metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m402-m403

catena-Poly[[[tri­aqua­cobalt(II)]-μ-10-methyl­pheno­thia­zine-3,7-di­carboxyl­ato] monohydrate]

aXinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter, College of Chemistry and Biological Sciences, Yili Normal University, Yili, Xinjiang 835000, People's Republic of China, bState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China, and cSchool of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: wwzhang@nju.edu.cn

(Received 24 February 2012; accepted 5 March 2012; online 10 March 2012)

The polymeric title compound, {[Co(C15H9NO4S)(H2O)3]·H2O}n, consists of chains along [001] made up from Co2+ ions bridged by 10-methyl­phenothia­zine-3,7-dicarboxyl­ate anions. The Co2+ ion, coordinated by three O atoms from two different carboxyl­ate groups and three water mol­ecules, displays a distorted octa­hedral environment. In the crystal, ππ inter­chain inter­actions, with centroid–centroid distances of 3.656 (2) and 3.669 (2) Å between the benzene rings of the ligands, assemble the chains into sheets parallel to (100). O—H⋯O hydrogen-bonding inter­actions between the coordinating water mol­ecules and carboxyl­ate O atoms link the sheets into a three-dimensional network.

Related literature

For background to phenothia­zine as a pharmacophore, see: Albery et al. (1979[Albery, W. J., Foulds, A. W., Hall, K. J., Hillman, A. R., Edgell, R. G. & Orchard, A. F. (1979). Nature (London), 282, 793-797.]); Tsakovska & Pajeva (2006[Tsakovska, I. & Pajeva, I. (2006). Curr. Drug Targets, 7, 1123-1134.]). For compounds with organic framework structures and with electro-optic or electronic properties, see: Chakraborty et al. (2005[Chakraborty, S., Wadas, T. J., Hester, H., Schmehl, R. & Eisenberg, R. (2005). Inorg. Chem. 44, 6865-6878.]); Cho et al. (2006[Cho, N. S., Park, J.-H., Lee, S.-K., Lee, J., Shim, H.-K., Park, M.-J., Hwang, D.-H. & Jung, B.-J. (2006). Macromolecules, 39, 177-183.]); Park et al. (2008[Park, M.-J., Lee, J., Park, J.-H., Lee, S. K., Lee, J.-I., Chu, H.-Y., Hwang, D.-H. & Shim, H.-K. (2008). Macromolecules, 41, 3063-3070.]); Krämer et al. (2001[Krämer, C. S., Zeitler, K. & Müller, T. J. J. (2001). Tetrahedron Lett. 42, 8619-8624.]); Zhang et al. (2007[Zhang, W.-W., Yu, Y.-G., Lu, Z.-D., Mao, W.-L., Li, Y.-Z. & Meng, Q.-J. (2007). Organometallics, 26, 865-873.]). For structure elucidation, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C15H9NO4S)(H2O)3]·H2O

  • Mr = 430.30

  • Orthorhombic, P b c a

  • a = 15.3105 (8) Å

  • b = 7.2983 (4) Å

  • c = 29.5679 (15) Å

  • V = 3303.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 291 K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.703, Tmax = 0.759

  • 16812 measured reflections

  • 3236 independent reflections

  • 2650 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.104

  • S = 1.08

  • 3236 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O4i 2.0523 (19)
Co1—O5 2.074 (2)
Co1—O7 2.087 (2)
Co1—O6 2.114 (2)
Co1—O2 2.1581 (19)
Co1—O1 2.1661 (19)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5X⋯O8ii 0.85 1.83 2.678 (4) 180
O5—H5Y⋯O4iii 0.85 2.16 2.879 (3) 142
O6—H6X⋯O1iv 0.85 1.91 2.748 (3) 169
O6—H6Y⋯O8 0.85 2.43 3.149 (4) 143
O7—H7X⋯O2v 0.85 2.00 2.826 (3) 163
O7—H7Y⋯O3i 0.85 1.88 2.615 (3) 144
O8—H8X⋯O3i 0.85 2.01 2.808 (4) 156
O8—H8Y⋯O2vi 0.85 2.09 2.760 (3) 135
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (v) -x+1, -y, -z+1; (vi) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenothiazine, an intriguing type of biologically and pharmaceutically active heterocyclic compound well known as a pharmacophore in tranquilizers, antituberculosis agents, anti-tumor agents, bactericides, etc. (Albery et al., 1979; Tsakovska & Pajeva, 2006), is now widely studied as an electron donor component and electrically conducting charge-transfer composite on account of its unique electro-optic properties in materials science (Chakraborty et al., 2005; Cho et al., 2006; Park et al., 2008). Previous studies involving this compound had more emphasis on the large π-electron conjugated system (Krämer et al., 2001; Zhang et al., 2007); however, less work is reported on the construction of metal-organic frameworks using it as a building block. Here we employed the 10-methyl-10H-phenothiazine-3,7-dicarboxylate (MPTD) anion as a ligand to crystallize the title complex.

The title compound, {[Co(C15H9NO4S)(H2O)3].H2O}, consists of a three-dimensional supramolecular network built up from coordination bonds, hydrogen bonds, and ππ interactions. As shown in Fig. 1, the Co2+ ion has a slightly distorted octahedral coordination environment formed by three O atoms from two different carboxylate ligands and three O atoms from three coordinated water molecules. Each MPTD ligand bridges two Co atoms via two carboxylate groups in a monodentate and a bidentate coordination mode into a one-dimensional zigzag chain parallel to [001]. These chains are assembled in an antiparallel manner into two-dimensional sheets parallel (100) based on strong interchain ππ interactions between the ligands [centroid-centroid distance = 3.656, 3.669 Å]. The sheets are further connected to form a three-dimensional supramolecular network (Fig. 2) via interlayer O—H···O hydrogen bond interactions. A PLATON calculation (Spek, 2009) shows that the structure has 13.6% solvent accessible voids when the coordinated and lattice water molecules are neglected. The resulting framework structure contains channels with approximate dimensions of 2.9×4.9 Å2 and 1.9×1.9 Å2 along [010] and [001], respectively. All the lattice water molecules and the coordinating water molecules are situated in these channels and are involved in the above extensive interlayer and intralayer H-bonding.

Related literature top

For background to phenothiazine as a pharmacophore, see: Albery et al. (1979); Tsakovska & Pajeva (2006). For compounds with organic framework structures and with electro-optic or electronic properties, see: Chakraborty et al. (2005); Cho et al. (2006); Park et al. (2008); Krämer et al. (2001); Zhang et al. (2007). For structure elucidation, see: Spek (2009).

Experimental top

The educt 10-methyl-10H-phenothiazine-3,7-dicarboxylic acid used to construct the title compound {[Co(C15H9NO4S)(H2O)3].H2O} was prepared by oxidation of 10-methyl-10H-phenothiazine-3,7-dicarbaldehyde using silver nitrate as oxidant in an alkaline medium. 10-Methyl-10H-phenothiazine-3,7-dicarbaldehyde (0.6417 g, 2.38 mmol) (Cho et al., 2006) was dissolved in 35 ml solution of KOH (10.0 g, 0.178 mol), then a 5 ml solution of AgNO3 (1.3 g, 7.65 mmol) was added slowly. The mixture was filtered after heating at 103 K overnight, then HCl (2 M) was added to the filtrate until the pH value reached 1~2, during which a large amount of precipitate formed. The precipitate was filtered off, washed with distilled water, re-dissolved in KOH solution, and again acidified to pH 1~2. The final acidification product was obtained by filtration and dried in vacuo (yield 0.4323 g, 60.3%). 1H NMR (300 MHz; DMSO-d6): δH 3.31 (3 H, s, CH3), 7.03 (2 H, s, ArH), 7.22 (2 H, d, ArH), 7.70 (2 H, d, ArH), 12.70 (2H, br, COOH). 13C NMR (300 MHz; DMSO-d6): δC 40.13 (CH3), 115.41 (Ar), 122.24 (Ar), 126.10 (Ar), 128.86 (Ar), 130.52 (Ar), 148.80 (Ar), 167.23 (COOH). MS: m/z 300.01 [M-1] (Calcd 300.03).

Single crystals of {[Co(C15H9NO4S)(H2O)3].H2O} were obtained by solvothermal reaction of Co(NO3)2.6H2O (58.2 mg, 0.2 mmol) and 10-methyl-10H-phenothiazine-3,7-dicarboxylic acid (15.6 mg, 0.05 mmol) in a mixed solvent of ethanol and H2O (8 ml, volume ratio 1:4) at 393 K for 86 h and finally cooled to room temperature. The resulting products were filtered off, washed thoroughly with distilled water and dried in air at room temperature. The yield was 38.7 mg (45%).

Refinement top

All the H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å, O–H = 0.85 Å and with Uiso (H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and water H atoms.

Structure description top

Phenothiazine, an intriguing type of biologically and pharmaceutically active heterocyclic compound well known as a pharmacophore in tranquilizers, antituberculosis agents, anti-tumor agents, bactericides, etc. (Albery et al., 1979; Tsakovska & Pajeva, 2006), is now widely studied as an electron donor component and electrically conducting charge-transfer composite on account of its unique electro-optic properties in materials science (Chakraborty et al., 2005; Cho et al., 2006; Park et al., 2008). Previous studies involving this compound had more emphasis on the large π-electron conjugated system (Krämer et al., 2001; Zhang et al., 2007); however, less work is reported on the construction of metal-organic frameworks using it as a building block. Here we employed the 10-methyl-10H-phenothiazine-3,7-dicarboxylate (MPTD) anion as a ligand to crystallize the title complex.

The title compound, {[Co(C15H9NO4S)(H2O)3].H2O}, consists of a three-dimensional supramolecular network built up from coordination bonds, hydrogen bonds, and ππ interactions. As shown in Fig. 1, the Co2+ ion has a slightly distorted octahedral coordination environment formed by three O atoms from two different carboxylate ligands and three O atoms from three coordinated water molecules. Each MPTD ligand bridges two Co atoms via two carboxylate groups in a monodentate and a bidentate coordination mode into a one-dimensional zigzag chain parallel to [001]. These chains are assembled in an antiparallel manner into two-dimensional sheets parallel (100) based on strong interchain ππ interactions between the ligands [centroid-centroid distance = 3.656, 3.669 Å]. The sheets are further connected to form a three-dimensional supramolecular network (Fig. 2) via interlayer O—H···O hydrogen bond interactions. A PLATON calculation (Spek, 2009) shows that the structure has 13.6% solvent accessible voids when the coordinated and lattice water molecules are neglected. The resulting framework structure contains channels with approximate dimensions of 2.9×4.9 Å2 and 1.9×1.9 Å2 along [010] and [001], respectively. All the lattice water molecules and the coordinating water molecules are situated in these channels and are involved in the above extensive interlayer and intralayer H-bonding.

For background to phenothiazine as a pharmacophore, see: Albery et al. (1979); Tsakovska & Pajeva (2006). For compounds with organic framework structures and with electro-optic or electronic properties, see: Chakraborty et al. (2005); Cho et al. (2006); Park et al. (2008); Krämer et al. (2001); Zhang et al. (2007). For structure elucidation, see: Spek (2009).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the title compound showing the local coordination environment of Co2+ with displacement ellipsoids at the 50% probability levels and H atoms shown as small spheres of arbitrary radius. [Symmetry code: i = x, 0.5 - y, 0.5 + z.]
[Figure 2] Fig. 2. The crystal packing diagram showing the 3-dimensional network. Inter-chain (blue dotted lines), intra-chain (bright green dotted lines), hydrogen bonds and inter-chain ππ interactions (yellow and rose dashed lines) are displayed.
catena-Poly[[[triaquacobalt(II)]-µ-10-methylphenothiazine- 3,7-dicarboxylato] monohydrate] top
Crystal data top
[Co(C15H9NO4S)(H2O)3]·H2OF(000) = 1768
Mr = 430.30Dx = 1.730 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8389 reflections
a = 15.3105 (8) Åθ = 2.7–28.1°
b = 7.2983 (4) ŵ = 1.21 mm1
c = 29.5679 (15) ÅT = 291 K
V = 3303.9 (3) Å3Block, dark blue
Z = 80.30 × 0.26 × 0.24 mm
Data collection top
Bruker SMART CCD
diffractometer
3236 independent reflections
Radiation source: sealed tube2650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1818
Tmin = 0.703, Tmax = 0.759k = 89
16812 measured reflectionsl = 3625
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0596P)2]
where P = (Fo2 + 2Fc2)/3
3236 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Co(C15H9NO4S)(H2O)3]·H2OV = 3303.9 (3) Å3
Mr = 430.30Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.3105 (8) ŵ = 1.21 mm1
b = 7.2983 (4) ÅT = 291 K
c = 29.5679 (15) Å0.30 × 0.26 × 0.24 mm
Data collection top
Bruker SMART CCD
diffractometer
3236 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2650 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.759Rint = 0.049
16812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.08Δρmax = 0.62 e Å3
3236 reflectionsΔρmin = 0.52 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64689 (18)0.1531 (4)0.11609 (9)0.0251 (6)
C20.69797 (18)0.0972 (4)0.15690 (8)0.0226 (6)
C30.65262 (17)0.0449 (4)0.19532 (9)0.0231 (6)
H3A0.58990.04580.19510.028*
C40.69635 (17)0.0086 (4)0.23421 (8)0.0208 (5)
C50.78763 (17)0.0105 (4)0.23556 (8)0.0186 (5)
C60.83264 (19)0.0454 (4)0.19657 (9)0.0250 (6)
H6A0.89530.04710.19690.030*
C70.78842 (19)0.0987 (4)0.15843 (9)0.0256 (6)
H7A0.82070.13670.13230.031*
C80.79744 (17)0.0200 (4)0.31735 (8)0.0193 (5)
C90.70693 (17)0.0173 (4)0.32467 (8)0.0197 (5)
C100.67305 (17)0.0274 (4)0.36651 (9)0.0211 (5)
H10A0.61090.03000.37080.025*
C110.72820 (17)0.0696 (3)0.40252 (8)0.0210 (5)
C120.69238 (17)0.1164 (4)0.44740 (8)0.0208 (5)
C130.81794 (18)0.0699 (4)0.39510 (9)0.0234 (6)
H13A0.85630.10080.41960.028*
C140.85212 (17)0.0271 (4)0.35350 (9)0.0230 (6)
H14A0.91420.02950.34910.028*
C150.92396 (18)0.1018 (4)0.27125 (10)0.0302 (6)
H15A0.94610.14040.30010.045*
H15B0.93480.19550.24920.045*
H15C0.95270.00930.26220.045*
Co10.63098 (2)0.19466 (5)0.523713 (12)0.02238 (13)
N10.83090 (14)0.0684 (3)0.27475 (7)0.0212 (5)
O10.74252 (13)0.1653 (3)0.47923 (6)0.0267 (4)
O20.61043 (12)0.1094 (3)0.45464 (6)0.0266 (4)
O30.56576 (13)0.1431 (3)0.11768 (7)0.0363 (5)
O40.68927 (13)0.2090 (3)0.08152 (6)0.0285 (5)
O50.64958 (14)0.0747 (3)0.54390 (8)0.0359 (5)
H5X0.61170.14480.55580.043*
H5Y0.70350.10140.54200.043*
O60.61132 (15)0.4686 (3)0.50278 (7)0.0356 (5)
H6X0.66030.51650.49620.043*
H6Y0.57310.54140.51340.043*
O70.50146 (14)0.1985 (3)0.54566 (7)0.0333 (5)
H7X0.46910.10710.55160.040*
H7Y0.49900.24780.57170.040*
O80.53016 (16)0.7045 (4)0.58142 (10)0.0592 (8)
H8X0.55280.60020.58650.071*
H8Y0.48400.70020.56550.071*
S10.63643 (4)0.08955 (10)0.28101 (2)0.02552 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0279 (14)0.0268 (15)0.0205 (13)0.0044 (11)0.0003 (11)0.0048 (11)
C20.0303 (14)0.0213 (13)0.0163 (13)0.0022 (11)0.0007 (10)0.0014 (10)
C30.0219 (13)0.0276 (14)0.0199 (14)0.0005 (10)0.0005 (10)0.0009 (10)
C40.0221 (13)0.0243 (14)0.0158 (12)0.0015 (10)0.0014 (9)0.0006 (10)
C50.0233 (13)0.0200 (13)0.0126 (12)0.0005 (10)0.0016 (9)0.0027 (10)
C60.0250 (13)0.0341 (15)0.0160 (14)0.0021 (11)0.0010 (10)0.0019 (11)
C70.0288 (14)0.0294 (15)0.0186 (13)0.0013 (12)0.0050 (10)0.0015 (11)
C80.0237 (13)0.0192 (13)0.0151 (12)0.0016 (10)0.0011 (10)0.0031 (9)
C90.0229 (13)0.0180 (13)0.0182 (12)0.0023 (10)0.0015 (10)0.0019 (9)
C100.0206 (12)0.0253 (14)0.0176 (13)0.0011 (11)0.0017 (10)0.0001 (10)
C110.0261 (14)0.0212 (14)0.0156 (12)0.0004 (10)0.0016 (10)0.0009 (10)
C120.0271 (13)0.0194 (13)0.0160 (12)0.0010 (10)0.0018 (10)0.0015 (10)
C130.0239 (13)0.0296 (14)0.0168 (13)0.0050 (11)0.0028 (10)0.0035 (10)
C140.0181 (12)0.0320 (15)0.0188 (13)0.0001 (10)0.0017 (10)0.0007 (11)
C150.0241 (14)0.0416 (18)0.0250 (14)0.0104 (12)0.0048 (11)0.0042 (12)
Co10.0213 (2)0.0297 (2)0.0162 (2)0.00106 (14)0.00060 (14)0.00571 (14)
N10.0172 (10)0.0312 (13)0.0151 (11)0.0037 (9)0.0023 (8)0.0009 (9)
O10.0220 (10)0.0381 (12)0.0201 (9)0.0026 (8)0.0000 (8)0.0081 (8)
O20.0229 (9)0.0386 (12)0.0183 (10)0.0004 (8)0.0013 (7)0.0063 (8)
O30.0260 (11)0.0556 (14)0.0273 (11)0.0009 (10)0.0025 (9)0.0148 (10)
O40.0304 (11)0.0395 (13)0.0156 (9)0.0006 (9)0.0002 (8)0.0092 (8)
O50.0358 (12)0.0328 (12)0.0392 (13)0.0047 (9)0.0013 (9)0.0018 (9)
O60.0328 (11)0.0358 (12)0.0382 (13)0.0003 (10)0.0049 (9)0.0062 (10)
O70.0272 (11)0.0420 (12)0.0308 (12)0.0065 (9)0.0057 (9)0.0104 (9)
O80.0315 (13)0.0651 (19)0.081 (2)0.0039 (12)0.0143 (13)0.0253 (14)
S10.0230 (3)0.0396 (4)0.0139 (3)0.0101 (3)0.0013 (2)0.0024 (3)
Geometric parameters (Å, º) top
C1—O31.245 (3)C12—O21.274 (3)
C1—O41.278 (3)C12—Co12.510 (2)
C1—C21.495 (4)C13—C141.373 (4)
C2—C31.385 (4)C13—H13A0.9601
C2—C71.386 (4)C14—H14A0.9600
C3—C41.387 (4)C15—N11.449 (3)
C3—H3A0.9600C15—H15A0.9601
C4—C51.398 (4)C15—H15B0.9599
C4—S11.762 (3)C15—H15C0.9600
C5—N11.400 (3)Co1—O4i2.0523 (19)
C5—C61.404 (4)Co1—O52.074 (2)
C6—C71.371 (4)Co1—O72.087 (2)
C6—H6A0.9601Co1—O62.114 (2)
C7—H7A0.9594Co1—O22.1581 (19)
C8—C141.400 (4)Co1—O12.1661 (19)
C8—C91.403 (4)O4—Co1ii2.0523 (19)
C8—N11.405 (3)O5—H5X0.8497
C9—C101.381 (4)O5—H5Y0.8500
C9—S11.763 (3)O6—H6X0.8499
C10—C111.393 (4)O6—H6Y0.8500
C10—H10A0.9601O7—H7X0.8500
C11—C131.391 (4)O7—H7Y0.8500
C11—C121.476 (3)O8—H8X0.8500
C12—O11.266 (3)O8—H8Y0.8499
O3—C1—O4123.7 (3)N1—C15—H15A109.5
O3—C1—C2118.4 (2)N1—C15—H15B109.8
O4—C1—C2117.9 (2)H15A—C15—H15B109.5
C3—C2—C7118.5 (2)N1—C15—H15C109.2
C3—C2—C1118.4 (2)H15A—C15—H15C109.5
C7—C2—C1123.2 (2)H15B—C15—H15C109.5
C2—C3—C4121.0 (2)O4i—Co1—O591.44 (9)
C2—C3—H3A119.7O4i—Co1—O798.60 (8)
C4—C3—H3A119.3O5—Co1—O793.09 (9)
C3—C4—C5120.6 (2)O4i—Co1—O688.96 (9)
C3—C4—S1119.6 (2)O5—Co1—O6179.58 (10)
C5—C4—S1119.6 (2)O7—Co1—O686.73 (9)
C4—C5—N1120.0 (2)O4i—Co1—O2161.86 (8)
C4—C5—C6117.7 (2)O5—Co1—O291.09 (9)
N1—C5—C6122.4 (2)O7—Co1—O299.19 (8)
C7—C6—C5121.0 (3)O6—Co1—O288.56 (8)
C7—C6—H6A119.9O4i—Co1—O1101.35 (8)
C5—C6—H6A119.1O5—Co1—O188.44 (8)
C6—C7—C2121.2 (3)O7—Co1—O1159.95 (8)
C6—C7—H7A119.4O6—Co1—O191.61 (8)
C2—C7—H7A119.4O2—Co1—O160.78 (7)
C14—C8—C9118.0 (2)O4i—Co1—C12131.59 (8)
C14—C8—N1121.9 (2)O5—Co1—C1289.52 (9)
C9—C8—N1120.1 (2)O7—Co1—C12129.68 (9)
C10—C9—C8120.8 (2)O6—Co1—C1290.31 (9)
C10—C9—S1119.8 (2)O2—Co1—C1230.49 (8)
C8—C9—S1119.19 (19)O1—Co1—C1230.29 (8)
C9—C10—C11120.6 (2)C5—N1—C8119.6 (2)
C9—C10—H10A119.7C5—N1—C15117.2 (2)
C11—C10—H10A119.6C8—N1—C15117.7 (2)
C13—C11—C10118.6 (2)C12—O1—Co190.08 (16)
C13—C11—C12120.6 (2)C12—O2—Co190.23 (15)
C10—C11—C12120.9 (2)C1—O4—Co1ii123.71 (18)
O1—C12—O2118.9 (2)Co1—O5—H5X126.6
O1—C12—C11120.6 (2)Co1—O5—H5Y109.4
O2—C12—C11120.5 (2)H5X—O5—H5Y123.5
O1—C12—Co159.64 (13)Co1—O6—H6X109.3
O2—C12—Co159.28 (13)Co1—O6—H6Y125.5
C11—C12—Co1179.7 (2)H6X—O6—H6Y115.7
C14—C13—C11121.2 (2)Co1—O7—H7X127.4
C14—C13—H13A119.8Co1—O7—H7Y109.3
C11—C13—H13A119.1H7X—O7—H7Y96.8
C13—C14—C8120.8 (2)H8X—O8—H8Y113.8
C13—C14—H14A119.7C4—S1—C998.98 (12)
C8—C14—H14A119.5
O3—C1—C2—C32.9 (4)O1—C12—Co1—O587.73 (16)
O4—C1—C2—C3176.9 (3)O2—C12—Co1—O592.97 (16)
O3—C1—C2—C7178.4 (3)O1—C12—Co1—O7178.66 (15)
O4—C1—C2—C71.8 (4)O2—C12—Co1—O70.6 (2)
C7—C2—C3—C41.4 (4)O1—C12—Co1—O692.65 (16)
C1—C2—C3—C4179.9 (3)O2—C12—Co1—O686.64 (16)
C2—C3—C4—C50.2 (4)O1—C12—Co1—O2179.3 (3)
C2—C3—C4—S1175.5 (2)O2—C12—Co1—O1179.3 (3)
C3—C4—C5—N1178.7 (2)C4—C5—N1—C838.7 (4)
S1—C4—C5—N13.0 (3)C6—C5—N1—C8141.9 (3)
C3—C4—C5—C60.7 (4)C4—C5—N1—C15168.1 (2)
S1—C4—C5—C6176.5 (2)C6—C5—N1—C1511.3 (4)
C4—C5—C6—C70.5 (4)C14—C8—N1—C5141.7 (3)
N1—C5—C6—C7178.9 (3)C9—C8—N1—C538.1 (4)
C5—C6—C7—C20.7 (4)C14—C8—N1—C1511.3 (4)
C3—C2—C7—C61.6 (4)C9—C8—N1—C15168.9 (2)
C1—C2—C7—C6179.7 (3)O2—C12—O1—Co10.7 (3)
C14—C8—C9—C101.1 (4)C11—C12—O1—Co1179.8 (2)
N1—C8—C9—C10179.1 (2)O4i—Co1—O1—C12177.13 (16)
C14—C8—C9—S1176.1 (2)O5—Co1—O1—C1291.71 (17)
N1—C8—C9—S14.1 (3)O7—Co1—O1—C123.0 (3)
C8—C9—C10—C110.5 (4)O6—Co1—O1—C1287.87 (17)
S1—C9—C10—C11174.5 (2)O2—Co1—O1—C120.41 (15)
C9—C10—C11—C131.5 (4)O1—C12—O2—Co10.7 (3)
C9—C10—C11—C12179.6 (2)C11—C12—O2—Co1179.8 (2)
C13—C11—C12—O13.2 (4)O4i—Co1—O2—C1210.8 (4)
C10—C11—C12—O1175.7 (3)O5—Co1—O2—C1287.19 (16)
C13—C11—C12—O2177.3 (3)O7—Co1—O2—C12179.51 (16)
C10—C11—C12—O23.8 (4)O6—Co1—O2—C1293.05 (16)
C10—C11—C13—C140.9 (4)O1—Co1—O2—C120.41 (15)
C12—C11—C13—C14179.9 (3)O3—C1—O4—Co1ii3.4 (4)
C11—C13—C14—C80.6 (4)C2—C1—O4—Co1ii176.40 (18)
C9—C8—C14—C131.7 (4)C3—C4—S1—C9149.7 (2)
N1—C8—C14—C13178.5 (3)C5—C4—S1—C934.6 (2)
O1—C12—Co1—O4i3.8 (2)C10—C9—S1—C4150.0 (2)
O2—C12—Co1—O4i175.52 (15)C8—C9—S1—C435.0 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5X···O8iii0.851.832.678 (4)180
O5—H5Y···O4iv0.852.162.879 (3)142
O6—H6X···O1v0.851.912.748 (3)169
O6—H6Y···O80.852.433.149 (4)143
O7—H7X···O2vi0.852.002.826 (3)163
O7—H7Y···O3i0.851.882.615 (3)144
O8—H8X···O3i0.852.012.808 (4)156
O8—H8Y···O2vii0.852.092.760 (3)135
Symmetry codes: (i) x, y+1/2, z+1/2; (iii) x, y1, z; (iv) x+3/2, y, z+1/2; (v) x+3/2, y+1/2, z; (vi) x+1, y, z+1; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(C15H9NO4S)(H2O)3]·H2O
Mr430.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)291
a, b, c (Å)15.3105 (8), 7.2983 (4), 29.5679 (15)
V3)3303.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.703, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
16812, 3236, 2650
Rint0.049
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.104, 1.08
No. of reflections3236
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.52

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Co1—O4i2.0523 (19)Co1—O62.114 (2)
Co1—O52.074 (2)Co1—O22.1581 (19)
Co1—O72.087 (2)Co1—O12.1661 (19)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5X···O8ii0.851.832.678 (4)179.9
O5—H5Y···O4iii0.852.162.879 (3)141.7
O6—H6X···O1iv0.851.912.748 (3)169.1
O6—H6Y···O80.852.433.149 (4)143.0
O7—H7X···O2v0.852.002.826 (3)162.8
O7—H7Y···O3i0.851.882.615 (3)144.1
O8—H8X···O3i0.852.012.808 (4)155.8
O8—H8Y···O2vi0.852.092.760 (3)135.0
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1, z; (iii) x+3/2, y, z+1/2; (iv) x+3/2, y+1/2, z; (v) x+1, y, z+1; (vi) x+1, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Natural Science Foundation of China, the Opening Project of Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter (XJDX0912–2011-01) and the Foundation of Yili Normal University (2011YNYB034).

References

First citationAlbery, W. J., Foulds, A. W., Hall, K. J., Hillman, A. R., Edgell, R. G. & Orchard, A. F. (1979). Nature (London), 282, 793–797.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, S., Wadas, T. J., Hester, H., Schmehl, R. & Eisenberg, R. (2005). Inorg. Chem. 44, 6865–6878.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCho, N. S., Park, J.-H., Lee, S.-K., Lee, J., Shim, H.-K., Park, M.-J., Hwang, D.-H. & Jung, B.-J. (2006). Macromolecules, 39, 177–183.  Web of Science CrossRef CAS Google Scholar
First citationKrämer, C. S., Zeitler, K. & Müller, T. J. J. (2001). Tetrahedron Lett. 42, 8619–8624.  Google Scholar
First citationPark, M.-J., Lee, J., Park, J.-H., Lee, S. K., Lee, J.-I., Chu, H.-Y., Hwang, D.-H. & Shim, H.-K. (2008). Macromolecules, 41, 3063–3070.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsakovska, I. & Pajeva, I. (2006). Curr. Drug Targets, 7, 1123–1134.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, W.-W., Yu, Y.-G., Lu, Z.-D., Mao, W.-L., Li, Y.-Z. & Meng, Q.-J. (2007). Organometallics, 26, 865–873.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m402-m403
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds