inorganic compounds
Ca5Zr3F22
aClermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France and CNRS, UMR 6296, ICCF, BP 80026, 63171 Aubière, France
*Correspondence e-mail: daniel.avignant@univ-bpclermont.fr
Single crystals of Ca5Zr3F22, pentacalcium trizirconium docosafluoride, were obtained unexpectedly by solid-state reaction between CaF2 and ZrF4 in the presence of AgF. The structure of the title compound is isotypic with that of Sr5Zr3F22 and can be described as being composed of layers with composition [Zr3F20]8− made up from two different [ZrF8]4− square antiprisms (one with 2) by corner-sharing. The layers extending parallel to the (001) plane are further linked by Ca2+ cations, forming a three-dimensional network. Amongst the four crystallographically different Ca2+ ions, three are located on twofold rotation axes. The Ca2+ ions exhibit coordination numbers ranging from 8 to 12, depending on the cut off, with very distorted fluorine environments. Two of the Ca2+ ions occupy interstices between the layers whereas the other two are located in void spaces of the [Zr3F20]8− layer and alternate with the two Zr atoms along [010]. The crystal under investigation was an inversion twin.
Related literature
For the isotypic Sr analogue, see: Le Bail (1996). The crystal chemistry of fluorides has been reviewed by Babel & Tressaud (1985). For phase relationships in the CaF2–ZrF4 system, see: L'Helgoualch et al. (1971); Kotsar et al. (1973); Ratnikov et al. (1977); Laval et al. (1987). For bond-valence analysis, see: Brese & O'Keeffe (1991).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CaRine (Boudias & Monceau, 1998) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536812008495/wm2595sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812008495/wm2595Isup2.hkl
Single crystals of Ca5Zr3F22 were unexpectedly obtained from an equimolar mixture of AgF, CaF2 and ZrF4 heated at 873 K in a sealed platinum tube during the study of the phase diagram of the ternary system AgF–CaF2–ZrF4. After heating at this temperature for 24 h, the sample was cooled to room temperature at the rate of 5 K.h-1 for the first 24 h and then by switching the power off. Small platelet like crystals of Ca5Zr3F22 could have been extracted from the batch.
Both AgF and CaF2 were commercial products whereas ZrF4 was prepared by direct fluorination of ZrO2 under pure fluorine gas flow at 873 K with intermediate grindings. CaF2 was also heated at 873 K overnight under fluorine gas flow prior to use.
The highest residual peak in the final difference Fourier map was located 0.04 Å from atom Zr2 and the deepest hole was located 1.05 Å from atom F9.
Despite several reports related to investigations of the pseudo-binary system CaF2–ZrF4 (L'Helgoualch et al. 1971; Kotsar et al. 1973; Ratnikov et al. 1977; Babel & Tressaud, 1985; Laval et al. 1987) the title compound has never been mentioned previously. Therefore the determination of its
was of prime importance to complete a thorough examination of the phase diagram of this system.The orthorhombic structure of the title compound is isotypic with that of Sr5Zr3F22 reported by Le Bail (1996). As with this latter, the structure of Ca5Zr3F22 has also been determined from an inversion twinned crystal although the crystals were grown in very different ways. Figure 1 displays the polyhedral string in Ca5Zr3F22. Both Zr1 and Zr2 cations are 8-coordinated by the fluoride ions, in distorted square antiprismatic environments. The square antiprism surrounding Zr2 (site symmetry 2) with Zr—F distances ranging from 2.0771 (19) Å to 2.148 (2) Å is less distorted than that surrounding Zr1 (site symmetry 1) where Zr—F distances range from 2.062 (2) to 2.2154 (19) Å. Each Zr2 square antiprism is connected by sharing corners to four Zr1 square antiprisms as shown in Fig. 2. The
is built up from layers of corner-sharing [ZrF8]4- square antiprisms. The layers extending parallel to (001) are further held together by Ca2+ cations to form the three-dimensional network (Fig. 3). The calcium ions are divided into four crystallographically different atoms exhibiting coordination numbers from 8 to 12, depending on the cut off, with very distorted fluorine environments. The bond-valence analysis of the title structure carried out using Brese & O'Keeffe's Rij parameters for solids (Brese & O'Keeffe, 1991) is displayed in Figure 4. Large deviations from the ideal value 2 have been obtained for both Ca1 and Ca2. For this latter the value of 1.730 valence units (v.u.) is obtained with Ca—F distances up to 2.661 Å considered as relevant for the first coordination sphere whereas the value of 1.843 v.u. is reached with four additional interactions involving distances up to 3.109 Å. Despite these four additional contributions the formal charge for Ca2 still shows a deficit. For comparison, bond-valence calculations have also been performed for the homologuous Sr5Zr3F22 from bond lengths reported by Le Bail (1996). Significant deviations (see Fig. 4) are also observed for the alkaline earth cations but the formal charges are in excess in this case. This may be most likely related to the size difference of the ionic radii of Ca2+ and Sr2+. Ca2 and Ca4 occupy interstices between the layers whereas Ca3 and Ca1 are located in void spaces of the [Zr3F20]8- layer and alternate with Zr2 and Zr1, respectively, along [010]. Thus Ca3 and Ca4 also appear as being located in channels parallel to [001].For the isotypic Sr analogue, see: Le Bail (1996). The crystal chemistry of fluorides has been reviewed by Babel & Tressaud (1985). For phase relationships in the CaF2–ZrF4 system, see: L'Helgoualch et al. (1971); Kotsar et al. (1973); Ratnikov et al. (1977); Laval et al. (1987). For bond-valence analysis, see: Brese & O'Keeffe (1991).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CaRine (Boudias & Monceau, 1998) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Ca5Zr3F22 | F(000) = 836 |
Mr = 892.06 | Dx = 4.045 Mg m−3 |
Orthorhombic, P21212 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2 2ab | Cell parameters from 1507 reflections |
a = 9.9844 (3) Å | θ = 4.0–35.8° |
b = 7.4059 (2) Å | µ = 4.09 mm−1 |
c = 9.9046 (3) Å | T = 296 K |
V = 732.38 (4) Å3 | Platelet, colourless |
Z = 2 | 0.19 × 0.06 × 0.03 mm |
Bruker APEXII CCD diffractometer | 3466 independent reflections |
Radiation source: fine-focus sealed tube | 2909 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 36.0°, θmin = 3.4° |
ω and φ–scans | h = −16→16 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −12→6 |
Tmin = 0.587, Tmax = 0.747 | l = −16→12 |
7993 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0112P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.058 | (Δ/σ)max = 0.001 |
S = 0.99 | Δρmax = 0.88 e Å−3 |
3466 reflections | Δρmin = −0.77 e Å−3 |
139 parameters | Absolute structure: Flack (1983), 1462 Friedel pairs |
0 restraints | Absolute structure parameter: 0.0 (4) |
Ca5Zr3F22 | V = 732.38 (4) Å3 |
Mr = 892.06 | Z = 2 |
Orthorhombic, P21212 | Mo Kα radiation |
a = 9.9844 (3) Å | µ = 4.09 mm−1 |
b = 7.4059 (2) Å | T = 296 K |
c = 9.9046 (3) Å | 0.19 × 0.06 × 0.03 mm |
Bruker APEXII CCD diffractometer | 3466 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2909 reflections with I > 2σ(I) |
Tmin = 0.587, Tmax = 0.747 | Rint = 0.037 |
7993 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.058 | Δρmax = 0.88 e Å−3 |
S = 0.99 | Δρmin = −0.77 e Å−3 |
3466 reflections | Absolute structure: Flack (1983), 1462 Friedel pairs |
139 parameters | Absolute structure parameter: 0.0 (4) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zr1 | 0.71210 (3) | 0.25190 (5) | 0.77653 (3) | 0.00516 (5) | |
Zr2 | 0.5000 | 0.0000 | 0.46134 (5) | 0.00610 (9) | |
Ca1 | 0.71132 (6) | −0.23978 (10) | 0.75189 (6) | 0.00980 (11) | |
Ca2 | 1.0000 | 0.5000 | 0.94489 (11) | 0.01098 (18) | |
Ca3 | 1.0000 | 0.0000 | 0.53761 (10) | 0.00549 (16) | |
Ca4 | 1.0000 | 0.0000 | 0.97774 (11) | 0.01109 (19) | |
F1 | 0.88717 (17) | −0.2405 (3) | 0.89417 (19) | 0.0127 (4) | |
F2 | 0.85135 (16) | 0.2410 (3) | 0.93117 (18) | 0.0108 (3) | |
F3 | 0.8514 (2) | 0.0603 (2) | 0.7085 (3) | 0.0170 (5) | |
F4 | 0.88835 (19) | 0.4117 (2) | 0.7118 (3) | 0.0126 (4) | |
F5 | 1.10993 (18) | 0.2790 (3) | 0.6049 (2) | 0.0128 (4) | |
F6 | 0.65761 (18) | 0.0167 (3) | 0.8771 (2) | 0.0113 (4) | |
F7 | 0.69569 (18) | 0.4936 (3) | 0.87846 (19) | 0.0114 (4) | |
F8 | 0.6504 (2) | 0.4338 (3) | 0.6301 (2) | 0.0156 (5) | |
F9 | 1.10631 (18) | −0.2758 (3) | 0.4672 (2) | 0.0131 (4) | |
F10 | 0.51040 (18) | 0.2795 (2) | 0.83055 (19) | 0.0139 (4) | |
F11 | 0.6171 (2) | 0.0833 (3) | 0.6283 (3) | 0.0177 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zr1 | 0.00491 (11) | 0.00437 (10) | 0.00621 (12) | 0.00005 (14) | −0.00025 (10) | 0.00010 (14) |
Zr2 | 0.0070 (2) | 0.00559 (19) | 0.0057 (2) | −0.0005 (2) | 0.000 | 0.000 |
Ca1 | 0.0079 (2) | 0.0118 (3) | 0.0097 (3) | −0.0004 (3) | 0.0000 (2) | 0.0002 (3) |
Ca2 | 0.0104 (4) | 0.0085 (4) | 0.0139 (5) | 0.0006 (4) | 0.000 | 0.000 |
Ca3 | 0.0047 (4) | 0.0059 (4) | 0.0059 (4) | 0.0005 (5) | 0.000 | 0.000 |
Ca4 | 0.0097 (4) | 0.0065 (4) | 0.0170 (5) | −0.0010 (4) | 0.000 | 0.000 |
F1 | 0.0108 (8) | 0.0113 (8) | 0.0161 (9) | −0.0008 (9) | −0.0033 (7) | −0.0009 (10) |
F2 | 0.0100 (8) | 0.0125 (8) | 0.0098 (8) | −0.0027 (10) | −0.0044 (6) | 0.0024 (10) |
F3 | 0.0194 (11) | 0.0113 (9) | 0.0203 (13) | 0.0026 (8) | 0.0086 (10) | −0.0019 (9) |
F4 | 0.0118 (10) | 0.0128 (9) | 0.0133 (11) | −0.0041 (7) | 0.0021 (9) | 0.0004 (8) |
F5 | 0.0103 (8) | 0.0159 (11) | 0.0122 (10) | 0.0038 (7) | −0.0044 (7) | −0.0006 (8) |
F6 | 0.0129 (9) | 0.0090 (9) | 0.0120 (10) | −0.0019 (8) | 0.0002 (7) | −0.0007 (8) |
F7 | 0.0129 (9) | 0.0084 (8) | 0.0130 (10) | −0.0016 (9) | −0.0016 (8) | −0.0023 (9) |
F8 | 0.0202 (12) | 0.0145 (10) | 0.0120 (12) | 0.0008 (8) | −0.0061 (9) | 0.0047 (8) |
F9 | 0.0135 (9) | 0.0108 (10) | 0.0151 (10) | −0.0034 (8) | 0.0041 (7) | 0.0002 (8) |
F10 | 0.0077 (8) | 0.0177 (10) | 0.0161 (10) | 0.0009 (8) | 0.0012 (8) | −0.0044 (7) |
F11 | 0.0233 (12) | 0.0146 (10) | 0.0151 (13) | −0.0028 (9) | −0.0065 (10) | −0.0028 (9) |
Zr1—F7 | 2.062 (2) | Ca2—F6x | 2.366 (2) |
Zr1—F2 | 2.0701 (16) | Ca2—F2xi | 2.429 (2) |
Zr1—F8 | 2.073 (2) | Ca2—F2 | 2.429 (2) |
Zr1—F6 | 2.079 (2) | Ca2—F4 | 2.645 (3) |
Zr1—F10 | 2.0937 (18) | Ca2—F4xi | 2.645 (3) |
Zr1—F3 | 2.098 (2) | Ca2—F10x | 3.040 (2) |
Zr1—F11 | 2.148 (2) | Ca2—F10ix | 3.040 (2) |
Zr1—F4 | 2.2154 (19) | Ca2—F7 | 3.1091 (18) |
Zr2—F5i | 2.0771 (19) | Ca2—F7xi | 3.1091 (18) |
Zr2—F5ii | 2.0771 (19) | Ca3—F8i | 2.292 (2) |
Zr2—F9iii | 2.0939 (18) | Ca3—F8xii | 2.292 (2) |
Zr2—F9iv | 2.0939 (18) | Ca3—F3vi | 2.295 (2) |
Zr2—F11 | 2.117 (2) | Ca3—F3 | 2.295 (2) |
Zr2—F11v | 2.117 (2) | Ca3—F9 | 2.4055 (19) |
Zr2—F4ii | 2.148 (2) | Ca3—F9vi | 2.4055 (19) |
Zr2—F4i | 2.148 (2) | Ca3—F5 | 2.4327 (19) |
Ca1—F1 | 2.2514 (18) | Ca3—F5vi | 2.4327 (19) |
Ca1—F5vi | 2.3214 (19) | Ca4—F1 | 2.264 (2) |
Ca1—F6 | 2.331 (2) | Ca4—F1vi | 2.264 (2) |
Ca1—F7vii | 2.344 (2) | Ca4—F2vi | 2.367 (2) |
Ca1—F10v | 2.3651 (19) | Ca4—F2 | 2.367 (2) |
Ca1—F9iv | 2.412 (2) | Ca4—F7ix | 2.418 (2) |
Ca1—F3 | 2.661 (2) | Ca4—F7xiii | 2.418 (2) |
Ca1—F8vii | 2.769 (2) | Ca4—F10ix | 2.5067 (19) |
Ca1—F11 | 2.848 (2) | Ca4—F10xiii | 2.5067 (19) |
Ca2—F1viii | 2.283 (2) | Ca4—F3 | 3.085 (3) |
Ca2—F1vi | 2.283 (2) | Ca4—F3vi | 3.085 (3) |
Ca2—F6ix | 2.366 (2) | ||
F7—Zr1—F2 | 74.04 (8) | F1viii—Ca2—F7 | 58.94 (6) |
F7—Zr1—F8 | 75.80 (8) | F1vi—Ca2—F7 | 115.01 (6) |
F2—Zr1—F8 | 137.96 (9) | F6ix—Ca2—F7 | 143.78 (7) |
F7—Zr1—F6 | 118.16 (7) | F6x—Ca2—F7 | 60.56 (6) |
F2—Zr1—F6 | 77.79 (8) | F2xi—Ca2—F7 | 126.67 (6) |
F8—Zr1—F6 | 143.31 (8) | F2—Ca2—F7 | 51.62 (6) |
F7—Zr1—F10 | 73.37 (7) | F4—Ca2—F7 | 53.12 (6) |
F2—Zr1—F10 | 117.44 (7) | F4xi—Ca2—F7 | 103.35 (6) |
F8—Zr1—F10 | 80.18 (8) | F10x—Ca2—F7 | 97.57 (5) |
F6—Zr1—F10 | 73.00 (7) | F10ix—Ca2—F7 | 100.25 (5) |
F7—Zr1—F3 | 142.87 (8) | F1viii—Ca2—F7xi | 115.01 (6) |
F2—Zr1—F3 | 76.47 (9) | F1vi—Ca2—F7xi | 58.94 (6) |
F8—Zr1—F3 | 114.32 (10) | F6ix—Ca2—F7xi | 60.56 (6) |
F6—Zr1—F3 | 76.16 (8) | F6x—Ca2—F7xi | 143.78 (7) |
F10—Zr1—F3 | 141.78 (8) | F2xi—Ca2—F7xi | 51.62 (6) |
F7—Zr1—F11 | 143.54 (8) | F2—Ca2—F7xi | 126.67 (6) |
F2—Zr1—F11 | 141.23 (9) | F4—Ca2—F7xi | 103.35 (6) |
F8—Zr1—F11 | 76.60 (8) | F4xi—Ca2—F7xi | 53.12 (6) |
F6—Zr1—F11 | 74.05 (8) | F10x—Ca2—F7xi | 100.25 (5) |
F10—Zr1—F11 | 78.86 (8) | F10ix—Ca2—F7xi | 97.57 (5) |
F3—Zr1—F11 | 71.33 (9) | F7—Ca2—F7xi | 155.57 (8) |
F7—Zr1—F4 | 74.98 (8) | F8i—Ca3—F8xii | 87.10 (12) |
F2—Zr1—F4 | 72.62 (8) | F8i—Ca3—F3vi | 156.41 (7) |
F8—Zr1—F4 | 71.74 (8) | F8xii—Ca3—F3vi | 98.78 (8) |
F6—Zr1—F4 | 142.56 (8) | F8i—Ca3—F3 | 98.78 (8) |
F10—Zr1—F4 | 141.80 (7) | F8xii—Ca3—F3 | 156.41 (7) |
F3—Zr1—F4 | 75.04 (7) | F3vi—Ca3—F3 | 84.96 (13) |
F11—Zr1—F4 | 117.61 (9) | F8i—Ca3—F9 | 84.10 (7) |
F5i—Zr2—F5ii | 143.17 (11) | F8xii—Ca3—F9 | 71.48 (7) |
F5i—Zr2—F9iii | 117.63 (7) | F3vi—Ca3—F9 | 76.31 (7) |
F5ii—Zr2—F9iii | 75.52 (7) | F3—Ca3—F9 | 131.65 (7) |
F5i—Zr2—F9iv | 75.52 (7) | F8i—Ca3—F9vi | 71.48 (7) |
F5ii—Zr2—F9iv | 117.63 (7) | F8xii—Ca3—F9vi | 84.10 (7) |
F9iii—Zr2—F9iv | 140.46 (11) | F3vi—Ca3—F9vi | 131.65 (7) |
F5i—Zr2—F11 | 140.20 (8) | F3—Ca3—F9vi | 76.31 (7) |
F5ii—Zr2—F11 | 74.04 (8) | F9—Ca3—F9vi | 146.27 (10) |
F9iii—Zr2—F11 | 77.57 (8) | F8i—Ca3—F5 | 132.51 (7) |
F9iv—Zr2—F11 | 71.76 (8) | F8xii—Ca3—F5 | 73.82 (7) |
F5i—Zr2—F11v | 74.04 (8) | F3vi—Ca3—F5 | 70.82 (6) |
F5ii—Zr2—F11v | 140.20 (8) | F3—Ca3—F5 | 85.66 (7) |
F9iii—Zr2—F11v | 71.76 (8) | F9—Ca3—F5 | 126.99 (6) |
F9iv—Zr2—F11v | 77.57 (8) | F9vi—Ca3—F5 | 63.72 (6) |
F11—Zr2—F11v | 77.30 (13) | F8i—Ca3—F5vi | 73.82 (7) |
F5i—Zr2—F4ii | 73.35 (7) | F8xii—Ca3—F5vi | 132.51 (7) |
F5ii—Zr2—F4ii | 77.41 (8) | F3vi—Ca3—F5vi | 85.66 (7) |
F9iii—Zr2—F4ii | 76.44 (8) | F3—Ca3—F5vi | 70.82 (6) |
F9iv—Zr2—F4ii | 140.78 (7) | F9—Ca3—F5vi | 63.72 (6) |
F11—Zr2—F4ii | 145.25 (7) | F9vi—Ca3—F5vi | 126.99 (6) |
F11v—Zr2—F4ii | 115.20 (9) | F5—Ca3—F5vi | 148.20 (10) |
F5i—Zr2—F4i | 77.41 (8) | F1—Ca4—F1vi | 137.12 (11) |
F5ii—Zr2—F4i | 73.35 (7) | F1—Ca4—F2vi | 69.36 (7) |
F9iii—Zr2—F4i | 140.78 (7) | F1vi—Ca4—F2vi | 102.12 (7) |
F9iv—Zr2—F4i | 76.44 (8) | F1—Ca4—F2 | 102.12 (7) |
F11—Zr2—F4i | 115.20 (9) | F1vi—Ca4—F2 | 69.36 (7) |
F11v—Zr2—F4i | 145.25 (7) | F2vi—Ca4—F2 | 157.52 (10) |
F4ii—Zr2—F4i | 73.99 (11) | F1—Ca4—F7ix | 129.24 (8) |
F1—Ca1—F5vi | 78.04 (7) | F1vi—Ca4—F7ix | 78.34 (7) |
F1—Ca1—F6 | 81.27 (8) | F2vi—Ca4—F7ix | 67.84 (6) |
F5vi—Ca1—F6 | 127.77 (7) | F2—Ca4—F7ix | 127.36 (7) |
F1—Ca1—F7vii | 73.44 (8) | F1—Ca4—F7xiii | 78.34 (7) |
F5vi—Ca1—F7vii | 106.33 (7) | F1vi—Ca4—F7xiii | 129.24 (8) |
F6—Ca1—F7vii | 112.73 (7) | F2vi—Ca4—F7xiii | 127.36 (7) |
F1—Ca1—F10v | 121.56 (7) | F2—Ca4—F7xiii | 67.84 (6) |
F5vi—Ca1—F10v | 155.59 (7) | F7ix—Ca4—F7xiii | 107.84 (10) |
F6—Ca1—F10v | 73.18 (7) | F1—Ca4—F10ix | 144.10 (7) |
F7vii—Ca1—F10v | 69.93 (7) | F1vi—Ca4—F10ix | 75.15 (7) |
F1—Ca1—F9iv | 154.42 (7) | F2vi—Ca4—F10ix | 127.81 (7) |
F5vi—Ca1—F9iv | 77.06 (7) | F2—Ca4—F10ix | 71.47 (6) |
F6—Ca1—F9iv | 109.85 (7) | F7ix—Ca4—F10ix | 60.51 (6) |
F7vii—Ca1—F9iv | 119.50 (7) | F7xiii—Ca4—F10ix | 66.43 (7) |
F10v—Ca1—F9iv | 84.00 (7) | F1—Ca4—F10xiii | 75.15 (7) |
F1—Ca1—F3 | 72.14 (9) | F1vi—Ca4—F10xiii | 144.10 (7) |
F5vi—Ca1—F3 | 66.37 (7) | F2vi—Ca4—F10xiii | 71.47 (6) |
F6—Ca1—F3 | 61.73 (7) | F2—Ca4—F10xiii | 127.81 (7) |
F7vii—Ca1—F3 | 145.59 (7) | F7ix—Ca4—F10xiii | 66.43 (7) |
F10v—Ca1—F3 | 130.46 (7) | F7xiii—Ca4—F10xiii | 60.51 (6) |
F9iv—Ca1—F3 | 92.47 (8) | F10ix—Ca4—F10xiii | 81.52 (9) |
F1—Ca1—F8vii | 116.23 (8) | F1—Ca4—F3 | 63.80 (7) |
F5vi—Ca1—F8vii | 77.68 (7) | F1vi—Ca4—F3 | 79.01 (6) |
F6—Ca1—F8vii | 153.18 (7) | F2vi—Ca4—F3 | 104.03 (7) |
F7vii—Ca1—F8vii | 58.87 (7) | F2—Ca4—F3 | 54.59 (6) |
F10v—Ca1—F8vii | 80.17 (7) | F7ix—Ca4—F3 | 153.52 (7) |
F9iv—Ca1—F8vii | 63.55 (6) | F7xiii—Ca4—F3 | 97.08 (6) |
F3—Ca1—F8vii | 140.74 (8) | F10ix—Ca4—F3 | 125.49 (6) |
F1—Ca1—F11 | 121.92 (8) | F10xiii—Ca4—F3 | 136.83 (6) |
F5vi—Ca1—F11 | 95.13 (7) | F1—Ca4—F3vi | 79.01 (6) |
F6—Ca1—F11 | 57.87 (7) | F1vi—Ca4—F3vi | 63.80 (7) |
F7vii—Ca1—F11 | 156.31 (7) | F2vi—Ca4—F3vi | 54.59 (6) |
F10v—Ca1—F11 | 86.38 (7) | F2—Ca4—F3vi | 104.03 (7) |
F9iv—Ca1—F11 | 55.22 (6) | F7ix—Ca4—F3vi | 97.08 (6) |
F3—Ca1—F11 | 53.29 (7) | F7xiii—Ca4—F3vi | 153.52 (7) |
F8vii—Ca1—F11 | 118.27 (6) | F10ix—Ca4—F3vi | 136.83 (6) |
F1viii—Ca2—F1vi | 154.59 (11) | F10xiii—Ca4—F3vi | 125.49 (6) |
F1viii—Ca2—F6ix | 122.41 (8) | F3—Ca4—F3vi | 60.32 (8) |
F1vi—Ca2—F6ix | 77.99 (7) | Ca1—F1—Ca4 | 127.94 (11) |
F1viii—Ca2—F6x | 77.99 (7) | Ca1—F1—Ca2vii | 121.63 (10) |
F1vi—Ca2—F6x | 122.41 (8) | Ca4—F1—Ca2vii | 109.64 (7) |
F6ix—Ca2—F6x | 83.69 (10) | Zr1—F2—Ca4 | 126.50 (10) |
F1viii—Ca2—F2xi | 67.95 (7) | Zr1—F2—Ca2 | 114.89 (9) |
F1vi—Ca2—F2xi | 110.54 (6) | Ca4—F2—Ca2 | 101.62 (6) |
F6ix—Ca2—F2xi | 71.13 (7) | Zr1—F3—Ca3 | 142.87 (12) |
F6x—Ca2—F2xi | 114.00 (7) | Zr1—F3—Ca1 | 99.48 (8) |
F1viii—Ca2—F2 | 110.54 (6) | Ca3—F3—Ca1 | 107.24 (8) |
F1vi—Ca2—F2 | 67.95 (7) | Zr1—F3—Ca4 | 97.99 (9) |
F6ix—Ca2—F2 | 114.00 (7) | Ca3—F3—Ca4 | 107.36 (8) |
F6x—Ca2—F2 | 71.13 (7) | Ca1—F3—Ca4 | 89.55 (7) |
F2xi—Ca2—F2 | 173.59 (9) | Zr2iii—F4—Zr1 | 143.70 (12) |
F1viii—Ca2—F4 | 78.94 (7) | Zr2iii—F4—Ca2 | 113.76 (8) |
F1vi—Ca2—F4 | 78.93 (7) | Zr1—F4—Ca2 | 102.38 (9) |
F6ix—Ca2—F4 | 156.54 (6) | Zr2iii—F5—Ca1vi | 134.66 (9) |
F6x—Ca2—F4 | 112.50 (7) | Zr2iii—F5—Ca3 | 110.14 (8) |
F2xi—Ca2—F4 | 113.82 (7) | Ca1vi—F5—Ca3 | 114.36 (8) |
F2—Ca2—F4 | 59.90 (6) | Zr1—F6—Ca1 | 111.56 (9) |
F1viii—Ca2—F4xi | 78.93 (7) | Zr1—F6—Ca2xiii | 125.08 (9) |
F1vi—Ca2—F4xi | 78.94 (7) | Ca1—F6—Ca2xiii | 120.46 (8) |
F6ix—Ca2—F4xi | 112.50 (6) | Zr1—F7—Ca1viii | 117.66 (9) |
F6x—Ca2—F4xi | 156.54 (6) | Zr1—F7—Ca4x | 111.69 (8) |
F2xi—Ca2—F4xi | 59.90 (6) | Ca1viii—F7—Ca4x | 110.63 (8) |
F2—Ca2—F4xi | 113.82 (7) | Zr1—F7—Ca2 | 92.24 (7) |
F4—Ca2—F4xi | 58.49 (9) | Ca1viii—F7—Ca2 | 92.03 (6) |
F1viii—Ca2—F10x | 64.60 (6) | Ca4x—F7—Ca2 | 131.65 (8) |
F1vi—Ca2—F10x | 138.65 (7) | Zr1—F8—Ca3iii | 147.21 (10) |
F6ix—Ca2—F10x | 60.87 (6) | Zr1—F8—Ca1viii | 101.38 (9) |
F6x—Ca2—F10x | 52.89 (6) | Ca3iii—F8—Ca1viii | 105.84 (7) |
F2xi—Ca2—F10x | 61.59 (5) | Zr2i—F9—Ca3 | 110.58 (8) |
F2—Ca2—F10x | 123.90 (6) | Zr2i—F9—Ca1xiv | 124.23 (9) |
F4—Ca2—F10x | 142.40 (5) | Ca3—F9—Ca1xiv | 114.33 (8) |
F4xi—Ca2—F10x | 118.98 (5) | Zr1—F10—Ca1v | 143.51 (9) |
F1viii—Ca2—F10ix | 138.65 (7) | Zr1—F10—Ca4x | 107.27 (8) |
F1vi—Ca2—F10ix | 64.60 (6) | Ca1v—F10—Ca4x | 106.96 (7) |
F6ix—Ca2—F10ix | 52.89 (6) | Zr1—F10—Ca2xiii | 98.83 (7) |
F6x—Ca2—F10ix | 60.87 (6) | Ca1v—F10—Ca2xiii | 97.15 (6) |
F2xi—Ca2—F10ix | 123.90 (6) | Ca4x—F10—Ca2xiii | 83.57 (6) |
F2—Ca2—F10ix | 61.59 (5) | Zr2—F11—Zr1 | 161.30 (11) |
F4—Ca2—F10ix | 118.98 (5) | Zr2—F11—Ca1 | 105.85 (7) |
F4xi—Ca2—F10ix | 142.40 (5) | Zr1—F11—Ca1 | 92.79 (8) |
F10x—Ca2—F10ix | 85.95 (7) |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1; (ii) x−1/2, −y+1/2, −z+1; (iii) −x+3/2, y+1/2, −z+1; (iv) x−1/2, −y−1/2, −z+1; (v) −x+1, −y, z; (vi) −x+2, −y, z; (vii) x, y−1, z; (viii) x, y+1, z; (ix) x+1/2, −y+1/2, −z+2; (x) −x+3/2, y+1/2, −z+2; (xi) −x+2, −y+1, z; (xii) x+1/2, −y+1/2, −z+1; (xiii) −x+3/2, y−1/2, −z+2; (xiv) x+1/2, −y−1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | Ca5Zr3F22 |
Mr | 892.06 |
Crystal system, space group | Orthorhombic, P21212 |
Temperature (K) | 296 |
a, b, c (Å) | 9.9844 (3), 7.4059 (2), 9.9046 (3) |
V (Å3) | 732.38 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 4.09 |
Crystal size (mm) | 0.19 × 0.06 × 0.03 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.587, 0.747 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7993, 3466, 2909 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.827 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.058, 0.99 |
No. of reflections | 3466 |
No. of parameters | 139 |
Δρmax, Δρmin (e Å−3) | 0.88, −0.77 |
Absolute structure | Flack (1983), 1462 Friedel pairs |
Absolute structure parameter | 0.0 (4) |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CaRine (Boudias & Monceau, 1998) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).
References
Babel, D. & Tressaud, A. (1985). Inorganic Solid Fluorides, edited by P. Hagenmuller, pp. 77–203. New York: Academic Press Inc. Google Scholar
Boudias, C. & Monceau, D. (1998). CaRine. CaRine Crystallography, DIVERGENT SA, Compiègne, France. Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kotsar, M. L., Karetnikov, G. S., Khaustov, S. V., Seleznev, V. P., Sudarikov, B. N. & Gromov, B. V. (1973). Mendeleeva 75, 49–51. CAS Google Scholar
Laval, J. P., Mikou, A., Frit, B., Roult, G. & Pannetier, J. (1987). Rev. Chim. Mineral. 24, 165–182. CAS Google Scholar
Le Bail, A. (1996). Eur. J. Solid State Inorg. Chem. 33, 1211–1222. CAS Google Scholar
L'Helgoualch, H., Poulain, M., Rannou, J. P. & Lucas, J. (1971). C. R. Acad. Sci. Ser. C, 272, 1321–1324. CAS Google Scholar
Ratnikov, I. D., Korenev, Yu. M., Sobolev, B. P. & Novoselova, A. V. (1977). Khimiya, 18, 245. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Despite several reports related to investigations of the pseudo-binary system CaF2–ZrF4 (L'Helgoualch et al. 1971; Kotsar et al. 1973; Ratnikov et al. 1977; Babel & Tressaud, 1985; Laval et al. 1987) the title compound has never been mentioned previously. Therefore the determination of its crystal structure was of prime importance to complete a thorough examination of the phase diagram of this system.
The orthorhombic structure of the title compound is isotypic with that of Sr5Zr3F22 reported by Le Bail (1996). As with this latter, the structure of Ca5Zr3F22 has also been determined from an inversion twinned crystal although the crystals were grown in very different ways. Figure 1 displays the polyhedral string in Ca5Zr3F22. Both Zr1 and Zr2 cations are 8-coordinated by the fluoride ions, in distorted square antiprismatic environments. The square antiprism surrounding Zr2 (site symmetry 2) with Zr—F distances ranging from 2.0771 (19) Å to 2.148 (2) Å is less distorted than that surrounding Zr1 (site symmetry 1) where Zr—F distances range from 2.062 (2) to 2.2154 (19) Å. Each Zr2 square antiprism is connected by sharing corners to four Zr1 square antiprisms as shown in Fig. 2. The crystal structure is built up from layers of corner-sharing [ZrF8]4- square antiprisms. The layers extending parallel to (001) are further held together by Ca2+ cations to form the three-dimensional network (Fig. 3). The calcium ions are divided into four crystallographically different atoms exhibiting coordination numbers from 8 to 12, depending on the cut off, with very distorted fluorine environments. The bond-valence analysis of the title structure carried out using Brese & O'Keeffe's Rij parameters for solids (Brese & O'Keeffe, 1991) is displayed in Figure 4. Large deviations from the ideal value 2 have been obtained for both Ca1 and Ca2. For this latter the value of 1.730 valence units (v.u.) is obtained with Ca—F distances up to 2.661 Å considered as relevant for the first coordination sphere whereas the value of 1.843 v.u. is reached with four additional interactions involving distances up to 3.109 Å. Despite these four additional contributions the formal charge for Ca2 still shows a deficit. For comparison, bond-valence calculations have also been performed for the homologuous Sr5Zr3F22 from bond lengths reported by Le Bail (1996). Significant deviations (see Fig. 4) are also observed for the alkaline earth cations but the formal charges are in excess in this case. This may be most likely related to the size difference of the ionic radii of Ca2+ and Sr2+. Ca2 and Ca4 occupy interstices between the layers whereas Ca3 and Ca1 are located in void spaces of the [Zr3F20]8- layer and alternate with Zr2 and Zr1, respectively, along [010]. Thus Ca3 and Ca4 also appear as being located in channels parallel to [001].