacent pyridine rings of the dmbpy ligands, with centroid–centroid distances of 3.694 (3) and 3.7053 (3) Å.

Related literature

For background to this class of compounds, see: Momeni et al. (2009[Momeni, B. Z., Rominger, F. & Hosseini, S. S. (2009). Acta Cryst. E65, m690.]); Harding et al. (2008[Harding, D. J., Harding, P. & Adams, H. (2008). Acta Cryst. E64, m1538.]); Kusrini et al. (2008[Kusrini, E., Saleh, M. I., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, m1014-m1015.]). For applications of this class of compounds in various fields, see: Carol et al. (2006[Carol, D., Barry, C., Malachy, M. C., Michael, D. & Denise, A. E. (2006). Chem. Biol. Int. 164, 115-125.]); Eddie et al. (2010[Eddie, L. C., Christa, S. & Andrew, D. K. (2010). J. Chem. Pharm. Res. 3, 1711-1728. ]); Raj et al. (2008[Raj, P. S., Ajnesh, S., Paula, B., Vitor, F. & Paloth, V. (2008). J. Mol. Struct. 888, 291-299.]); Vitushkina et al. (2006[Vitushkina, S. V., Starodub, V. A. & Pyshkin, O. S. (2006). Russ. J. Coord. Chem. 32-34, 237-241.]); Hyung et al. (2006[Hyung, J. K., Yong, C. J., Jong, I. R. & Taek, H. K. (2006). Bull. Kor. Chem. 27, 2084-2086.]); Jayaweera et al. (2002[Jayaweera, P. M, Palayangoda, S. S., Tennakone. & Gamage, R. G. C. R. (2002). Curr. Sci. 83, 1368-1371.]), Shi et al. (2010[Shi, Y., Toms, B. B., Dixit, N., Kumari, N., Mishra, L., Goodisman, J. & Dabrowiak, J. C. (2010). Chem. Res. Toxicol. 23, 1417-1426.]); For similar structures, see: Ma et al. (2008[Ma, P.-T., Wang, Y.-X., Zhang, G.-Q. & Li, M.-X. (2008). Acta Cryst. E64, m14.]); Phatchimkun & Chaichit (2011[Phatchimkun, J. & Chaichit, N. (2011). Acta Cryst. E67, m516-m517.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(CO3)(C12H12N2)2]Br·3H2O

  • Mr = 621.32

  • Monoclinic, P 21 /c

  • a = 11.5802 (15) Å

  • b = 15.958 (2) Å

  • c = 14.3921 (17) Å

  • β = 100.143 (3)°

  • V = 2618.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.23 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.555, Tmax = 0.664

  • 23769 measured reflections

  • 5033 independent reflections

  • 3111 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.145

  • S = 1.02

  • 5033 reflections

  • 346 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −1.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 0.93 2.43 2.931 (5) 114
C3—H3⋯Br1i 0.93 2.80 3.718 (4) 168
C4—H4⋯O1ii 0.93 2.51 3.257 (4) 138
C11—H11A⋯Br1iii 0.96 2.91 3.810 (4) 157
C19—H19⋯O3iv 0.93 2.52 3.284 (4) 140
C20—H20⋯Br1iv 0.93 2.85 3.778 (4) 172
C22—H22⋯O3 0.93 2.44 2.939 (4) 113
C23—H23B⋯O4v 0.96 2.42 3.330 (6) 158
C24—H24A⋯Br1 0.96 2.93 3.836 (5) 158
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2,2'-Bipyridyl and 1,10-phenanthroline are versatile ligands capable of forming stable complexes with different metals in their various oxidation states (Momeni et al., 2009; Harding et al., 2008; Kusrini et al., 2008; Phatchimkun & Chaichit, 2011; Ma et al., 2008). These complexes have interesting electrical, magnetic, thermal, optical and antimicrobial properties. Hence, they are widely studied in various fields like medicine (Carol et al., 2006; Eddie et al., 2010), crystallography (Raj et al., 2008; Vitushkina et al.,2006;) chemistry (Hyung et al., 2006; Jayaweera et al., 2002) or biology (Shi et al., 2010). The crystal structures of a large number of metal complexes with the above mentioned ligands have been reported, including substituted ligands with various moieties like halogens, methyl, phenyl, acetyl at various positions.

The title complex [Co(C12H12N2)2CO3]Br.3H2O, consists of a complex cation [Co(C12H12N2)2CO3]+, a bromide counter anion and three molecules of lattice water. The cobalt(III) ion is six coordinated by four nitrogen atoms of the two 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) ligands and two oxygen atoms of the carbonato ligands in a distorted octahedral environment (Fig. 1). The water molecules are disordered in the crystal packing, but O···O distances indicate O—H···O hydrogen bonding. The dihedral angle between the two dmbpy ligands is 85.8 (2)°. The major distortion from the ideal geometry is due to a narrow bite angle of the carbonato ligand, i.e. O1–Co—O3 = 69.44 (11)°. The bromide ion and solvated water molecules are dispersed between cationic layers. The crystal packing is stabilized by extensive series of C—H···O and C—H···Br hydrogen bonds (Fig.2, Table.1) In addition, ππ stacking interactions between adjacent pyridine rings are present with centroid to centroid distances of 3.694 (3) A° and 3.7053 (3) A°.

Related literature top

For background to this class of compounds, see: Momeni et al. (2009); Harding et al. (2008); Kusrini et al. (2008). For applications of this class of compounds in various fields, see: Carol et al. (2006); Eddie et al. (2010); Raj et al. (2008); Vitushkina et al. (2006); Hyung et al. (2006); Jayaweera et al. (2002), Shi et al. (2010); For similar structures, see: Ma et al. (2008); Phatchimkun & Chaichit (2011).

Experimental top

The title complex was prepared by mixing 0.005 mol of finely crushed cobalt(II) bromide, exposed to microwave radiation and dissolved in 75 ml of acetone, with 0.005 mol of sodium carbonate, 0.01 mol of dmbpy and 2 ml hydrogen peroxide (30% v/v). The reaction mixture was stirred and allowed to react for one hour. The resultant pink coloured precipitate was filtered, washed with excess acetone and dried over vacuum desicator (yield: 60%). Dark red coloured single crystals were grown from a 90% v/v ethanolic solution by slow evoparation.

Refinement top

The highest difference electron density is 0.77 e/Å 3 and is located at a distance of 0.902 Å away from bromine atom. The deepest hole is -1.43 e/Å 3 and is located at a distance of 0.83 Å a away from bromine atom. The solvent water molecules are disordered over various sites. Their occupancy was constrained for unity. Hydrogen atoms of the water molecules could not be reliably located in difference Fourier maps and hence were excluded from the refinement.

Structure description top

2,2'-Bipyridyl and 1,10-phenanthroline are versatile ligands capable of forming stable complexes with different metals in their various oxidation states (Momeni et al., 2009; Harding et al., 2008; Kusrini et al., 2008; Phatchimkun & Chaichit, 2011; Ma et al., 2008). These complexes have interesting electrical, magnetic, thermal, optical and antimicrobial properties. Hence, they are widely studied in various fields like medicine (Carol et al., 2006; Eddie et al., 2010), crystallography (Raj et al., 2008; Vitushkina et al.,2006;) chemistry (Hyung et al., 2006; Jayaweera et al., 2002) or biology (Shi et al., 2010). The crystal structures of a large number of metal complexes with the above mentioned ligands have been reported, including substituted ligands with various moieties like halogens, methyl, phenyl, acetyl at various positions.

The title complex [Co(C12H12N2)2CO3]Br.3H2O, consists of a complex cation [Co(C12H12N2)2CO3]+, a bromide counter anion and three molecules of lattice water. The cobalt(III) ion is six coordinated by four nitrogen atoms of the two 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) ligands and two oxygen atoms of the carbonato ligands in a distorted octahedral environment (Fig. 1). The water molecules are disordered in the crystal packing, but O···O distances indicate O—H···O hydrogen bonding. The dihedral angle between the two dmbpy ligands is 85.8 (2)°. The major distortion from the ideal geometry is due to a narrow bite angle of the carbonato ligand, i.e. O1–Co—O3 = 69.44 (11)°. The bromide ion and solvated water molecules are dispersed between cationic layers. The crystal packing is stabilized by extensive series of C—H···O and C—H···Br hydrogen bonds (Fig.2, Table.1) In addition, ππ stacking interactions between adjacent pyridine rings are present with centroid to centroid distances of 3.694 (3) A° and 3.7053 (3) A°.

For background to this class of compounds, see: Momeni et al. (2009); Harding et al. (2008); Kusrini et al. (2008). For applications of this class of compounds in various fields, see: Carol et al. (2006); Eddie et al. (2010); Raj et al. (2008); Vitushkina et al. (2006); Hyung et al. (2006); Jayaweera et al. (2002), Shi et al. (2010); For similar structures, see: Ma et al. (2008); Phatchimkun & Chaichit (2011).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot (50% probability) of the cationic complex and the bromide anion. Disordered water molecules were omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the complex, showing also the hydrogen bonding interactions (dotted lines)
(Carbonato-κ2O,O')bis(5,5'-dimethyl-2,2'-bipyridyl- κ2N,N')cobalt(III) bromide trihydrate top
Crystal data top
[Co(CO3)(C12H12N2)2]Br·3H2OF(000) = 1248
Mr = 621.32Dx = 1.561 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4593 reflections
a = 11.5802 (15) Åθ = 2.2–25.6°
b = 15.958 (2) ŵ = 2.23 mm1
c = 14.3921 (17) ÅT = 293 K
β = 100.143 (3)°Block, red
V = 2618.0 (6) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5033 independent reflections
Radiation source: fine-focus sealed tube3111 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω and φ scanθmax = 25.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.555, Tmax = 0.664k = 1919
23769 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0686P)2 + 2.4848P]
where P = (Fo2 + 2Fc2)/3
5033 reflections(Δ/σ)max < 0.001
346 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 1.43 e Å3
Crystal data top
[Co(CO3)(C12H12N2)2]Br·3H2OV = 2618.0 (6) Å3
Mr = 621.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5802 (15) ŵ = 2.23 mm1
b = 15.958 (2) ÅT = 293 K
c = 14.3921 (17) Å0.30 × 0.25 × 0.20 mm
β = 100.143 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
5033 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3111 reflections with I > 2σ(I)
Tmin = 0.555, Tmax = 0.664Rint = 0.048
23769 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.02Δρmax = 0.77 e Å3
5033 reflectionsΔρmin = 1.43 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3712 (3)0.2890 (2)0.7720 (3)0.0345 (8)
H10.35490.32520.81860.041*
C20.2916 (3)0.2835 (2)0.6885 (3)0.0360 (9)
C30.3182 (4)0.2288 (2)0.6203 (3)0.0402 (10)
H30.26750.22370.56270.048*
C40.4194 (3)0.1824 (2)0.6379 (2)0.0374 (9)
H40.43660.14500.59260.045*
C50.4953 (3)0.1909 (2)0.7222 (2)0.0301 (8)
C60.6068 (3)0.1471 (2)0.7492 (2)0.0300 (8)
C70.6501 (3)0.0889 (2)0.6939 (3)0.0389 (9)
H70.60630.07310.63600.047*
C80.7597 (3)0.0539 (2)0.7250 (3)0.0406 (9)
H80.78930.01400.68840.049*
C90.8246 (3)0.0785 (2)0.8104 (3)0.0372 (9)
C100.7749 (3)0.1367 (2)0.8627 (2)0.0342 (8)
H100.81760.15390.92030.041*
C110.1830 (3)0.3362 (3)0.6723 (3)0.0497 (11)
H11A0.14170.32920.72410.074*
H11B0.13340.31930.61480.074*
H11C0.20410.39400.66780.074*
C120.9454 (4)0.0463 (3)0.8466 (3)0.0533 (11)
H12A1.00050.09170.85100.080*
H12B0.96540.00450.80410.080*
H12C0.94780.02190.90790.080*
C130.4108 (3)0.1317 (2)0.9421 (2)0.0337 (8)
H130.36880.14400.88250.040*
C140.3629 (3)0.0754 (2)0.9986 (3)0.0344 (8)
C150.4271 (3)0.0582 (2)1.0863 (3)0.0382 (9)
H150.39830.02011.12550.046*
C160.5334 (3)0.0966 (2)1.1166 (2)0.0346 (8)
H160.57610.08521.17630.042*
C170.5761 (3)0.1526 (2)1.0571 (2)0.0294 (8)
C180.6864 (3)0.1986 (2)1.0812 (2)0.0298 (8)
C190.7652 (3)0.1912 (2)1.1642 (2)0.0373 (9)
H190.75040.15411.21050.045*
C200.8656 (3)0.2384 (2)1.1787 (3)0.0387 (9)
H200.91900.23351.23480.046*
C210.8874 (3)0.2938 (2)1.1092 (2)0.0369 (9)
C220.8051 (3)0.2976 (2)1.0263 (2)0.0350 (9)
H220.81870.33370.97870.042*
C230.2454 (3)0.0377 (3)0.9622 (3)0.0474 (10)
H23A0.23410.01070.99920.071*
H23B0.24140.02150.89750.071*
H23C0.18520.07810.96650.071*
C240.9940 (3)0.3485 (3)1.1216 (3)0.0508 (11)
H24A1.03610.33871.07090.076*
H24B1.04360.33561.18060.076*
H24C0.97060.40621.12140.076*
N10.4700 (2)0.24492 (18)0.78871 (19)0.0301 (7)
N20.6678 (2)0.16936 (18)0.83404 (19)0.0313 (7)
N30.5147 (2)0.16874 (18)0.96982 (18)0.0294 (7)
N40.7072 (3)0.25148 (17)1.01256 (19)0.0304 (6)
C250.5843 (3)0.3968 (2)0.8970 (3)0.0398 (9)
Co10.58872 (4)0.25212 (3)0.90051 (3)0.02805 (16)
O10.5219 (2)0.34952 (16)0.94414 (17)0.0381 (6)
O20.5824 (3)0.47344 (18)0.8941 (2)0.0651 (9)
O30.6496 (2)0.34948 (15)0.85188 (16)0.0365 (6)
Br11.09456 (5)0.26057 (4)0.90092 (4)0.0860 (2)
O40.7273 (5)0.5300 (3)0.7641 (3)0.1209 (16)
O50.9316 (14)0.4389 (5)0.8542 (6)0.140 (4)0.80 (2)
O5'1.012 (5)0.436 (2)0.869 (3)0.140 (4)0.20 (2)
O60.8141 (11)0.5262 (7)1.0104 (8)0.158 (5)0.761 (18)
O6'0.745 (3)0.560 (2)1.046 (3)0.158 (5)0.239 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (2)0.031 (2)0.033 (2)0.0002 (17)0.0044 (16)0.0027 (16)
C20.040 (2)0.034 (2)0.032 (2)0.0010 (17)0.0007 (16)0.0069 (16)
C30.044 (2)0.043 (2)0.029 (2)0.0060 (18)0.0069 (16)0.0008 (16)
C40.045 (2)0.039 (2)0.0268 (19)0.0022 (18)0.0016 (16)0.0030 (16)
C50.037 (2)0.0279 (19)0.0262 (18)0.0059 (16)0.0075 (15)0.0007 (14)
C60.037 (2)0.0311 (19)0.0220 (18)0.0066 (16)0.0049 (14)0.0014 (14)
C70.044 (2)0.039 (2)0.033 (2)0.0071 (18)0.0070 (16)0.0048 (17)
C80.046 (2)0.038 (2)0.040 (2)0.0014 (18)0.0135 (18)0.0051 (17)
C90.035 (2)0.035 (2)0.042 (2)0.0011 (17)0.0090 (17)0.0055 (17)
C100.038 (2)0.034 (2)0.0287 (19)0.0032 (17)0.0016 (15)0.0057 (15)
C110.043 (2)0.049 (3)0.052 (3)0.006 (2)0.0060 (19)0.004 (2)
C120.041 (2)0.055 (3)0.064 (3)0.004 (2)0.009 (2)0.003 (2)
C130.038 (2)0.035 (2)0.0273 (19)0.0020 (17)0.0049 (15)0.0004 (15)
C140.038 (2)0.0292 (19)0.037 (2)0.0040 (16)0.0106 (16)0.0027 (16)
C150.042 (2)0.035 (2)0.040 (2)0.0020 (17)0.0137 (18)0.0056 (16)
C160.039 (2)0.038 (2)0.0273 (19)0.0040 (17)0.0057 (15)0.0096 (15)
C170.036 (2)0.0291 (19)0.0234 (18)0.0054 (16)0.0057 (14)0.0016 (14)
C180.036 (2)0.031 (2)0.0222 (17)0.0027 (16)0.0039 (14)0.0000 (14)
C190.040 (2)0.044 (2)0.0263 (19)0.0027 (18)0.0026 (15)0.0016 (16)
C200.039 (2)0.047 (2)0.027 (2)0.0045 (19)0.0020 (16)0.0030 (17)
C210.037 (2)0.038 (2)0.035 (2)0.0012 (17)0.0043 (16)0.0079 (17)
C220.041 (2)0.035 (2)0.028 (2)0.0053 (18)0.0032 (15)0.0011 (15)
C230.040 (2)0.046 (2)0.057 (3)0.0114 (19)0.0104 (19)0.000 (2)
C240.044 (2)0.057 (3)0.050 (3)0.009 (2)0.0020 (19)0.009 (2)
N10.0346 (16)0.0322 (16)0.0231 (15)0.0002 (14)0.0044 (12)0.0045 (12)
N20.0353 (17)0.0325 (17)0.0256 (15)0.0027 (14)0.0035 (12)0.0018 (12)
N30.0345 (17)0.0310 (16)0.0229 (15)0.0016 (13)0.0053 (12)0.0015 (12)
N40.0379 (17)0.0295 (15)0.0233 (15)0.0034 (14)0.0040 (12)0.0011 (12)
C250.051 (2)0.034 (2)0.033 (2)0.001 (2)0.0039 (17)0.0021 (18)
Co10.0354 (3)0.0294 (3)0.0184 (3)0.0015 (2)0.00190 (18)0.0018 (2)
O10.0463 (16)0.0376 (15)0.0312 (14)0.0005 (12)0.0087 (11)0.0018 (11)
O20.082 (2)0.0318 (17)0.086 (2)0.0046 (16)0.0279 (19)0.0062 (16)
O30.0474 (16)0.0339 (14)0.0289 (14)0.0032 (12)0.0084 (11)0.0051 (11)
Br10.0908 (5)0.1163 (6)0.0404 (3)0.0077 (4)0.0173 (3)0.0045 (3)
O40.181 (5)0.098 (3)0.093 (3)0.033 (3)0.049 (3)0.006 (3)
O50.149 (11)0.099 (4)0.165 (6)0.033 (6)0.005 (7)0.029 (4)
O5'0.149 (11)0.099 (4)0.165 (6)0.033 (6)0.005 (7)0.029 (4)
O60.118 (8)0.152 (8)0.184 (8)0.041 (7)0.032 (7)0.093 (7)
O6'0.118 (8)0.152 (8)0.184 (8)0.041 (7)0.032 (7)0.093 (7)
Geometric parameters (Å, º) top
C1—N11.328 (4)C15—C161.376 (5)
C1—C21.383 (5)C15—H150.9300
C1—H10.9300C16—C171.388 (5)
C2—C31.387 (5)C16—H160.9300
C2—C111.497 (5)C17—N31.355 (4)
C3—C41.372 (5)C17—C181.461 (5)
C3—H30.9300C18—N41.353 (4)
C4—C51.375 (5)C18—C191.374 (5)
C4—H40.9300C19—C201.371 (5)
C5—N11.358 (4)C19—H190.9300
C5—C61.459 (5)C20—C211.390 (5)
C6—N21.346 (4)C20—H200.9300
C6—C71.374 (5)C21—C221.391 (5)
C7—C81.386 (5)C21—C241.496 (5)
C7—H70.9300C22—N41.337 (4)
C8—C91.381 (5)C22—H220.9300
C8—H80.9300C23—H23A0.9600
C9—C101.382 (5)C23—H23B0.9600
C9—C121.495 (5)C23—H23C0.9600
C10—N21.341 (4)C24—H24A0.9600
C10—H100.9300C24—H24B0.9600
C11—H11A0.9600C24—H24C0.9600
C11—H11B0.9600N1—Co11.927 (3)
C11—H11C0.9600N2—Co11.951 (3)
C12—H12A0.9600N3—Co11.950 (3)
C12—H12B0.9600N4—Co11.925 (3)
C12—H12C0.9600C25—O21.225 (5)
C13—N31.337 (4)C25—O11.312 (4)
C13—C141.391 (5)C25—O31.318 (4)
C13—H130.9300C25—Co12.309 (4)
C14—C151.374 (5)Co1—O31.891 (2)
C14—C231.496 (5)Co1—O11.892 (2)
N1—C1—C2123.0 (3)C19—C20—C21119.8 (3)
N1—C1—H1118.5C19—C20—H20120.1
C2—C1—H1118.5C21—C20—H20120.1
C1—C2—C3117.3 (3)C20—C21—C22117.4 (3)
C1—C2—C11120.8 (4)C20—C21—C24122.3 (3)
C3—C2—C11121.9 (3)C22—C21—C24120.2 (4)
C4—C3—C2119.8 (3)N4—C22—C21122.6 (3)
C4—C3—H3120.1N4—C22—H22118.7
C2—C3—H3120.1C21—C22—H22118.7
C3—C4—C5120.2 (4)C14—C23—H23A109.5
C3—C4—H4119.9C14—C23—H23B109.5
C5—C4—H4119.9H23A—C23—H23B109.5
N1—C5—C4120.0 (3)C14—C23—H23C109.5
N1—C5—C6114.0 (3)H23A—C23—H23C109.5
C4—C5—C6125.9 (3)H23B—C23—H23C109.5
N2—C6—C7121.1 (3)C21—C24—H24A109.5
N2—C6—C5114.4 (3)C21—C24—H24B109.5
C7—C6—C5124.5 (3)H24A—C24—H24B109.5
C6—C7—C8119.5 (3)C21—C24—H24C109.5
C6—C7—H7120.3H24A—C24—H24C109.5
C8—C7—H7120.3H24B—C24—H24C109.5
C9—C8—C7119.8 (4)C1—N1—C5119.7 (3)
C9—C8—H8120.1C1—N1—Co1125.8 (2)
C7—C8—H8120.1C5—N1—Co1114.5 (2)
C8—C9—C10117.5 (3)C10—N2—C6119.0 (3)
C8—C9—C12122.8 (4)C10—N2—Co1126.9 (2)
C10—C9—C12119.7 (4)C6—N2—Co1114.0 (2)
N2—C10—C9123.0 (3)C13—N3—C17119.4 (3)
N2—C10—H10118.5C13—N3—Co1127.1 (2)
C9—C10—H10118.5C17—N3—Co1113.4 (2)
C2—C11—H11A109.5C22—N4—C18119.4 (3)
C2—C11—H11B109.5C22—N4—Co1125.6 (2)
H11A—C11—H11B109.5C18—N4—Co1115.0 (2)
C2—C11—H11C109.5O2—C25—O1125.7 (4)
H11A—C11—H11C109.5O2—C25—O3124.3 (4)
H11B—C11—H11C109.5O1—C25—O3110.0 (3)
C9—C12—H12A109.5O2—C25—Co1179.2 (3)
C9—C12—H12B109.5O1—C25—Co155.03 (18)
H12A—C12—H12B109.5O3—C25—Co154.97 (17)
C9—C12—H12C109.5O3—Co1—O169.44 (11)
H12A—C12—H12C109.5O3—Co1—N493.28 (11)
H12B—C12—H12C109.5O1—Co1—N489.95 (11)
N3—C13—C14122.8 (3)O3—Co1—N189.86 (11)
N3—C13—H13118.6O1—Co1—N193.03 (11)
C14—C13—H13118.6N4—Co1—N1176.27 (12)
C15—C14—C13117.4 (3)O3—Co1—N3167.52 (11)
C15—C14—C23123.5 (3)O1—Co1—N398.53 (12)
C13—C14—C23119.1 (3)N4—Co1—N383.14 (12)
C14—C15—C16120.8 (3)N1—Co1—N394.19 (12)
C14—C15—H15119.6O3—Co1—N297.86 (12)
C16—C15—H15119.6O1—Co1—N2166.77 (11)
C15—C16—C17119.1 (3)N4—Co1—N294.61 (12)
C15—C16—H16120.4N1—Co1—N282.98 (12)
C17—C16—H16120.4N3—Co1—N294.34 (12)
N3—C17—C16120.6 (3)O3—Co1—C2534.81 (12)
N3—C17—C18114.8 (3)O1—Co1—C2534.63 (12)
C16—C17—C18124.6 (3)N4—Co1—C2591.91 (13)
N4—C18—C19120.8 (3)N1—Co1—C2591.82 (12)
N4—C18—C17113.6 (3)N3—Co1—C25133.08 (13)
C19—C18—C17125.6 (3)N2—Co1—C25132.58 (13)
C20—C19—C18120.1 (4)C25—O1—Co190.3 (2)
C20—C19—H19120.0C25—O3—Co190.2 (2)
C18—C19—H19120.0
N1—C1—C2—C30.1 (6)C22—N4—Co1—N3179.6 (3)
N1—C1—C2—C11178.4 (3)C18—N4—Co1—N30.0 (2)
C1—C2—C3—C40.8 (6)C22—N4—Co1—N285.7 (3)
C11—C2—C3—C4179.3 (4)C18—N4—Co1—N293.9 (3)
C2—C3—C4—C51.1 (6)C22—N4—Co1—C2547.3 (3)
C3—C4—C5—N10.5 (5)C18—N4—Co1—C25133.2 (3)
C3—C4—C5—C6178.4 (3)C1—N1—Co1—O380.4 (3)
N1—C5—C6—N21.9 (4)C5—N1—Co1—O397.7 (2)
C4—C5—C6—N2177.0 (3)C1—N1—Co1—O111.0 (3)
N1—C5—C6—C7179.3 (3)C5—N1—Co1—O1167.1 (2)
C4—C5—C6—C71.8 (6)C1—N1—Co1—N387.8 (3)
N2—C6—C7—C81.5 (5)C5—N1—Co1—N394.2 (2)
C5—C6—C7—C8177.2 (3)C1—N1—Co1—N2178.3 (3)
C6—C7—C8—C90.8 (6)C5—N1—Co1—N20.3 (2)
C7—C8—C9—C101.4 (5)C1—N1—Co1—C2545.6 (3)
C7—C8—C9—C12177.3 (4)C5—N1—Co1—C25132.4 (2)
C8—C9—C10—N20.1 (5)C13—N3—Co1—O3103.1 (5)
C12—C9—C10—N2178.9 (3)C17—N3—Co1—O373.0 (6)
N3—C13—C14—C150.1 (5)C13—N3—Co1—O188.1 (3)
N3—C13—C14—C23179.2 (3)C17—N3—Co1—O188.0 (2)
C13—C14—C15—C161.1 (5)C13—N3—Co1—N4177.0 (3)
C23—C14—C15—C16178.3 (4)C17—N3—Co1—N40.9 (2)
C14—C15—C16—C170.7 (5)C13—N3—Co1—N15.6 (3)
C15—C16—C17—N30.6 (5)C17—N3—Co1—N1178.3 (2)
C15—C16—C17—C18178.9 (3)C13—N3—Co1—N288.8 (3)
N3—C17—C18—N41.6 (4)C17—N3—Co1—N295.1 (2)
C16—C17—C18—N4178.0 (3)C13—N3—Co1—C2590.9 (3)
N3—C17—C18—C19178.2 (3)C17—N3—Co1—C2585.3 (3)
C16—C17—C18—C192.3 (6)C10—N2—Co1—O387.5 (3)
N4—C18—C19—C200.7 (5)C6—N2—Co1—O389.7 (2)
C17—C18—C19—C20179.5 (3)C10—N2—Co1—O1103.4 (5)
C18—C19—C20—C210.0 (6)C6—N2—Co1—O173.9 (6)
C19—C20—C21—C220.8 (5)C10—N2—Co1—N46.4 (3)
C19—C20—C21—C24178.5 (4)C6—N2—Co1—N4176.3 (2)
C20—C21—C22—N40.9 (6)C10—N2—Co1—N1176.4 (3)
C24—C21—C22—N4178.5 (3)C6—N2—Co1—N10.8 (2)
C2—C1—N1—C50.7 (5)C10—N2—Co1—N389.9 (3)
C2—C1—N1—Co1177.2 (3)C6—N2—Co1—N392.9 (2)
C4—C5—N1—C10.5 (5)C10—N2—Co1—C2590.4 (3)
C6—C5—N1—C1179.4 (3)C6—N2—Co1—C2586.8 (3)
C4—C5—N1—Co1177.7 (3)O1—C25—Co1—O3179.8 (3)
C6—C5—N1—Co11.3 (4)O3—C25—Co1—O1179.8 (3)
C9—C10—N2—C62.4 (5)O1—C25—Co1—N487.1 (2)
C9—C10—N2—Co1179.5 (3)O3—C25—Co1—N493.0 (2)
C7—C6—N2—C103.0 (5)O1—C25—Co1—N192.7 (2)
C5—C6—N2—C10175.8 (3)O3—C25—Co1—N187.1 (2)
C7—C6—N2—Co1179.5 (3)O1—C25—Co1—N34.8 (3)
C5—C6—N2—Co11.7 (4)O3—C25—Co1—N3175.40 (17)
C14—C13—N3—C171.2 (5)O1—C25—Co1—N2174.82 (18)
C14—C13—N3—Co1177.1 (3)O3—C25—Co1—N25.0 (3)
C16—C17—N3—C131.5 (5)O2—C25—O1—Co1179.6 (4)
C18—C17—N3—C13178.0 (3)O3—C25—O1—Co10.1 (3)
C16—C17—N3—Co1178.0 (3)O3—Co1—O1—C250.1 (2)
C18—C17—N3—Co11.6 (4)N4—Co1—O1—C2593.4 (2)
C21—C22—N4—C180.2 (5)N1—Co1—O1—C2588.8 (2)
C21—C22—N4—Co1179.7 (3)N3—Co1—O1—C25176.5 (2)
C19—C18—N4—C220.7 (5)N2—Co1—O1—C2516.9 (6)
C17—C18—N4—C22179.6 (3)O2—C25—O3—Co1179.6 (4)
C19—C18—N4—Co1178.9 (3)O1—C25—O3—Co10.1 (3)
C17—C18—N4—Co10.8 (4)O1—Co1—O3—C250.1 (2)
C22—N4—Co1—O312.4 (3)N4—Co1—O3—C2588.6 (2)
C18—N4—Co1—O3168.0 (2)N1—Co1—O3—C2593.4 (2)
C22—N4—Co1—O181.8 (3)N3—Co1—O3—C2515.7 (6)
C18—N4—Co1—O198.6 (2)N2—Co1—O3—C25176.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.932.432.931 (5)114
C3—H3···Br1i0.932.803.718 (4)168
C4—H4···O1ii0.932.513.257 (4)138
C10—H10···N40.932.533.036 (4)114
C11—H11A···Br1iii0.962.913.810 (4)157
C13—H13···N10.932.523.023 (4)114
C19—H19···O3iv0.932.523.284 (4)140
C20—H20···Br1iv0.932.853.778 (4)172
C22—H22···O30.932.442.939 (4)113
C23—H23B···O4v0.962.423.330 (6)158
C24—H24A···Br10.962.933.836 (5)158
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x1, y, z; (iv) x, y+1/2, z+1/2; (v) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(CO3)(C12H12N2)2]Br·3H2O
Mr621.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.5802 (15), 15.958 (2), 14.3921 (17)
β (°) 100.143 (3)
V3)2618.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.23
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.555, 0.664
No. of measured, independent and
observed [I > 2σ(I)] reflections
23769, 5033, 3111
Rint0.048
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.145, 1.02
No. of reflections5033
No. of parameters346
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 1.43

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.932.432.931 (5)114
C3—H3···Br1i0.932.803.718 (4)168
C4—H4···O1ii0.932.513.257 (4)138
C10—H10···N40.932.533.036 (4)114
C11—H11A···Br1iii0.962.913.810 (4)157
C13—H13···N10.932.523.023 (4)114
C19—H19···O3iv0.932.523.284 (4)140
C20—H20···Br1iv0.932.853.778 (4)172
C22—H22···O30.932.442.939 (4)113
C23—H23B···O4v0.962.423.330 (6)158
C24—H24A···Br10.962.933.836 (5)158
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x1, y, z; (iv) x, y+1/2, z+1/2; (v) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors are thankful to Rev. Dr C. Joe Arun, SJ, Secretary, and Rev. Dr B. Jeyaraj, SJ, Principal, Loyola College (Autonomous), Chennai-34, India, for providing the necessary facilities and the Head, SAIF, IIT Madras, Chennai-36, India, for recording the X-ray data.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarol, D., Barry, C., Malachy, M. C., Michael, D. & Denise, A. E. (2006). Chem. Biol. Int. 164, 115–125.  Google Scholar
First citationEddie, L. C., Christa, S. & Andrew, D. K. (2010). J. Chem. Pharm. Res. 3, 1711–1728.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarding, D. J., Harding, P. & Adams, H. (2008). Acta Cryst. E64, m1538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHyung, J. K., Yong, C. J., Jong, I. R. & Taek, H. K. (2006). Bull. Kor. Chem. 27, 2084–2086.  Google Scholar
First citationJayaweera, P. M, Palayangoda, S. S., Tennakone. & Gamage, R. G. C. R. (2002). Curr. Sci. 83, 1368–1371.  Google Scholar
First citationKusrini, E., Saleh, M. I., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, m1014–m1015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, P.-T., Wang, Y.-X., Zhang, G.-Q. & Li, M.-X. (2008). Acta Cryst. E64, m14.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMomeni, B. Z., Rominger, F. & Hosseini, S. S. (2009). Acta Cryst. E65, m690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPhatchimkun, J. & Chaichit, N. (2011). Acta Cryst. E67, m516–m517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, P. S., Ajnesh, S., Paula, B., Vitor, F. & Paloth, V. (2008). J. Mol. Struct. 888, 291–299.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y., Toms, B. B., Dixit, N., Kumari, N., Mishra, L., Goodisman, J. & Dabrowiak, J. C. (2010). Chem. Res. Toxicol. 23, 1417–1426.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVitushkina, S. V., Starodub, V. A. & Pyshkin, O. S. (2006). Russ. J. Coord. Chem. 32–34, 237–241.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m383-m384
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds