metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ10-4,4′-(ethane-1,2-diyldi­­oxy)dibenzoato]dipotassium]

aGuangxi Key Laboratory of Petrochemical Resources, Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
*Correspondence e-mail: mzmz2009@sohu.com

(Received 10 February 2012; accepted 25 February 2012; online 3 March 2012)

The title salt, [K2(C16H12O6)]n, was obtained by the reaction of 1,2-bis­[4-(ethyl-carbox­yl)-phenox­yl]ethane with KOH in water. The anion lies on a crystallographic inversion center, which is located at the mid-point of the central C—C bond. The K+ cation is coordinated by six O atoms, two from the chelating carboxyl­ate group of the anion and four from four neighboring and monodentately binding anions, giving rise to an irregular [KO6] coordination polyhedron. The coordination mode of the cation leads to the formation of K/O layers parallel to (100). These layers are linked by the nearly coplanar anions (r.m.s. deviation of 0.064 Å of the carboxyl, aryl and O—CH2 groups from the least-squares plane) into a three-dimentional network.

Related literature

For the preparation, structures, properties and applications of metal carboxyl­ate compounds, see: Ma et al. (2005[Ma, Z., Chen, Z. & Cao, R. (2005). Eur. J. Inorg. Chem. pp. 2978-2981.]); Su et al. (2010[Su, S. Q., Guo, Z. Y., Li, G. H., Deng, R. P., Song, S. Y., Qin, C., Pan, C. L., Guo, H. D., Gao, F., Wang, S. & Zhang, H. J. (2010). Dalton Trans. 39, 9123-9130.]); Zhang & Chen (2008[Zhang, J. P. & Chen, X. M. (2008). J. Am. Chem. Soc. 130, 6010-6017.]); Zhu et al. (2008[Zhu, X., Ma, Z., Bi, W., Wang, Y., Yuan, D. & Cao, R. (2008). CrystEngComm, 10, 19-22.]). For the preparation of the precusor, see: Ma & Yang (2011[Ma, Z. & Yang, H. (2011). Acta Cryst. E67, o1623.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [K2(C16H12O6)]

  • Mr = 189.23

  • Monoclinic, P 21 /c

  • a = 18.0696 (7) Å

  • b = 3.9866 (1) Å

  • c = 11.3189 (5) Å

  • β = 107.188 (2)°

  • V = 778.96 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 298 K

  • 0.15 × 0.11 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.919, Tmax = 0.938

  • 7387 measured reflections

  • 2146 independent reflections

  • 1999 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.067

  • S = 1.01

  • 2146 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected bond lengths (Å)

K1—O2i 2.6558 (8)
K1—O1ii 2.6780 (8)
K1—O2 2.7069 (8)
K1—O1iii 2.7167 (8)
K1—O2iv 2.8027 (8)
K1—O1 3.0335 (8)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) -x, -y+2, -z; (iii) -x, -y+1, -z; (iv) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The coordination chemistry of carboxylic compounds is attracting current attention, based on interesting properties like gas adsorption and separation, catalysis, magnetism, luminescence and host-guest chemistry (Su et al., 2010; Zhu et al., 2008) of these compounds. It is well-known that carboxylic acids are excellent building blocks for the construction of coordination polymers, yielding extended frameworks by virtue of their bridging abilities (Ma et al., 2005; Zhang & Chen, 2008). Hence, the present paper aims to promote the search for new metal carboxylic complexes exhibiting special properties in many fields, in particular those bearing multicarboxylic-type ligands, a promising but still rather underdeveloped field of research. We report here the structure of a new polymeric dipotassium dicarboxylic compound (Fig. 1).

In the asymmetric unit one half of the anion is present. The anion lies on a crystallographic inversion center, which is located at the mid point of the C8—C8i bond (symmetry code (i) = -x-1, -y-1, -z). All bond lengths and angles of the anion are within normal ranges (Allen et al., 1987). The K+ ion is coordinated by six oxygen atoms, two from the ligand and four from neighboring ligands, in a distorted [KO6] polyhedron (Fig 2), whereby one anion coordinates all in all to ten K+ cations. The benzene rings of the anion are parallel to each other with a plane-to-plane distance of 3.488 Å. The carboxyl, aryl and O—CH2 moieties are coplanar with an r.m.s. deviation of 0.0638 Å.

A three-dimensional network is spanned owing to the coordination mode of the potassium cations. The K+ cations and the O atoms of the carboxylate anions form a layer parallel to (100). These layers are finally connected by the substituted ethane moieties into a three-dimensional structure (Fig. 2).

Related literature top

For the preparation, structures, properties and applications of metal carboxylate compounds, see: Ma et al. (2005); Su et al. (2010); Zhang & Chen (2008); Zhu et al. (2008). For the preparation of the precusor, see: Ma & Yang (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The precusor of the title compound was prepared by a reported procedure (Ma & Yang, 2011). The title compound was synthesized by the reaction of the precusor, diethyl 4,4'-(ethane-1,2-diyldioxy)-dibenzoate and potassium hydroxide in the conditions as follows: The precusor (1.0 g, 2.8 mM) and KOH (0.31 g, 5.6 mM) were put in water (150 cm3) in a 250 cm3 flask and the system was stirred for 24 h at 373 K for all solids dissolved and cooled down to room temperature. After filtration, a colorless solution was obtained. Evaporation of the solution gave a white solid (0.82 g, 77 %), which was washed with ethanol two times (10 ml each). Slow evaporation of a solution of the title compound in water led to the formation of colorless crystals, which were suitable for X-ray characterization.

Refinement top

Hydrogen atoms bonded to the C atoms of the anion were positioned geometrically and refined using a riding model with C—H = 0.93 - 0.97 Å and with Uiso(H) = 1.2 times Ueq(C). These hydrogen atoms were assigned isotropic thermal parameters and allowed to ride on their respective parent atoms.

Structure description top

The coordination chemistry of carboxylic compounds is attracting current attention, based on interesting properties like gas adsorption and separation, catalysis, magnetism, luminescence and host-guest chemistry (Su et al., 2010; Zhu et al., 2008) of these compounds. It is well-known that carboxylic acids are excellent building blocks for the construction of coordination polymers, yielding extended frameworks by virtue of their bridging abilities (Ma et al., 2005; Zhang & Chen, 2008). Hence, the present paper aims to promote the search for new metal carboxylic complexes exhibiting special properties in many fields, in particular those bearing multicarboxylic-type ligands, a promising but still rather underdeveloped field of research. We report here the structure of a new polymeric dipotassium dicarboxylic compound (Fig. 1).

In the asymmetric unit one half of the anion is present. The anion lies on a crystallographic inversion center, which is located at the mid point of the C8—C8i bond (symmetry code (i) = -x-1, -y-1, -z). All bond lengths and angles of the anion are within normal ranges (Allen et al., 1987). The K+ ion is coordinated by six oxygen atoms, two from the ligand and four from neighboring ligands, in a distorted [KO6] polyhedron (Fig 2), whereby one anion coordinates all in all to ten K+ cations. The benzene rings of the anion are parallel to each other with a plane-to-plane distance of 3.488 Å. The carboxyl, aryl and O—CH2 moieties are coplanar with an r.m.s. deviation of 0.0638 Å.

A three-dimensional network is spanned owing to the coordination mode of the potassium cations. The K+ cations and the O atoms of the carboxylate anions form a layer parallel to (100). These layers are finally connected by the substituted ethane moieties into a three-dimensional structure (Fig. 2).

For the preparation, structures, properties and applications of metal carboxylate compounds, see: Ma et al. (2005); Su et al. (2010); Zhang & Chen (2008); Zhu et al. (2008). For the preparation of the precusor, see: Ma & Yang (2011). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Coordination environment around the K ions in the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. [symmetry code: (A) -x-1, -y-1, -z; (B) -x, -y-1/2, -z+1/2; (C) -x, y+1/2, -z+1/2; (D) x-1, -y-3/2, z-1/2; (E) x-1, -y-1/2, z-1/2]
[Figure 2] Fig. 2. A view of the crystal packing along the b axis. Longer bonds between the K+ ions and O atoms are shown with dotted lines.
Poly[[µ10-4,4'-(ethane-1,2-diyldioxy)dibenzoato]dipotassium] top
Crystal data top
[K2(C16H12O6)]F(000) = 388
Mr = 189.23Dx = 1.614 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7387 reflections
a = 18.0696 (7) Åθ = 3.5–29.6°
b = 3.9866 (1) ŵ = 0.64 mm1
c = 11.3189 (5) ÅT = 298 K
β = 107.188 (2)°Prism, colorless
V = 778.96 (5) Å30.15 × 0.11 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2146 independent reflections
Radiation source: fine-focus sealed tube1999 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.018
phi and ω scansθmax = 29.6°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.919, Tmax = 0.938k = 54
7387 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.4108P]
where P = (Fo2 + 2Fc2)/3
2146 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[K2(C16H12O6)]V = 778.96 (5) Å3
Mr = 189.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.0696 (7) ŵ = 0.64 mm1
b = 3.9866 (1) ÅT = 298 K
c = 11.3189 (5) Å0.15 × 0.11 × 0.10 mm
β = 107.188 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2146 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1999 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.938Rint = 0.018
7387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.01Δρmax = 0.39 e Å3
2146 reflectionsΔρmin = 0.22 e Å3
109 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.062276 (12)0.69576 (6)0.14996 (2)0.01343 (8)
O10.10069 (4)0.8108 (2)0.01861 (7)0.01551 (16)
O20.08101 (4)0.6705 (2)0.17911 (7)0.01591 (16)
O30.41949 (4)1.2442 (2)0.07832 (8)0.02053 (18)
C10.12233 (6)0.7855 (2)0.07712 (9)0.01162 (18)
C20.20252 (5)0.9047 (3)0.07224 (9)0.01196 (18)
C30.23052 (6)0.8522 (3)0.17345 (10)0.01459 (19)
H3A0.19970.74100.24280.018*
C40.30339 (6)0.9630 (3)0.17205 (10)0.0162 (2)
H4A0.32150.92340.23960.019*
C50.34944 (6)1.1339 (3)0.06932 (10)0.0154 (2)
C60.32378 (6)1.1810 (3)0.03393 (10)0.0170 (2)
H6A0.35521.28700.10400.020*
C70.25020 (6)1.0670 (3)0.03085 (9)0.0151 (2)
H7A0.23271.10050.09940.018*
C80.46737 (6)1.4328 (3)0.02248 (11)0.0192 (2)
H8A0.48751.29080.09440.023*
H8B0.43831.61530.04420.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01384 (11)0.01391 (12)0.01382 (12)0.00019 (7)0.00604 (8)0.00031 (7)
O10.0156 (3)0.0186 (4)0.0148 (4)0.0019 (3)0.0082 (3)0.0009 (3)
O20.0128 (3)0.0207 (4)0.0144 (3)0.0028 (3)0.0041 (3)0.0033 (3)
O30.0129 (4)0.0248 (4)0.0266 (4)0.0065 (3)0.0100 (3)0.0045 (3)
C10.0107 (4)0.0106 (4)0.0142 (4)0.0004 (3)0.0047 (3)0.0010 (3)
C20.0101 (4)0.0129 (4)0.0132 (4)0.0003 (3)0.0040 (3)0.0014 (4)
C30.0126 (4)0.0183 (5)0.0132 (4)0.0010 (4)0.0042 (4)0.0014 (4)
C40.0146 (4)0.0207 (5)0.0159 (5)0.0008 (4)0.0083 (4)0.0001 (4)
C50.0103 (4)0.0155 (5)0.0216 (5)0.0008 (3)0.0066 (4)0.0016 (4)
C60.0131 (4)0.0203 (5)0.0174 (5)0.0037 (4)0.0042 (4)0.0041 (4)
C70.0135 (4)0.0184 (5)0.0148 (5)0.0020 (4)0.0062 (4)0.0019 (4)
C80.0123 (4)0.0186 (5)0.0276 (6)0.0032 (4)0.0073 (4)0.0011 (4)
Geometric parameters (Å, º) top
K1—O2i2.6558 (8)C1—C21.5104 (13)
K1—O1ii2.6780 (8)C2—C71.3886 (14)
K1—O22.7069 (8)C2—C31.3981 (14)
K1—O1iii2.7167 (8)C3—C41.3845 (14)
K1—O2iv2.8027 (8)C3—H3A0.9300
K1—O13.0335 (8)C4—C51.3918 (15)
O1—C11.2599 (12)C4—H4A0.9300
O1—K1ii2.6780 (8)C5—C61.3914 (15)
O1—K1iii2.7167 (8)C6—C71.3957 (14)
O2—C11.2613 (12)C6—H6A0.9300
O2—K1iv2.6558 (8)C7—H7A0.9300
O2—K1i2.8027 (8)C8—C8v1.514 (2)
O3—C51.3719 (12)C8—H8A0.9700
O3—C81.4254 (14)C8—H8B0.9700
O2i—K1—O1ii83.27 (2)C2—C1—K1163.16 (7)
O2i—K1—O281.85 (2)O1—C1—K1i130.55 (7)
O1ii—K1—O2120.61 (2)O2—C1—K1i52.82 (5)
O2i—K1—O1iii158.48 (3)C2—C1—K1i85.79 (5)
O1ii—K1—O1iii95.29 (2)K1—C1—K1i77.91 (2)
O2—K1—O1iii116.57 (2)C7—C2—C3118.26 (9)
O2i—K1—O2iv93.79 (2)C7—C2—C1121.84 (9)
O1ii—K1—O2iv159.03 (2)C3—C2—C1119.90 (9)
O2—K1—O2iv79.21 (2)C4—C3—C2121.06 (10)
O1iii—K1—O2iv79.87 (2)C4—C3—K1i124.14 (7)
O2i—K1—O1103.98 (2)C2—C3—K1i86.80 (6)
O1ii—K1—O184.40 (2)C4—C3—H3A119.5
O2—K1—O145.30 (2)C2—C3—H3A119.5
O1iii—K1—O197.22 (2)K1i—C3—H3A59.1
O2iv—K1—O1116.36 (2)C3—C4—C5119.85 (9)
C1—O1—K1ii137.18 (7)C3—C4—H4A120.1
C1—O1—K1iii127.26 (6)C5—C4—H4A120.1
K1ii—O1—K1iii95.29 (2)O3—C5—C6124.26 (10)
C1—O1—K186.40 (6)O3—C5—C4115.58 (9)
K1ii—O1—K195.60 (2)C6—C5—C4120.15 (9)
K1iii—O1—K182.78 (2)C5—C6—C7119.12 (10)
C1—O2—K1iv147.07 (7)C5—C6—H6A120.4
C1—O2—K1101.75 (6)C7—C6—H6A120.4
K1iv—O2—K1101.23 (3)C2—C7—C6121.51 (9)
C1—O2—K1i106.17 (6)C2—C7—H7A119.2
K1iv—O2—K1i93.79 (2)C6—C7—H7A119.2
K1—O2—K1i97.56 (3)O3—C8—C8v105.46 (12)
C5—O3—C8117.68 (9)O3—C8—H8A110.6
O1—C1—O2124.48 (9)C8v—C8—H8A110.6
O1—C1—C2118.78 (9)O3—C8—H8B110.6
O2—C1—C2116.73 (9)C8v—C8—H8B110.6
O1—C1—K170.54 (5)H8A—C8—H8B108.8
O2—C1—K155.63 (5)
O2i—K1—O1—C155.46 (6)K1—O2—C1—K1i101.55 (4)
O1ii—K1—O1—C1137.08 (7)O2i—K1—C1—O1126.93 (6)
O2—K1—O1—C17.68 (5)O1ii—K1—C1—O143.72 (7)
O1iii—K1—O1—C1128.28 (6)O2—K1—C1—O1165.70 (10)
O2iv—K1—O1—C146.04 (6)O1iii—K1—C1—O156.46 (7)
O2i—K1—O1—K1ii81.62 (3)O2iv—K1—C1—O1139.16 (6)
O1ii—K1—O1—K1ii0.0C1iv—K1—C1—O1158.75 (5)
O2—K1—O1—K1ii144.76 (4)C3iv—K1—C1—O1147.22 (6)
O1iii—K1—O1—K1ii94.64 (2)K1iii—K1—C1—O139.24 (5)
O2iv—K1—O1—K1ii176.88 (2)K1vi—K1—C1—O197.19 (6)
O2i—K1—O1—K1iii176.26 (2)K1vii—K1—C1—O182.81 (6)
O1ii—K1—O1—K1iii94.64 (2)O2i—K1—C1—O267.37 (5)
O2—K1—O1—K1iii120.60 (4)O1ii—K1—C1—O2150.59 (6)
O1iii—K1—O1—K1iii0.0O1iii—K1—C1—O2109.24 (6)
O2iv—K1—O1—K1iii82.24 (3)O2iv—K1—C1—O226.54 (6)
O2i—K1—O2—C1111.19 (5)O1—K1—C1—O2165.70 (10)
O1ii—K1—O2—C134.03 (7)C1iv—K1—C1—O26.95 (7)
O1iii—K1—O2—C180.53 (7)O2i—K1—C1—C20.4 (2)
O2iv—K1—O2—C1153.35 (6)O1ii—K1—C1—C282.8 (2)
O1—K1—O2—C17.82 (6)O2—K1—C1—C267.7 (2)
O2i—K1—O2—K1iv92.56 (4)O1iii—K1—C1—C2177.0 (2)
O1ii—K1—O2—K1iv169.72 (2)O2iv—K1—C1—C294.3 (2)
O1iii—K1—O2—K1iv75.72 (3)O1—K1—C1—C2126.6 (3)
O2iv—K1—O2—K1iv2.91 (2)O2i—K1—C1—K1i14.40 (2)
O1—K1—O2—K1iv148.43 (4)O1ii—K1—C1—K1i97.62 (2)
O2i—K1—O2—K1i2.85 (2)O2—K1—C1—K1i52.97 (6)
O1ii—K1—O2—K1i74.31 (3)O1iii—K1—C1—K1i162.21 (2)
O1iii—K1—O2—K1i171.14 (2)O2iv—K1—C1—K1i79.51 (2)
O2iv—K1—O2—K1i98.32 (4)O1—K1—C1—K1i141.33 (6)
O1—K1—O2—K1i116.16 (4)O1—C1—C2—C75.67 (15)
K1ii—O1—C1—O2108.67 (11)O2—C1—C2—C7173.34 (10)
K1iii—O1—C1—O263.78 (13)O1—C1—C2—C3174.29 (9)
K1—O1—C1—O214.32 (10)O2—C1—C2—C36.70 (14)
K1ii—O1—C1—C270.25 (13)C7—C2—C3—C40.94 (16)
K1iii—O1—C1—C2117.29 (9)C1—C2—C3—C4179.10 (10)
K1—O1—C1—C2164.60 (8)C7—C2—C3—K1i129.43 (9)
K1ii—O1—C1—K194.35 (8)C1—C2—C3—K1i50.60 (9)
K1iii—O1—C1—K178.10 (6)C2—C3—C4—C50.93 (17)
K1ii—O1—C1—K1i40.84 (13)K1i—C3—C4—C5108.31 (10)
K1iii—O1—C1—K1i131.62 (6)C8—O3—C5—C63.09 (16)
K1—O1—C1—K1i53.52 (7)C8—O3—C5—C4177.44 (10)
K1iv—O2—C1—O1116.98 (12)C3—C4—C5—O3177.77 (10)
K1—O2—C1—O116.41 (11)C3—C4—C5—C62.74 (17)
K1i—O2—C1—O1117.97 (9)O3—C5—C6—C7177.93 (10)
K1iv—O2—C1—C264.08 (15)C4—C5—C6—C72.63 (17)
K1—O2—C1—C2162.53 (7)C3—C2—C7—C61.04 (16)
K1i—O2—C1—C260.98 (9)C1—C2—C7—C6179.00 (10)
K1iv—O2—C1—K1133.39 (13)C5—C6—C7—C20.73 (17)
K1i—O2—C1—K1101.55 (4)C5—O3—C8—C8v170.63 (11)
K1iv—O2—C1—K1i125.05 (13)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+2, z; (iii) x, y+1, z; (iv) x, y1/2, z1/2; (v) x+1, y+3, z; (vi) x, y1, z; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[K2(C16H12O6)]
Mr189.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)18.0696 (7), 3.9866 (1), 11.3189 (5)
β (°) 107.188 (2)
V3)778.96 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.15 × 0.11 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.919, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
7387, 2146, 1999
Rint0.018
(sin θ/λ)max1)0.695
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.067, 1.01
No. of reflections2146
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
K1—O2i2.6558 (8)K1—O1iii2.7167 (8)
K1—O1ii2.6780 (8)K1—O2iv2.8027 (8)
K1—O22.7069 (8)K1—O13.0335 (8)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+2, z; (iii) x, y+1, z; (iv) x, y1/2, z1/2.
 

Acknowledgements

The authors are grateful for financial support from the Scientific Fund of Guangxi University (X061144) and the Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (K008).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMa, Z., Chen, Z. & Cao, R. (2005). Eur. J. Inorg. Chem. pp. 2978–2981.  Web of Science CSD CrossRef Google Scholar
First citationMa, Z. & Yang, H. (2011). Acta Cryst. E67, o1623.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, S. Q., Guo, Z. Y., Li, G. H., Deng, R. P., Song, S. Y., Qin, C., Pan, C. L., Guo, H. D., Gao, F., Wang, S. & Zhang, H. J. (2010). Dalton Trans. 39, 9123–9130.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J. P. & Chen, X. M. (2008). J. Am. Chem. Soc. 130, 6010-6017.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhu, X., Ma, Z., Bi, W., Wang, Y., Yuan, D. & Cao, R. (2008). CrystEngComm, 10, 19–22.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds