metal-organic compounds
catena-Poly[[[triaquacobalt(II)]-μ-10-methylphenothiazine-3,7-dicarboxylato] monohydrate]
aXinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter, College of Chemistry and Biological Sciences, Yili Normal University, Yili, Xinjiang 835000, People's Republic of China, bState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China, and cSchool of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: wwzhang@nju.edu.cn
The polymeric title compound, {[Co(C15H9NO4S)(H2O)3]·H2O}n, consists of chains along [001] made up from Co2+ ions bridged by 10-methylphenothiazine-3,7-dicarboxylate anions. The Co2+ ion, coordinated by three O atoms from two different carboxylate groups and three water molecules, displays a distorted octahedral environment. In the crystal, π–π interchain interactions, with centroid–centroid distances of 3.656 (2) and 3.669 (2) Å between the benzene rings of the ligands, assemble the chains into sheets parallel to (100). O—H⋯O hydrogen-bonding interactions between the coordinating water molecules and carboxylate O atoms link the sheets into a three-dimensional network.
Related literature
For background to phenothiazine as a pharmacophore, see: Albery et al. (1979); Tsakovska & Pajeva (2006). For compounds with organic framework structures and with electro-optic or electronic properties, see: Chakraborty et al. (2005); Cho et al. (2006); Park et al. (2008); Krämer et al. (2001); Zhang et al. (2007). For structure elucidation, see: Spek (2009).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812009580/wm2597sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812009580/wm2597Isup2.hkl
The educt 10-methyl-10H-phenothiazine-3,7-dicarboxylic acid used to construct the title compound {[Co(C15H9NO4S)(H2O)3].H2O} was prepared by oxidation of 10-methyl-10H-phenothiazine-3,7-dicarbaldehyde using silver nitrate as oxidant in an alkaline medium. 10-Methyl-10H-phenothiazine-3,7-dicarbaldehyde (0.6417 g, 2.38 mmol) (Cho et al., 2006) was dissolved in 35 ml solution of KOH (10.0 g, 0.178 mol), then a 5 ml solution of AgNO3 (1.3 g, 7.65 mmol) was added slowly. The mixture was filtered after heating at 103 K overnight, then HCl (2 M) was added to the filtrate until the pH value reached 1~2, during which a large amount of precipitate formed. The precipitate was filtered off, washed with distilled water, re-dissolved in KOH solution, and again acidified to pH 1~2. The final acidification product was obtained by filtration and dried in vacuo (yield 0.4323 g, 60.3%). 1H NMR (300 MHz; DMSO-d6): δH 3.31 (3 H, s, CH3), 7.03 (2 H, s, ArH), 7.22 (2 H, d, ArH), 7.70 (2 H, d, ArH), 12.70 (2H, br, COOH). 13C NMR (300 MHz; DMSO-d6): δC 40.13 (CH3), 115.41 (Ar), 122.24 (Ar), 126.10 (Ar), 128.86 (Ar), 130.52 (Ar), 148.80 (Ar), 167.23 (COOH). MS: m/z 300.01 [M-1]– (Calcd 300.03).
Single crystals of {[Co(C15H9NO4S)(H2O)3].H2O} were obtained by solvothermal reaction of Co(NO3)2.6H2O (58.2 mg, 0.2 mmol) and 10-methyl-10H-phenothiazine-3,7-dicarboxylic acid (15.6 mg, 0.05 mmol) in a mixed solvent of ethanol and H2O (8 ml, volume ratio 1:4) at 393 K for 86 h and finally cooled to room temperature. The resulting products were filtered off, washed thoroughly with distilled water and dried in air at room temperature. The yield was 38.7 mg (45%).
All the H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å, O–H = 0.85 Å and with Uiso (H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and water H atoms.
Phenothiazine, an intriguing type of biologically and pharmaceutically active heterocyclic compound well known as a pharmacophore in tranquilizers, antituberculosis agents, anti-tumor agents, bactericides, etc. (Albery et al., 1979; Tsakovska & Pajeva, 2006), is now widely studied as an π-electron (Krämer et al., 2001; Zhang et al., 2007); however, less work is reported on the construction of metal-organic frameworks using it as a building block. Here we employed the 10-methyl-10H-phenothiazine-3,7-dicarboxylate (MPTD) anion as a ligand to crystallize the title complex.
component and electrically conducting charge-transfer composite on account of its unique electro-optic properties in materials science (Chakraborty et al., 2005; Cho et al., 2006; Park et al., 2008). Previous studies involving this compound had more emphasis on the largeThe title compound, {[Co(C15H9NO4S)(H2O)3].H2O}, consists of a three-dimensional supramolecular network built up from coordination bonds, hydrogen bonds, and π—π interactions. As shown in Fig. 1, the Co2+ ion has a slightly distorted octahedral coordination environment formed by three O atoms from two different carboxylate ligands and three O atoms from three coordinated water molecules. Each MPTD ligand bridges two Co atoms via two carboxylate groups in a monodentate and a bidentate coordination mode into a one-dimensional zigzag chain parallel to [001]. These chains are assembled in an antiparallel manner into two-dimensional sheets parallel (100) based on strong interchain π—π interactions between the ligands [centroid-centroid distance = 3.656, 3.669 Å]. The sheets are further connected to form a three-dimensional supramolecular network (Fig. 2) via interlayer O—H···O hydrogen bond interactions. A PLATON calculation (Spek, 2009) shows that the structure has 13.6% solvent accessible voids when the coordinated and lattice water molecules are neglected. The resulting framework structure contains channels with approximate dimensions of 2.9×4.9 Å2 and 1.9×1.9 Å2 along [010] and [001], respectively. All the lattice water molecules and the coordinating water molecules are situated in these channels and are involved in the above extensive interlayer and intralayer H-bonding.
For background to phenothiazine as a pharmacophore, see: Albery et al. (1979); Tsakovska & Pajeva (2006). For compounds with organic framework structures and with electro-optic or electronic properties, see: Chakraborty et al. (2005); Cho et al. (2006); Park et al. (2008); Krämer et al. (2001); Zhang et al. (2007). For structure elucidation, see: Spek (2009).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. ORTEP plot of the title compound showing the local coordination environment of Co2+ with displacement ellipsoids at the 50% probability levels and H atoms shown as small spheres of arbitrary radius. [Symmetry code: i = x, 0.5 - y, 0.5 + z.] | |
Fig. 2. The crystal packing diagram showing the 3-dimensional network. Inter-chain (blue dotted lines), intra-chain (bright green dotted lines), hydrogen bonds and inter-chain π—π interactions (yellow and rose dashed lines) are displayed. |
[Co(C15H9NO4S)(H2O)3]·H2O | F(000) = 1768 |
Mr = 430.30 | Dx = 1.730 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 8389 reflections |
a = 15.3105 (8) Å | θ = 2.7–28.1° |
b = 7.2983 (4) Å | µ = 1.21 mm−1 |
c = 29.5679 (15) Å | T = 291 K |
V = 3303.9 (3) Å3 | Block, dark blue |
Z = 8 | 0.30 × 0.26 × 0.24 mm |
Bruker SMART CCD diffractometer | 3236 independent reflections |
Radiation source: sealed tube | 2650 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
φ and ω scans | θmax = 26.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −18→18 |
Tmin = 0.703, Tmax = 0.759 | k = −8→9 |
16812 measured reflections | l = −36→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0596P)2] where P = (Fo2 + 2Fc2)/3 |
3236 reflections | (Δ/σ)max < 0.001 |
236 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −0.52 e Å−3 |
[Co(C15H9NO4S)(H2O)3]·H2O | V = 3303.9 (3) Å3 |
Mr = 430.30 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 15.3105 (8) Å | µ = 1.21 mm−1 |
b = 7.2983 (4) Å | T = 291 K |
c = 29.5679 (15) Å | 0.30 × 0.26 × 0.24 mm |
Bruker SMART CCD diffractometer | 3236 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 2650 reflections with I > 2σ(I) |
Tmin = 0.703, Tmax = 0.759 | Rint = 0.049 |
16812 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.62 e Å−3 |
3236 reflections | Δρmin = −0.52 e Å−3 |
236 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.64689 (18) | 0.1531 (4) | 0.11609 (9) | 0.0251 (6) | |
C2 | 0.69797 (18) | 0.0972 (4) | 0.15690 (8) | 0.0226 (6) | |
C3 | 0.65262 (17) | 0.0449 (4) | 0.19532 (9) | 0.0231 (6) | |
H3A | 0.5899 | 0.0458 | 0.1951 | 0.028* | |
C4 | 0.69635 (17) | −0.0086 (4) | 0.23421 (8) | 0.0208 (5) | |
C5 | 0.78763 (17) | −0.0105 (4) | 0.23556 (8) | 0.0186 (5) | |
C6 | 0.83264 (19) | 0.0454 (4) | 0.19657 (9) | 0.0250 (6) | |
H6A | 0.8953 | 0.0471 | 0.1969 | 0.030* | |
C7 | 0.78842 (19) | 0.0987 (4) | 0.15843 (9) | 0.0256 (6) | |
H7A | 0.8207 | 0.1367 | 0.1323 | 0.031* | |
C8 | 0.79744 (17) | −0.0200 (4) | 0.31735 (8) | 0.0193 (5) | |
C9 | 0.70693 (17) | −0.0173 (4) | 0.32467 (8) | 0.0197 (5) | |
C10 | 0.67305 (17) | 0.0274 (4) | 0.36651 (9) | 0.0211 (5) | |
H10A | 0.6109 | 0.0300 | 0.3708 | 0.025* | |
C11 | 0.72820 (17) | 0.0696 (3) | 0.40252 (8) | 0.0210 (5) | |
C12 | 0.69238 (17) | 0.1164 (4) | 0.44740 (8) | 0.0208 (5) | |
C13 | 0.81794 (18) | 0.0699 (4) | 0.39510 (9) | 0.0234 (6) | |
H13A | 0.8563 | 0.1008 | 0.4196 | 0.028* | |
C14 | 0.85212 (17) | 0.0271 (4) | 0.35350 (9) | 0.0230 (6) | |
H14A | 0.9142 | 0.0295 | 0.3491 | 0.028* | |
C15 | 0.92396 (18) | −0.1018 (4) | 0.27125 (10) | 0.0302 (6) | |
H15A | 0.9461 | −0.1404 | 0.3001 | 0.045* | |
H15B | 0.9348 | −0.1955 | 0.2492 | 0.045* | |
H15C | 0.9527 | 0.0093 | 0.2622 | 0.045* | |
Co1 | 0.63098 (2) | 0.19466 (5) | 0.523713 (12) | 0.02238 (13) | |
N1 | 0.83090 (14) | −0.0684 (3) | 0.27475 (7) | 0.0212 (5) | |
O1 | 0.74252 (13) | 0.1653 (3) | 0.47923 (6) | 0.0267 (4) | |
O2 | 0.61043 (12) | 0.1094 (3) | 0.45464 (6) | 0.0266 (4) | |
O3 | 0.56576 (13) | 0.1431 (3) | 0.11768 (7) | 0.0363 (5) | |
O4 | 0.68927 (13) | 0.2090 (3) | 0.08152 (6) | 0.0285 (5) | |
O5 | 0.64958 (14) | −0.0747 (3) | 0.54390 (8) | 0.0359 (5) | |
H5X | 0.6117 | −0.1448 | 0.5558 | 0.043* | |
H5Y | 0.7035 | −0.1014 | 0.5420 | 0.043* | |
O6 | 0.61132 (15) | 0.4686 (3) | 0.50278 (7) | 0.0356 (5) | |
H6X | 0.6603 | 0.5165 | 0.4962 | 0.043* | |
H6Y | 0.5731 | 0.5414 | 0.5134 | 0.043* | |
O7 | 0.50146 (14) | 0.1985 (3) | 0.54566 (7) | 0.0333 (5) | |
H7X | 0.4691 | 0.1071 | 0.5516 | 0.040* | |
H7Y | 0.4990 | 0.2478 | 0.5717 | 0.040* | |
O8 | 0.53016 (16) | 0.7045 (4) | 0.58142 (10) | 0.0592 (8) | |
H8X | 0.5528 | 0.6002 | 0.5865 | 0.071* | |
H8Y | 0.4840 | 0.7002 | 0.5655 | 0.071* | |
S1 | 0.63643 (4) | −0.08955 (10) | 0.28101 (2) | 0.02552 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0279 (14) | 0.0268 (15) | 0.0205 (13) | −0.0044 (11) | −0.0003 (11) | 0.0048 (11) |
C2 | 0.0303 (14) | 0.0213 (13) | 0.0163 (13) | 0.0022 (11) | 0.0007 (10) | 0.0014 (10) |
C3 | 0.0219 (13) | 0.0276 (14) | 0.0199 (14) | −0.0005 (10) | −0.0005 (10) | 0.0009 (10) |
C4 | 0.0221 (13) | 0.0243 (14) | 0.0158 (12) | −0.0015 (10) | 0.0014 (9) | 0.0006 (10) |
C5 | 0.0233 (13) | 0.0200 (13) | 0.0126 (12) | 0.0005 (10) | −0.0016 (9) | −0.0027 (10) |
C6 | 0.0250 (13) | 0.0341 (15) | 0.0160 (14) | −0.0021 (11) | 0.0010 (10) | −0.0019 (11) |
C7 | 0.0288 (14) | 0.0294 (15) | 0.0186 (13) | −0.0013 (12) | 0.0050 (10) | 0.0015 (11) |
C8 | 0.0237 (13) | 0.0192 (13) | 0.0151 (12) | 0.0016 (10) | 0.0011 (10) | 0.0031 (9) |
C9 | 0.0229 (13) | 0.0180 (13) | 0.0182 (12) | −0.0023 (10) | −0.0015 (10) | 0.0019 (9) |
C10 | 0.0206 (12) | 0.0253 (14) | 0.0176 (13) | 0.0011 (11) | 0.0017 (10) | −0.0001 (10) |
C11 | 0.0261 (14) | 0.0212 (14) | 0.0156 (12) | −0.0004 (10) | 0.0016 (10) | 0.0009 (10) |
C12 | 0.0271 (13) | 0.0194 (13) | 0.0160 (12) | 0.0010 (10) | 0.0018 (10) | −0.0015 (10) |
C13 | 0.0239 (13) | 0.0296 (14) | 0.0168 (13) | −0.0050 (11) | −0.0028 (10) | −0.0035 (10) |
C14 | 0.0181 (12) | 0.0320 (15) | 0.0188 (13) | 0.0001 (10) | −0.0017 (10) | −0.0007 (11) |
C15 | 0.0241 (14) | 0.0416 (18) | 0.0250 (14) | 0.0104 (12) | −0.0048 (11) | −0.0042 (12) |
Co1 | 0.0213 (2) | 0.0297 (2) | 0.0162 (2) | −0.00106 (14) | 0.00060 (14) | −0.00571 (14) |
N1 | 0.0172 (10) | 0.0312 (13) | 0.0151 (11) | 0.0037 (9) | −0.0023 (8) | −0.0009 (9) |
O1 | 0.0220 (10) | 0.0381 (12) | 0.0201 (9) | −0.0026 (8) | 0.0000 (8) | −0.0081 (8) |
O2 | 0.0229 (9) | 0.0386 (12) | 0.0183 (10) | 0.0004 (8) | 0.0013 (7) | −0.0063 (8) |
O3 | 0.0260 (11) | 0.0556 (14) | 0.0273 (11) | −0.0009 (10) | −0.0025 (9) | 0.0148 (10) |
O4 | 0.0304 (11) | 0.0395 (13) | 0.0156 (9) | −0.0006 (9) | 0.0002 (8) | 0.0092 (8) |
O5 | 0.0358 (12) | 0.0328 (12) | 0.0392 (13) | 0.0047 (9) | −0.0013 (9) | 0.0018 (9) |
O6 | 0.0328 (11) | 0.0358 (12) | 0.0382 (13) | 0.0003 (10) | 0.0049 (9) | 0.0062 (10) |
O7 | 0.0272 (11) | 0.0420 (12) | 0.0308 (12) | −0.0065 (9) | 0.0057 (9) | −0.0104 (9) |
O8 | 0.0315 (13) | 0.0651 (19) | 0.081 (2) | −0.0039 (12) | −0.0143 (13) | 0.0253 (14) |
S1 | 0.0230 (3) | 0.0396 (4) | 0.0139 (3) | −0.0101 (3) | −0.0013 (2) | 0.0024 (3) |
C1—O3 | 1.245 (3) | C12—O2 | 1.274 (3) |
C1—O4 | 1.278 (3) | C12—Co1 | 2.510 (2) |
C1—C2 | 1.495 (4) | C13—C14 | 1.373 (4) |
C2—C3 | 1.385 (4) | C13—H13A | 0.9601 |
C2—C7 | 1.386 (4) | C14—H14A | 0.9600 |
C3—C4 | 1.387 (4) | C15—N1 | 1.449 (3) |
C3—H3A | 0.9600 | C15—H15A | 0.9601 |
C4—C5 | 1.398 (4) | C15—H15B | 0.9599 |
C4—S1 | 1.762 (3) | C15—H15C | 0.9600 |
C5—N1 | 1.400 (3) | Co1—O4i | 2.0523 (19) |
C5—C6 | 1.404 (4) | Co1—O5 | 2.074 (2) |
C6—C7 | 1.371 (4) | Co1—O7 | 2.087 (2) |
C6—H6A | 0.9601 | Co1—O6 | 2.114 (2) |
C7—H7A | 0.9594 | Co1—O2 | 2.1581 (19) |
C8—C14 | 1.400 (4) | Co1—O1 | 2.1661 (19) |
C8—C9 | 1.403 (4) | O4—Co1ii | 2.0523 (19) |
C8—N1 | 1.405 (3) | O5—H5X | 0.8497 |
C9—C10 | 1.381 (4) | O5—H5Y | 0.8500 |
C9—S1 | 1.763 (3) | O6—H6X | 0.8499 |
C10—C11 | 1.393 (4) | O6—H6Y | 0.8500 |
C10—H10A | 0.9601 | O7—H7X | 0.8500 |
C11—C13 | 1.391 (4) | O7—H7Y | 0.8500 |
C11—C12 | 1.476 (3) | O8—H8X | 0.8500 |
C12—O1 | 1.266 (3) | O8—H8Y | 0.8499 |
O3—C1—O4 | 123.7 (3) | N1—C15—H15A | 109.5 |
O3—C1—C2 | 118.4 (2) | N1—C15—H15B | 109.8 |
O4—C1—C2 | 117.9 (2) | H15A—C15—H15B | 109.5 |
C3—C2—C7 | 118.5 (2) | N1—C15—H15C | 109.2 |
C3—C2—C1 | 118.4 (2) | H15A—C15—H15C | 109.5 |
C7—C2—C1 | 123.2 (2) | H15B—C15—H15C | 109.5 |
C2—C3—C4 | 121.0 (2) | O4i—Co1—O5 | 91.44 (9) |
C2—C3—H3A | 119.7 | O4i—Co1—O7 | 98.60 (8) |
C4—C3—H3A | 119.3 | O5—Co1—O7 | 93.09 (9) |
C3—C4—C5 | 120.6 (2) | O4i—Co1—O6 | 88.96 (9) |
C3—C4—S1 | 119.6 (2) | O5—Co1—O6 | 179.58 (10) |
C5—C4—S1 | 119.6 (2) | O7—Co1—O6 | 86.73 (9) |
C4—C5—N1 | 120.0 (2) | O4i—Co1—O2 | 161.86 (8) |
C4—C5—C6 | 117.7 (2) | O5—Co1—O2 | 91.09 (9) |
N1—C5—C6 | 122.4 (2) | O7—Co1—O2 | 99.19 (8) |
C7—C6—C5 | 121.0 (3) | O6—Co1—O2 | 88.56 (8) |
C7—C6—H6A | 119.9 | O4i—Co1—O1 | 101.35 (8) |
C5—C6—H6A | 119.1 | O5—Co1—O1 | 88.44 (8) |
C6—C7—C2 | 121.2 (3) | O7—Co1—O1 | 159.95 (8) |
C6—C7—H7A | 119.4 | O6—Co1—O1 | 91.61 (8) |
C2—C7—H7A | 119.4 | O2—Co1—O1 | 60.78 (7) |
C14—C8—C9 | 118.0 (2) | O4i—Co1—C12 | 131.59 (8) |
C14—C8—N1 | 121.9 (2) | O5—Co1—C12 | 89.52 (9) |
C9—C8—N1 | 120.1 (2) | O7—Co1—C12 | 129.68 (9) |
C10—C9—C8 | 120.8 (2) | O6—Co1—C12 | 90.31 (9) |
C10—C9—S1 | 119.8 (2) | O2—Co1—C12 | 30.49 (8) |
C8—C9—S1 | 119.19 (19) | O1—Co1—C12 | 30.29 (8) |
C9—C10—C11 | 120.6 (2) | C5—N1—C8 | 119.6 (2) |
C9—C10—H10A | 119.7 | C5—N1—C15 | 117.2 (2) |
C11—C10—H10A | 119.6 | C8—N1—C15 | 117.7 (2) |
C13—C11—C10 | 118.6 (2) | C12—O1—Co1 | 90.08 (16) |
C13—C11—C12 | 120.6 (2) | C12—O2—Co1 | 90.23 (15) |
C10—C11—C12 | 120.9 (2) | C1—O4—Co1ii | 123.71 (18) |
O1—C12—O2 | 118.9 (2) | Co1—O5—H5X | 126.6 |
O1—C12—C11 | 120.6 (2) | Co1—O5—H5Y | 109.4 |
O2—C12—C11 | 120.5 (2) | H5X—O5—H5Y | 123.5 |
O1—C12—Co1 | 59.64 (13) | Co1—O6—H6X | 109.3 |
O2—C12—Co1 | 59.28 (13) | Co1—O6—H6Y | 125.5 |
C11—C12—Co1 | 179.7 (2) | H6X—O6—H6Y | 115.7 |
C14—C13—C11 | 121.2 (2) | Co1—O7—H7X | 127.4 |
C14—C13—H13A | 119.8 | Co1—O7—H7Y | 109.3 |
C11—C13—H13A | 119.1 | H7X—O7—H7Y | 96.8 |
C13—C14—C8 | 120.8 (2) | H8X—O8—H8Y | 113.8 |
C13—C14—H14A | 119.7 | C4—S1—C9 | 98.98 (12) |
C8—C14—H14A | 119.5 | ||
O3—C1—C2—C3 | −2.9 (4) | O1—C12—Co1—O5 | −87.73 (16) |
O4—C1—C2—C3 | 176.9 (3) | O2—C12—Co1—O5 | 92.97 (16) |
O3—C1—C2—C7 | 178.4 (3) | O1—C12—Co1—O7 | 178.66 (15) |
O4—C1—C2—C7 | −1.8 (4) | O2—C12—Co1—O7 | −0.6 (2) |
C7—C2—C3—C4 | −1.4 (4) | O1—C12—Co1—O6 | 92.65 (16) |
C1—C2—C3—C4 | 179.9 (3) | O2—C12—Co1—O6 | −86.64 (16) |
C2—C3—C4—C5 | 0.2 (4) | O1—C12—Co1—O2 | 179.3 (3) |
C2—C3—C4—S1 | −175.5 (2) | O2—C12—Co1—O1 | −179.3 (3) |
C3—C4—C5—N1 | −178.7 (2) | C4—C5—N1—C8 | −38.7 (4) |
S1—C4—C5—N1 | −3.0 (3) | C6—C5—N1—C8 | 141.9 (3) |
C3—C4—C5—C6 | 0.7 (4) | C4—C5—N1—C15 | 168.1 (2) |
S1—C4—C5—C6 | 176.5 (2) | C6—C5—N1—C15 | −11.3 (4) |
C4—C5—C6—C7 | −0.5 (4) | C14—C8—N1—C5 | −141.7 (3) |
N1—C5—C6—C7 | 178.9 (3) | C9—C8—N1—C5 | 38.1 (4) |
C5—C6—C7—C2 | −0.7 (4) | C14—C8—N1—C15 | 11.3 (4) |
C3—C2—C7—C6 | 1.6 (4) | C9—C8—N1—C15 | −168.9 (2) |
C1—C2—C7—C6 | −179.7 (3) | O2—C12—O1—Co1 | 0.7 (3) |
C14—C8—C9—C10 | −1.1 (4) | C11—C12—O1—Co1 | −179.8 (2) |
N1—C8—C9—C10 | 179.1 (2) | O4i—Co1—O1—C12 | −177.13 (16) |
C14—C8—C9—S1 | −176.1 (2) | O5—Co1—O1—C12 | 91.71 (17) |
N1—C8—C9—S1 | 4.1 (3) | O7—Co1—O1—C12 | −3.0 (3) |
C8—C9—C10—C11 | −0.5 (4) | O6—Co1—O1—C12 | −87.87 (17) |
S1—C9—C10—C11 | 174.5 (2) | O2—Co1—O1—C12 | −0.41 (15) |
C9—C10—C11—C13 | 1.5 (4) | O1—C12—O2—Co1 | −0.7 (3) |
C9—C10—C11—C12 | −179.6 (2) | C11—C12—O2—Co1 | 179.8 (2) |
C13—C11—C12—O1 | 3.2 (4) | O4i—Co1—O2—C12 | 10.8 (4) |
C10—C11—C12—O1 | −175.7 (3) | O5—Co1—O2—C12 | −87.19 (16) |
C13—C11—C12—O2 | −177.3 (3) | O7—Co1—O2—C12 | 179.51 (16) |
C10—C11—C12—O2 | 3.8 (4) | O6—Co1—O2—C12 | 93.05 (16) |
C10—C11—C13—C14 | −0.9 (4) | O1—Co1—O2—C12 | 0.41 (15) |
C12—C11—C13—C14 | −179.9 (3) | O3—C1—O4—Co1ii | 3.4 (4) |
C11—C13—C14—C8 | −0.6 (4) | C2—C1—O4—Co1ii | −176.40 (18) |
C9—C8—C14—C13 | 1.7 (4) | C3—C4—S1—C9 | −149.7 (2) |
N1—C8—C14—C13 | −178.5 (3) | C5—C4—S1—C9 | 34.6 (2) |
O1—C12—Co1—O4i | 3.8 (2) | C10—C9—S1—C4 | 150.0 (2) |
O2—C12—Co1—O4i | −175.52 (15) | C8—C9—S1—C4 | −35.0 (2) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5X···O8iii | 0.85 | 1.83 | 2.678 (4) | 180 |
O5—H5Y···O4iv | 0.85 | 2.16 | 2.879 (3) | 142 |
O6—H6X···O1v | 0.85 | 1.91 | 2.748 (3) | 169 |
O6—H6Y···O8 | 0.85 | 2.43 | 3.149 (4) | 143 |
O7—H7X···O2vi | 0.85 | 2.00 | 2.826 (3) | 163 |
O7—H7Y···O3i | 0.85 | 1.88 | 2.615 (3) | 144 |
O8—H8X···O3i | 0.85 | 2.01 | 2.808 (4) | 156 |
O8—H8Y···O2vii | 0.85 | 2.09 | 2.760 (3) | 135 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (iii) x, y−1, z; (iv) −x+3/2, −y, z+1/2; (v) −x+3/2, y+1/2, z; (vi) −x+1, −y, −z+1; (vii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Co(C15H9NO4S)(H2O)3]·H2O |
Mr | 430.30 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 291 |
a, b, c (Å) | 15.3105 (8), 7.2983 (4), 29.5679 (15) |
V (Å3) | 3303.9 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.21 |
Crystal size (mm) | 0.30 × 0.26 × 0.24 |
Data collection | |
Diffractometer | Bruker SMART CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.703, 0.759 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16812, 3236, 2650 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.104, 1.08 |
No. of reflections | 3236 |
No. of parameters | 236 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.62, −0.52 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006).
Co1—O4i | 2.0523 (19) | Co1—O6 | 2.114 (2) |
Co1—O5 | 2.074 (2) | Co1—O2 | 2.1581 (19) |
Co1—O7 | 2.087 (2) | Co1—O1 | 2.1661 (19) |
Symmetry code: (i) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5X···O8ii | 0.85 | 1.83 | 2.678 (4) | 179.9 |
O5—H5Y···O4iii | 0.85 | 2.16 | 2.879 (3) | 141.7 |
O6—H6X···O1iv | 0.85 | 1.91 | 2.748 (3) | 169.1 |
O6—H6Y···O8 | 0.85 | 2.43 | 3.149 (4) | 143.0 |
O7—H7X···O2v | 0.85 | 2.00 | 2.826 (3) | 162.8 |
O7—H7Y···O3i | 0.85 | 1.88 | 2.615 (3) | 144.1 |
O8—H8X···O3i | 0.85 | 2.01 | 2.808 (4) | 155.8 |
O8—H8Y···O2vi | 0.85 | 2.09 | 2.760 (3) | 135.0 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, y−1, z; (iii) −x+3/2, −y, z+1/2; (iv) −x+3/2, y+1/2, z; (v) −x+1, −y, −z+1; (vi) −x+1, −y+1, −z+1. |
Acknowledgements
The authors gratefully acknowledge financial support from the Natural Science Foundation of China, the Opening Project of Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter (XJDX0912–2011-01) and the Foundation of Yili Normal University (2011YNYB034).
References
Albery, W. J., Foulds, A. W., Hall, K. J., Hillman, A. R., Edgell, R. G. & Orchard, A. F. (1979). Nature (London), 282, 793–797. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chakraborty, S., Wadas, T. J., Hester, H., Schmehl, R. & Eisenberg, R. (2005). Inorg. Chem. 44, 6865–6878. Web of Science CrossRef PubMed CAS Google Scholar
Cho, N. S., Park, J.-H., Lee, S.-K., Lee, J., Shim, H.-K., Park, M.-J., Hwang, D.-H. & Jung, B.-J. (2006). Macromolecules, 39, 177–183. Web of Science CrossRef CAS Google Scholar
Krämer, C. S., Zeitler, K. & Müller, T. J. J. (2001). Tetrahedron Lett. 42, 8619–8624. Google Scholar
Park, M.-J., Lee, J., Park, J.-H., Lee, S. K., Lee, J.-I., Chu, H.-Y., Hwang, D.-H. & Shim, H.-K. (2008). Macromolecules, 41, 3063–3070. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsakovska, I. & Pajeva, I. (2006). Curr. Drug Targets, 7, 1123–1134. Web of Science CrossRef PubMed CAS Google Scholar
Zhang, W.-W., Yu, Y.-G., Lu, Z.-D., Mao, W.-L., Li, Y.-Z. & Meng, Q.-J. (2007). Organometallics, 26, 865–873. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Phenothiazine, an intriguing type of biologically and pharmaceutically active heterocyclic compound well known as a pharmacophore in tranquilizers, antituberculosis agents, anti-tumor agents, bactericides, etc. (Albery et al., 1979; Tsakovska & Pajeva, 2006), is now widely studied as an electron donor component and electrically conducting charge-transfer composite on account of its unique electro-optic properties in materials science (Chakraborty et al., 2005; Cho et al., 2006; Park et al., 2008). Previous studies involving this compound had more emphasis on the large π-electron conjugated system (Krämer et al., 2001; Zhang et al., 2007); however, less work is reported on the construction of metal-organic frameworks using it as a building block. Here we employed the 10-methyl-10H-phenothiazine-3,7-dicarboxylate (MPTD) anion as a ligand to crystallize the title complex.
The title compound, {[Co(C15H9NO4S)(H2O)3].H2O}, consists of a three-dimensional supramolecular network built up from coordination bonds, hydrogen bonds, and π—π interactions. As shown in Fig. 1, the Co2+ ion has a slightly distorted octahedral coordination environment formed by three O atoms from two different carboxylate ligands and three O atoms from three coordinated water molecules. Each MPTD ligand bridges two Co atoms via two carboxylate groups in a monodentate and a bidentate coordination mode into a one-dimensional zigzag chain parallel to [001]. These chains are assembled in an antiparallel manner into two-dimensional sheets parallel (100) based on strong interchain π—π interactions between the ligands [centroid-centroid distance = 3.656, 3.669 Å]. The sheets are further connected to form a three-dimensional supramolecular network (Fig. 2) via interlayer O—H···O hydrogen bond interactions. A PLATON calculation (Spek, 2009) shows that the structure has 13.6% solvent accessible voids when the coordinated and lattice water molecules are neglected. The resulting framework structure contains channels with approximate dimensions of 2.9×4.9 Å2 and 1.9×1.9 Å2 along [010] and [001], respectively. All the lattice water molecules and the coordinating water molecules are situated in these channels and are involved in the above extensive interlayer and intralayer H-bonding.