inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ca5Zr3F22

aClermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France and CNRS, UMR 6296, ICCF, BP 80026, 63171 Aubière, France
*Correspondence e-mail: daniel.avignant@univ-bpclermont.fr

(Received 17 February 2012; accepted 25 February 2012; online 3 March 2012)

Single crystals of Ca5Zr3F22, penta­calcium trizirconium docosafluoride, were obtained unexpectedly by solid-state reaction between CaF2 and ZrF4 in the presence of AgF. The structure of the title compound is isotypic with that of Sr5Zr3F22 and can be described as being composed of layers with composition [Zr3F20]8− made up from two different [ZrF8]4− square anti­prisms (one with site symmetry 2) by corner-sharing. The layers extending parallel to the (001) plane are further linked by Ca2+ cations, forming a three-dimensional network. Amongst the four crystallographically different Ca2+ ions, three are located on twofold rotation axes. The Ca2+ ions exhibit coordination numbers ranging from 8 to 12, depending on the cut off, with very distorted fluorine environments. Two of the Ca2+ ions occupy inter­stices between the layers whereas the other two are located in void spaces of the [Zr3F20]8− layer and alternate with the two Zr atoms along [010]. The crystal under investigation was an inversion twin.

Related literature

For the isotypic Sr analogue, see: Le Bail (1996[Le Bail, A. (1996). Eur. J. Solid State Inorg. Chem. 33, 1211-1222.]). The crystal chemistry of fluorides has been reviewed by Babel & Tressaud (1985[Babel, D. & Tressaud, A. (1985). Inorganic Solid Fluorides, edited by P. Hagenmuller, pp. 77-203. New York: Academic Press Inc.]). For phase relationships in the CaF2–ZrF4 system, see: L'Helgoualch et al. (1971[L'Helgoualch, H., Poulain, M., Rannou, J. P. & Lucas, J. (1971). C. R. Acad. Sci. Ser. C, 272, 1321-1324.]); Kotsar et al. (1973[Kotsar, M. L., Karetnikov, G. S., Khaustov, S. V., Seleznev, V. P., Sudarikov, B. N. & Gromov, B. V. (1973). Mendeleeva 75, 49-51.]); Ratnikov et al. (1977[Ratnikov, I. D., Korenev, Yu. M., Sobolev, B. P. & Novoselova, A. V. (1977). Khimiya, 18, 245.]); Laval et al. (1987[Laval, J. P., Mikou, A., Frit, B., Roult, G. & Pannetier, J. (1987). Rev. Chim. Mineral. 24, 165-182.]). For bond-valence analysis, see: Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]).

Experimental

Crystal data
  • Ca5Zr3F22

  • Mr = 892.06

  • Orthorhombic, P 21 21 2

  • a = 9.9844 (3) Å

  • b = 7.4059 (2) Å

  • c = 9.9046 (3) Å

  • V = 732.38 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.09 mm−1

  • T = 296 K

  • 0.19 × 0.06 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.587, Tmax = 0.747

  • 7993 measured reflections

  • 3466 independent reflections

  • 2909 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.058

  • S = 0.99

  • 3466 reflections

  • 139 parameters

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.77 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1462 Friedel pairs

  • Flack parameter: 0.0 (4)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CaRine (Boudias & Monceau, 1998[Boudias, C. & Monceau, D. (1998). CaRine. CaRine Crystallography, DIVERGENT SA, Compiègne, France.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Despite several reports related to investigations of the pseudo-binary system CaF2–ZrF4 (L'Helgoualch et al. 1971; Kotsar et al. 1973; Ratnikov et al. 1977; Babel & Tressaud, 1985; Laval et al. 1987) the title compound has never been mentioned previously. Therefore the determination of its crystal structure was of prime importance to complete a thorough examination of the phase diagram of this system.

The orthorhombic structure of the title compound is isotypic with that of Sr5Zr3F22 reported by Le Bail (1996). As with this latter, the structure of Ca5Zr3F22 has also been determined from an inversion twinned crystal although the crystals were grown in very different ways. Figure 1 displays the polyhedral string in Ca5Zr3F22. Both Zr1 and Zr2 cations are 8-coordinated by the fluoride ions, in distorted square antiprismatic environments. The square antiprism surrounding Zr2 (site symmetry 2) with Zr—F distances ranging from 2.0771 (19) Å to 2.148 (2) Å is less distorted than that surrounding Zr1 (site symmetry 1) where Zr—F distances range from 2.062 (2) to 2.2154 (19) Å. Each Zr2 square antiprism is connected by sharing corners to four Zr1 square antiprisms as shown in Fig. 2. The crystal structure is built up from layers of corner-sharing [ZrF8]4- square antiprisms. The layers extending parallel to (001) are further held together by Ca2+ cations to form the three-dimensional network (Fig. 3). The calcium ions are divided into four crystallographically different atoms exhibiting coordination numbers from 8 to 12, depending on the cut off, with very distorted fluorine environments. The bond-valence analysis of the title structure carried out using Brese & O'Keeffe's Rij parameters for solids (Brese & O'Keeffe, 1991) is displayed in Figure 4. Large deviations from the ideal value 2 have been obtained for both Ca1 and Ca2. For this latter the value of 1.730 valence units (v.u.) is obtained with Ca—F distances up to 2.661 Å considered as relevant for the first coordination sphere whereas the value of 1.843 v.u. is reached with four additional interactions involving distances up to 3.109 Å. Despite these four additional contributions the formal charge for Ca2 still shows a deficit. For comparison, bond-valence calculations have also been performed for the homologuous Sr5Zr3F22 from bond lengths reported by Le Bail (1996). Significant deviations (see Fig. 4) are also observed for the alkaline earth cations but the formal charges are in excess in this case. This may be most likely related to the size difference of the ionic radii of Ca2+ and Sr2+. Ca2 and Ca4 occupy interstices between the layers whereas Ca3 and Ca1 are located in void spaces of the [Zr3F20]8- layer and alternate with Zr2 and Zr1, respectively, along [010]. Thus Ca3 and Ca4 also appear as being located in channels parallel to [001].

Related literature top

For the isotypic Sr analogue, see: Le Bail (1996). The crystal chemistry of fluorides has been reviewed by Babel & Tressaud (1985). For phase relationships in the CaF2–ZrF4 system, see: L'Helgoualch et al. (1971); Kotsar et al. (1973); Ratnikov et al. (1977); Laval et al. (1987). For bond-valence analysis, see: Brese & O'Keeffe (1991).

Experimental top

Single crystals of Ca5Zr3F22 were unexpectedly obtained from an equimolar mixture of AgF, CaF2 and ZrF4 heated at 873 K in a sealed platinum tube during the study of the phase diagram of the ternary system AgF–CaF2–ZrF4. After heating at this temperature for 24 h, the sample was cooled to room temperature at the rate of 5 K.h-1 for the first 24 h and then by switching the power off. Small platelet like crystals of Ca5Zr3F22 could have been extracted from the batch.

Both AgF and CaF2 were commercial products whereas ZrF4 was prepared by direct fluorination of ZrO2 under pure fluorine gas flow at 873 K with intermediate grindings. CaF2 was also heated at 873 K overnight under fluorine gas flow prior to use.

Refinement top

The highest residual peak in the final difference Fourier map was located 0.04 Å from atom Zr2 and the deepest hole was located 1.05 Å from atom F9.

Structure description top

Despite several reports related to investigations of the pseudo-binary system CaF2–ZrF4 (L'Helgoualch et al. 1971; Kotsar et al. 1973; Ratnikov et al. 1977; Babel & Tressaud, 1985; Laval et al. 1987) the title compound has never been mentioned previously. Therefore the determination of its crystal structure was of prime importance to complete a thorough examination of the phase diagram of this system.

The orthorhombic structure of the title compound is isotypic with that of Sr5Zr3F22 reported by Le Bail (1996). As with this latter, the structure of Ca5Zr3F22 has also been determined from an inversion twinned crystal although the crystals were grown in very different ways. Figure 1 displays the polyhedral string in Ca5Zr3F22. Both Zr1 and Zr2 cations are 8-coordinated by the fluoride ions, in distorted square antiprismatic environments. The square antiprism surrounding Zr2 (site symmetry 2) with Zr—F distances ranging from 2.0771 (19) Å to 2.148 (2) Å is less distorted than that surrounding Zr1 (site symmetry 1) where Zr—F distances range from 2.062 (2) to 2.2154 (19) Å. Each Zr2 square antiprism is connected by sharing corners to four Zr1 square antiprisms as shown in Fig. 2. The crystal structure is built up from layers of corner-sharing [ZrF8]4- square antiprisms. The layers extending parallel to (001) are further held together by Ca2+ cations to form the three-dimensional network (Fig. 3). The calcium ions are divided into four crystallographically different atoms exhibiting coordination numbers from 8 to 12, depending on the cut off, with very distorted fluorine environments. The bond-valence analysis of the title structure carried out using Brese & O'Keeffe's Rij parameters for solids (Brese & O'Keeffe, 1991) is displayed in Figure 4. Large deviations from the ideal value 2 have been obtained for both Ca1 and Ca2. For this latter the value of 1.730 valence units (v.u.) is obtained with Ca—F distances up to 2.661 Å considered as relevant for the first coordination sphere whereas the value of 1.843 v.u. is reached with four additional interactions involving distances up to 3.109 Å. Despite these four additional contributions the formal charge for Ca2 still shows a deficit. For comparison, bond-valence calculations have also been performed for the homologuous Sr5Zr3F22 from bond lengths reported by Le Bail (1996). Significant deviations (see Fig. 4) are also observed for the alkaline earth cations but the formal charges are in excess in this case. This may be most likely related to the size difference of the ionic radii of Ca2+ and Sr2+. Ca2 and Ca4 occupy interstices between the layers whereas Ca3 and Ca1 are located in void spaces of the [Zr3F20]8- layer and alternate with Zr2 and Zr1, respectively, along [010]. Thus Ca3 and Ca4 also appear as being located in channels parallel to [001].

For the isotypic Sr analogue, see: Le Bail (1996). The crystal chemistry of fluorides has been reviewed by Babel & Tressaud (1985). For phase relationships in the CaF2–ZrF4 system, see: L'Helgoualch et al. (1971); Kotsar et al. (1973); Ratnikov et al. (1977); Laval et al. (1987). For bond-valence analysis, see: Brese & O'Keeffe (1991).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CaRine (Boudias & Monceau, 1998) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the polyhedral linkage in Ca5Zr3F22. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) 3/2 - x, -1/2 + y, 2 - z; (ii) x, -1 + y, z; (iii) 2 - x, -y, z; (iv) 2 - x, 1 - y, z; (v) x, 1 + y, z; (vi) 3/2 - x, 1/2 + y, 2 - z; (vii) 3/2 - x, -1/2 + y, 1 - z; (viii) 1/2 + x, -1/2 - y, 1 - z; (ix) -1/2 + x, -1/2 - y, 2 - z; (x) 1/2 + x, 1/2 - y, 1 - z; (xi) 2 - x, -1 - y, z; (xii) 3/2 - x, 1/2 + y, 1 - z; (xiii) -1/2 + x, 1/2 - y, 2 - z; (xiv) 1 - x, -y, z; (xv) 1 - x, 1 - y, z; (xvi) -1/2 + x, -1/2 - y, 1 - z;
[Figure 2] Fig. 2. Details of the connection between Zr2 and Zr1 square antiprisms in Ca5Zr3F22.
[Figure 3] Fig. 3. Projection of the structure of Ca5Zr3F22 along [010] showing the [Zr3F20]8- layers held together by Ca2+ ions.
[Figure 4] Fig. 4. Bond-valence analysis of the structures of Ca5Zr3F22 (top) and Sr5Zr3F22 (bottom) using parameters for solids (RZr—F = 1.854, RCa—F = 1.842, RSr—F = 2.019) from Brese & O'Keeffe (1991). It should be noted that the atom labelling in the two isotypic structures is different.
pentacalcium trizirconium docosafluoride top
Crystal data top
Ca5Zr3F22F(000) = 836
Mr = 892.06Dx = 4.045 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 1507 reflections
a = 9.9844 (3) Åθ = 4.0–35.8°
b = 7.4059 (2) ŵ = 4.09 mm1
c = 9.9046 (3) ÅT = 296 K
V = 732.38 (4) Å3Platelet, colourless
Z = 20.19 × 0.06 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
3466 independent reflections
Radiation source: fine-focus sealed tube2909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 8.3333 pixels mm-1θmax = 36.0°, θmin = 3.4°
ω and φ–scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 126
Tmin = 0.587, Tmax = 0.747l = 1612
7993 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0112P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.001
S = 0.99Δρmax = 0.88 e Å3
3466 reflectionsΔρmin = 0.77 e Å3
139 parametersAbsolute structure: Flack (1983), 1462 Friedel pairs
0 restraintsAbsolute structure parameter: 0.0 (4)
Crystal data top
Ca5Zr3F22V = 732.38 (4) Å3
Mr = 892.06Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 9.9844 (3) ŵ = 4.09 mm1
b = 7.4059 (2) ÅT = 296 K
c = 9.9046 (3) Å0.19 × 0.06 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
3466 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2909 reflections with I > 2σ(I)
Tmin = 0.587, Tmax = 0.747Rint = 0.037
7993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.058Δρmax = 0.88 e Å3
S = 0.99Δρmin = 0.77 e Å3
3466 reflectionsAbsolute structure: Flack (1983), 1462 Friedel pairs
139 parametersAbsolute structure parameter: 0.0 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.71210 (3)0.25190 (5)0.77653 (3)0.00516 (5)
Zr20.50000.00000.46134 (5)0.00610 (9)
Ca10.71132 (6)0.23978 (10)0.75189 (6)0.00980 (11)
Ca21.00000.50000.94489 (11)0.01098 (18)
Ca31.00000.00000.53761 (10)0.00549 (16)
Ca41.00000.00000.97774 (11)0.01109 (19)
F10.88717 (17)0.2405 (3)0.89417 (19)0.0127 (4)
F20.85135 (16)0.2410 (3)0.93117 (18)0.0108 (3)
F30.8514 (2)0.0603 (2)0.7085 (3)0.0170 (5)
F40.88835 (19)0.4117 (2)0.7118 (3)0.0126 (4)
F51.10993 (18)0.2790 (3)0.6049 (2)0.0128 (4)
F60.65761 (18)0.0167 (3)0.8771 (2)0.0113 (4)
F70.69569 (18)0.4936 (3)0.87846 (19)0.0114 (4)
F80.6504 (2)0.4338 (3)0.6301 (2)0.0156 (5)
F91.10631 (18)0.2758 (3)0.4672 (2)0.0131 (4)
F100.51040 (18)0.2795 (2)0.83055 (19)0.0139 (4)
F110.6171 (2)0.0833 (3)0.6283 (3)0.0177 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.00491 (11)0.00437 (10)0.00621 (12)0.00005 (14)0.00025 (10)0.00010 (14)
Zr20.0070 (2)0.00559 (19)0.0057 (2)0.0005 (2)0.0000.000
Ca10.0079 (2)0.0118 (3)0.0097 (3)0.0004 (3)0.0000 (2)0.0002 (3)
Ca20.0104 (4)0.0085 (4)0.0139 (5)0.0006 (4)0.0000.000
Ca30.0047 (4)0.0059 (4)0.0059 (4)0.0005 (5)0.0000.000
Ca40.0097 (4)0.0065 (4)0.0170 (5)0.0010 (4)0.0000.000
F10.0108 (8)0.0113 (8)0.0161 (9)0.0008 (9)0.0033 (7)0.0009 (10)
F20.0100 (8)0.0125 (8)0.0098 (8)0.0027 (10)0.0044 (6)0.0024 (10)
F30.0194 (11)0.0113 (9)0.0203 (13)0.0026 (8)0.0086 (10)0.0019 (9)
F40.0118 (10)0.0128 (9)0.0133 (11)0.0041 (7)0.0021 (9)0.0004 (8)
F50.0103 (8)0.0159 (11)0.0122 (10)0.0038 (7)0.0044 (7)0.0006 (8)
F60.0129 (9)0.0090 (9)0.0120 (10)0.0019 (8)0.0002 (7)0.0007 (8)
F70.0129 (9)0.0084 (8)0.0130 (10)0.0016 (9)0.0016 (8)0.0023 (9)
F80.0202 (12)0.0145 (10)0.0120 (12)0.0008 (8)0.0061 (9)0.0047 (8)
F90.0135 (9)0.0108 (10)0.0151 (10)0.0034 (8)0.0041 (7)0.0002 (8)
F100.0077 (8)0.0177 (10)0.0161 (10)0.0009 (8)0.0012 (8)0.0044 (7)
F110.0233 (12)0.0146 (10)0.0151 (13)0.0028 (9)0.0065 (10)0.0028 (9)
Geometric parameters (Å, º) top
Zr1—F72.062 (2)Ca2—F6x2.366 (2)
Zr1—F22.0701 (16)Ca2—F2xi2.429 (2)
Zr1—F82.073 (2)Ca2—F22.429 (2)
Zr1—F62.079 (2)Ca2—F42.645 (3)
Zr1—F102.0937 (18)Ca2—F4xi2.645 (3)
Zr1—F32.098 (2)Ca2—F10x3.040 (2)
Zr1—F112.148 (2)Ca2—F10ix3.040 (2)
Zr1—F42.2154 (19)Ca2—F73.1091 (18)
Zr2—F5i2.0771 (19)Ca2—F7xi3.1091 (18)
Zr2—F5ii2.0771 (19)Ca3—F8i2.292 (2)
Zr2—F9iii2.0939 (18)Ca3—F8xii2.292 (2)
Zr2—F9iv2.0939 (18)Ca3—F3vi2.295 (2)
Zr2—F112.117 (2)Ca3—F32.295 (2)
Zr2—F11v2.117 (2)Ca3—F92.4055 (19)
Zr2—F4ii2.148 (2)Ca3—F9vi2.4055 (19)
Zr2—F4i2.148 (2)Ca3—F52.4327 (19)
Ca1—F12.2514 (18)Ca3—F5vi2.4327 (19)
Ca1—F5vi2.3214 (19)Ca4—F12.264 (2)
Ca1—F62.331 (2)Ca4—F1vi2.264 (2)
Ca1—F7vii2.344 (2)Ca4—F2vi2.367 (2)
Ca1—F10v2.3651 (19)Ca4—F22.367 (2)
Ca1—F9iv2.412 (2)Ca4—F7ix2.418 (2)
Ca1—F32.661 (2)Ca4—F7xiii2.418 (2)
Ca1—F8vii2.769 (2)Ca4—F10ix2.5067 (19)
Ca1—F112.848 (2)Ca4—F10xiii2.5067 (19)
Ca2—F1viii2.283 (2)Ca4—F33.085 (3)
Ca2—F1vi2.283 (2)Ca4—F3vi3.085 (3)
Ca2—F6ix2.366 (2)
F7—Zr1—F274.04 (8)F1viii—Ca2—F758.94 (6)
F7—Zr1—F875.80 (8)F1vi—Ca2—F7115.01 (6)
F2—Zr1—F8137.96 (9)F6ix—Ca2—F7143.78 (7)
F7—Zr1—F6118.16 (7)F6x—Ca2—F760.56 (6)
F2—Zr1—F677.79 (8)F2xi—Ca2—F7126.67 (6)
F8—Zr1—F6143.31 (8)F2—Ca2—F751.62 (6)
F7—Zr1—F1073.37 (7)F4—Ca2—F753.12 (6)
F2—Zr1—F10117.44 (7)F4xi—Ca2—F7103.35 (6)
F8—Zr1—F1080.18 (8)F10x—Ca2—F797.57 (5)
F6—Zr1—F1073.00 (7)F10ix—Ca2—F7100.25 (5)
F7—Zr1—F3142.87 (8)F1viii—Ca2—F7xi115.01 (6)
F2—Zr1—F376.47 (9)F1vi—Ca2—F7xi58.94 (6)
F8—Zr1—F3114.32 (10)F6ix—Ca2—F7xi60.56 (6)
F6—Zr1—F376.16 (8)F6x—Ca2—F7xi143.78 (7)
F10—Zr1—F3141.78 (8)F2xi—Ca2—F7xi51.62 (6)
F7—Zr1—F11143.54 (8)F2—Ca2—F7xi126.67 (6)
F2—Zr1—F11141.23 (9)F4—Ca2—F7xi103.35 (6)
F8—Zr1—F1176.60 (8)F4xi—Ca2—F7xi53.12 (6)
F6—Zr1—F1174.05 (8)F10x—Ca2—F7xi100.25 (5)
F10—Zr1—F1178.86 (8)F10ix—Ca2—F7xi97.57 (5)
F3—Zr1—F1171.33 (9)F7—Ca2—F7xi155.57 (8)
F7—Zr1—F474.98 (8)F8i—Ca3—F8xii87.10 (12)
F2—Zr1—F472.62 (8)F8i—Ca3—F3vi156.41 (7)
F8—Zr1—F471.74 (8)F8xii—Ca3—F3vi98.78 (8)
F6—Zr1—F4142.56 (8)F8i—Ca3—F398.78 (8)
F10—Zr1—F4141.80 (7)F8xii—Ca3—F3156.41 (7)
F3—Zr1—F475.04 (7)F3vi—Ca3—F384.96 (13)
F11—Zr1—F4117.61 (9)F8i—Ca3—F984.10 (7)
F5i—Zr2—F5ii143.17 (11)F8xii—Ca3—F971.48 (7)
F5i—Zr2—F9iii117.63 (7)F3vi—Ca3—F976.31 (7)
F5ii—Zr2—F9iii75.52 (7)F3—Ca3—F9131.65 (7)
F5i—Zr2—F9iv75.52 (7)F8i—Ca3—F9vi71.48 (7)
F5ii—Zr2—F9iv117.63 (7)F8xii—Ca3—F9vi84.10 (7)
F9iii—Zr2—F9iv140.46 (11)F3vi—Ca3—F9vi131.65 (7)
F5i—Zr2—F11140.20 (8)F3—Ca3—F9vi76.31 (7)
F5ii—Zr2—F1174.04 (8)F9—Ca3—F9vi146.27 (10)
F9iii—Zr2—F1177.57 (8)F8i—Ca3—F5132.51 (7)
F9iv—Zr2—F1171.76 (8)F8xii—Ca3—F573.82 (7)
F5i—Zr2—F11v74.04 (8)F3vi—Ca3—F570.82 (6)
F5ii—Zr2—F11v140.20 (8)F3—Ca3—F585.66 (7)
F9iii—Zr2—F11v71.76 (8)F9—Ca3—F5126.99 (6)
F9iv—Zr2—F11v77.57 (8)F9vi—Ca3—F563.72 (6)
F11—Zr2—F11v77.30 (13)F8i—Ca3—F5vi73.82 (7)
F5i—Zr2—F4ii73.35 (7)F8xii—Ca3—F5vi132.51 (7)
F5ii—Zr2—F4ii77.41 (8)F3vi—Ca3—F5vi85.66 (7)
F9iii—Zr2—F4ii76.44 (8)F3—Ca3—F5vi70.82 (6)
F9iv—Zr2—F4ii140.78 (7)F9—Ca3—F5vi63.72 (6)
F11—Zr2—F4ii145.25 (7)F9vi—Ca3—F5vi126.99 (6)
F11v—Zr2—F4ii115.20 (9)F5—Ca3—F5vi148.20 (10)
F5i—Zr2—F4i77.41 (8)F1—Ca4—F1vi137.12 (11)
F5ii—Zr2—F4i73.35 (7)F1—Ca4—F2vi69.36 (7)
F9iii—Zr2—F4i140.78 (7)F1vi—Ca4—F2vi102.12 (7)
F9iv—Zr2—F4i76.44 (8)F1—Ca4—F2102.12 (7)
F11—Zr2—F4i115.20 (9)F1vi—Ca4—F269.36 (7)
F11v—Zr2—F4i145.25 (7)F2vi—Ca4—F2157.52 (10)
F4ii—Zr2—F4i73.99 (11)F1—Ca4—F7ix129.24 (8)
F1—Ca1—F5vi78.04 (7)F1vi—Ca4—F7ix78.34 (7)
F1—Ca1—F681.27 (8)F2vi—Ca4—F7ix67.84 (6)
F5vi—Ca1—F6127.77 (7)F2—Ca4—F7ix127.36 (7)
F1—Ca1—F7vii73.44 (8)F1—Ca4—F7xiii78.34 (7)
F5vi—Ca1—F7vii106.33 (7)F1vi—Ca4—F7xiii129.24 (8)
F6—Ca1—F7vii112.73 (7)F2vi—Ca4—F7xiii127.36 (7)
F1—Ca1—F10v121.56 (7)F2—Ca4—F7xiii67.84 (6)
F5vi—Ca1—F10v155.59 (7)F7ix—Ca4—F7xiii107.84 (10)
F6—Ca1—F10v73.18 (7)F1—Ca4—F10ix144.10 (7)
F7vii—Ca1—F10v69.93 (7)F1vi—Ca4—F10ix75.15 (7)
F1—Ca1—F9iv154.42 (7)F2vi—Ca4—F10ix127.81 (7)
F5vi—Ca1—F9iv77.06 (7)F2—Ca4—F10ix71.47 (6)
F6—Ca1—F9iv109.85 (7)F7ix—Ca4—F10ix60.51 (6)
F7vii—Ca1—F9iv119.50 (7)F7xiii—Ca4—F10ix66.43 (7)
F10v—Ca1—F9iv84.00 (7)F1—Ca4—F10xiii75.15 (7)
F1—Ca1—F372.14 (9)F1vi—Ca4—F10xiii144.10 (7)
F5vi—Ca1—F366.37 (7)F2vi—Ca4—F10xiii71.47 (6)
F6—Ca1—F361.73 (7)F2—Ca4—F10xiii127.81 (7)
F7vii—Ca1—F3145.59 (7)F7ix—Ca4—F10xiii66.43 (7)
F10v—Ca1—F3130.46 (7)F7xiii—Ca4—F10xiii60.51 (6)
F9iv—Ca1—F392.47 (8)F10ix—Ca4—F10xiii81.52 (9)
F1—Ca1—F8vii116.23 (8)F1—Ca4—F363.80 (7)
F5vi—Ca1—F8vii77.68 (7)F1vi—Ca4—F379.01 (6)
F6—Ca1—F8vii153.18 (7)F2vi—Ca4—F3104.03 (7)
F7vii—Ca1—F8vii58.87 (7)F2—Ca4—F354.59 (6)
F10v—Ca1—F8vii80.17 (7)F7ix—Ca4—F3153.52 (7)
F9iv—Ca1—F8vii63.55 (6)F7xiii—Ca4—F397.08 (6)
F3—Ca1—F8vii140.74 (8)F10ix—Ca4—F3125.49 (6)
F1—Ca1—F11121.92 (8)F10xiii—Ca4—F3136.83 (6)
F5vi—Ca1—F1195.13 (7)F1—Ca4—F3vi79.01 (6)
F6—Ca1—F1157.87 (7)F1vi—Ca4—F3vi63.80 (7)
F7vii—Ca1—F11156.31 (7)F2vi—Ca4—F3vi54.59 (6)
F10v—Ca1—F1186.38 (7)F2—Ca4—F3vi104.03 (7)
F9iv—Ca1—F1155.22 (6)F7ix—Ca4—F3vi97.08 (6)
F3—Ca1—F1153.29 (7)F7xiii—Ca4—F3vi153.52 (7)
F8vii—Ca1—F11118.27 (6)F10ix—Ca4—F3vi136.83 (6)
F1viii—Ca2—F1vi154.59 (11)F10xiii—Ca4—F3vi125.49 (6)
F1viii—Ca2—F6ix122.41 (8)F3—Ca4—F3vi60.32 (8)
F1vi—Ca2—F6ix77.99 (7)Ca1—F1—Ca4127.94 (11)
F1viii—Ca2—F6x77.99 (7)Ca1—F1—Ca2vii121.63 (10)
F1vi—Ca2—F6x122.41 (8)Ca4—F1—Ca2vii109.64 (7)
F6ix—Ca2—F6x83.69 (10)Zr1—F2—Ca4126.50 (10)
F1viii—Ca2—F2xi67.95 (7)Zr1—F2—Ca2114.89 (9)
F1vi—Ca2—F2xi110.54 (6)Ca4—F2—Ca2101.62 (6)
F6ix—Ca2—F2xi71.13 (7)Zr1—F3—Ca3142.87 (12)
F6x—Ca2—F2xi114.00 (7)Zr1—F3—Ca199.48 (8)
F1viii—Ca2—F2110.54 (6)Ca3—F3—Ca1107.24 (8)
F1vi—Ca2—F267.95 (7)Zr1—F3—Ca497.99 (9)
F6ix—Ca2—F2114.00 (7)Ca3—F3—Ca4107.36 (8)
F6x—Ca2—F271.13 (7)Ca1—F3—Ca489.55 (7)
F2xi—Ca2—F2173.59 (9)Zr2iii—F4—Zr1143.70 (12)
F1viii—Ca2—F478.94 (7)Zr2iii—F4—Ca2113.76 (8)
F1vi—Ca2—F478.93 (7)Zr1—F4—Ca2102.38 (9)
F6ix—Ca2—F4156.54 (6)Zr2iii—F5—Ca1vi134.66 (9)
F6x—Ca2—F4112.50 (7)Zr2iii—F5—Ca3110.14 (8)
F2xi—Ca2—F4113.82 (7)Ca1vi—F5—Ca3114.36 (8)
F2—Ca2—F459.90 (6)Zr1—F6—Ca1111.56 (9)
F1viii—Ca2—F4xi78.93 (7)Zr1—F6—Ca2xiii125.08 (9)
F1vi—Ca2—F4xi78.94 (7)Ca1—F6—Ca2xiii120.46 (8)
F6ix—Ca2—F4xi112.50 (6)Zr1—F7—Ca1viii117.66 (9)
F6x—Ca2—F4xi156.54 (6)Zr1—F7—Ca4x111.69 (8)
F2xi—Ca2—F4xi59.90 (6)Ca1viii—F7—Ca4x110.63 (8)
F2—Ca2—F4xi113.82 (7)Zr1—F7—Ca292.24 (7)
F4—Ca2—F4xi58.49 (9)Ca1viii—F7—Ca292.03 (6)
F1viii—Ca2—F10x64.60 (6)Ca4x—F7—Ca2131.65 (8)
F1vi—Ca2—F10x138.65 (7)Zr1—F8—Ca3iii147.21 (10)
F6ix—Ca2—F10x60.87 (6)Zr1—F8—Ca1viii101.38 (9)
F6x—Ca2—F10x52.89 (6)Ca3iii—F8—Ca1viii105.84 (7)
F2xi—Ca2—F10x61.59 (5)Zr2i—F9—Ca3110.58 (8)
F2—Ca2—F10x123.90 (6)Zr2i—F9—Ca1xiv124.23 (9)
F4—Ca2—F10x142.40 (5)Ca3—F9—Ca1xiv114.33 (8)
F4xi—Ca2—F10x118.98 (5)Zr1—F10—Ca1v143.51 (9)
F1viii—Ca2—F10ix138.65 (7)Zr1—F10—Ca4x107.27 (8)
F1vi—Ca2—F10ix64.60 (6)Ca1v—F10—Ca4x106.96 (7)
F6ix—Ca2—F10ix52.89 (6)Zr1—F10—Ca2xiii98.83 (7)
F6x—Ca2—F10ix60.87 (6)Ca1v—F10—Ca2xiii97.15 (6)
F2xi—Ca2—F10ix123.90 (6)Ca4x—F10—Ca2xiii83.57 (6)
F2—Ca2—F10ix61.59 (5)Zr2—F11—Zr1161.30 (11)
F4—Ca2—F10ix118.98 (5)Zr2—F11—Ca1105.85 (7)
F4xi—Ca2—F10ix142.40 (5)Zr1—F11—Ca192.79 (8)
F10x—Ca2—F10ix85.95 (7)
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x1/2, y+1/2, z+1; (iii) x+3/2, y+1/2, z+1; (iv) x1/2, y1/2, z+1; (v) x+1, y, z; (vi) x+2, y, z; (vii) x, y1, z; (viii) x, y+1, z; (ix) x+1/2, y+1/2, z+2; (x) x+3/2, y+1/2, z+2; (xi) x+2, y+1, z; (xii) x+1/2, y+1/2, z+1; (xiii) x+3/2, y1/2, z+2; (xiv) x+1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaCa5Zr3F22
Mr892.06
Crystal system, space groupOrthorhombic, P21212
Temperature (K)296
a, b, c (Å)9.9844 (3), 7.4059 (2), 9.9046 (3)
V3)732.38 (4)
Z2
Radiation typeMo Kα
µ (mm1)4.09
Crystal size (mm)0.19 × 0.06 × 0.03
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.587, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
7993, 3466, 2909
Rint0.037
(sin θ/λ)max1)0.827
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.058, 0.99
No. of reflections3466
No. of parameters139
Δρmax, Δρmin (e Å3)0.88, 0.77
Absolute structureFlack (1983), 1462 Friedel pairs
Absolute structure parameter0.0 (4)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CaRine (Boudias & Monceau, 1998) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

References

First citationBabel, D. & Tressaud, A. (1985). Inorganic Solid Fluorides, edited by P. Hagenmuller, pp. 77–203. New York: Academic Press Inc.  Google Scholar
First citationBoudias, C. & Monceau, D. (1998). CaRine. CaRine Crystallography, DIVERGENT SA, Compiègne, France.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKotsar, M. L., Karetnikov, G. S., Khaustov, S. V., Seleznev, V. P., Sudarikov, B. N. & Gromov, B. V. (1973). Mendeleeva 75, 49–51.  CAS Google Scholar
First citationLaval, J. P., Mikou, A., Frit, B., Roult, G. & Pannetier, J. (1987). Rev. Chim. Mineral. 24, 165–182.  CAS Google Scholar
First citationLe Bail, A. (1996). Eur. J. Solid State Inorg. Chem. 33, 1211–1222.  CAS Google Scholar
First citationL'Helgoualch, H., Poulain, M., Rannou, J. P. & Lucas, J. (1971). C. R. Acad. Sci. Ser. C, 272, 1321–1324.  CAS Google Scholar
First citationRatnikov, I. D., Korenev, Yu. M., Sobolev, B. P. & Novoselova, A. V. (1977). Khimiya, 18, 245.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds