metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m390-m391

Bis{S-benzyl 3-[(phen­yl)(pyridin-2-yl)methyl­­idene]di­thio­carbazato}zinc aceto­nitrile monosolvate

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
*Correspondence e-mail: thahira.begum@science.upm.edu.my

(Received 24 February 2012; accepted 5 March 2012; online 10 March 2012)

In the title compound, [Zn(C20H16N3S2)2]·CH3CN, two different Schiff base moieties coordinate to the central ZnII ion as tridentate N,N′,S-chelating ligands, creating a distorted octa­hedral environment [the smallest angle being 73.24 (6)° and the widest angle being 155.73 (7)°], with the two S atoms in cis positions. The dihedral angle between the mean planes of the two coordinating ligands is 83.65 (5)°. The crystal packing is consolidated by weak C—H⋯N hydrogen-bonding inter­actions.

Related literature

For background to the coordination chemistry of hydrazine carbodithio­ates, see: Ravoof et al. (2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871-876.]). For the synthesis, see: Ravoof et al. (2004[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., Cowley, A. R. & Ali, M. A. (2004). Polyhedron, 23, 2491-2498.]). For related structures, see: Hossain et al. (1996[Hossain, M. E., Alam, M. N., Begum, J., Ali, M. A., Nazimuddin, M., Smith, F. E. & Hynes, R. C. (1996). Inorg. Chim. Acta, 249, 207-213.]); Paulus et al. (2011[Paulus, G., Crouse, K. A., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1370-o1371.]). For H-atom treatment in the refinement, see: Cooper et al. (2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C20H16N3S2)2]·C2H3N

  • Mr = 831.43

  • Monoclinic, P 21 /n

  • a = 12.5918 (3) Å

  • b = 14.0025 (3) Å

  • c = 22.2129 (5) Å

  • β = 100.429 (2)°

  • V = 3851.79 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 150 K

  • 0.27 × 0.18 × 0.04 mm

Data collection
  • Oxford Diffraction Gemini CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.85, Tmax = 0.96

  • 17196 measured reflections

  • 8678 independent reflections

  • 7022 reflections with I > 2.0σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.081

  • S = 0.99

  • 8677 reflections

  • 487 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N102 2.1346 (17)
Zn1—S105 2.4403 (6)
Zn1—N115 2.2288 (17)
Zn1—N202 2.1160 (17)
Zn1—S205 2.4516 (6)
Zn1—N215 2.3188 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C216—H2161⋯N103 0.95 2.62 3.285 (3) 127

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The title compound was preferentially formed during the synthesis of the tridentate Schiff base with zinc saccharinate, by eliminating the saccharinate anion and instead coordinating one metal ion with two tridentate deprotonated Schiff base moieties. Background on the coordination chemistry of hydrazine carbodithioates is given by Ravoof et al. (2010). Similar Cu(II) complexes have been previously synthesized by Hossain et al. (1996).

There is one independent molecule in the asymmetric unit which contains the ZnII ion coordinated to two tridentate Schiff bases via the pyridyl nitrogen (N115, N215), azomethine nitrogen (N102, N202) and thiolate sulfur (S105, S205) atoms (Fig. 1). A solvent acetonitrile molecule in also present in the lattice. The coordination of the metal ion is distorted octahedral with equatorial angles ranging from 73.24 (6)° to 120.54 (5)°. The angle between the planes containing the atoms of the tridentate chelating rings is 83.65 (5). The planes containing the benzyl rings attached to the sulfur atom on both Schiff bases are almost parallel to each other with an angle of 16.41 (10). Similarly, the benzyl rings on the ketone moiety of the two Schiff bases are also almost parallel with an angle of 11.69 (9)°. However, the pyridine rings of the ketone moiety of the two Schiff bases are at an angle of 66.52 (10)°.

The packing diagram viewed along the b axis shows an arrangement where the benzyl ring of the ketone moiety of Schiff base 2 are arranged in such a way that it is facing each other between molecules. The crystal packing is consolidated by weak C—H···N hydrogen bonding interactions (Table 2).

For related structures, see: Hossain et al. (1996); Ravoof et al. (2010); Paulus et al. (2011).

Related literature top

For background to the coordination chemistry of hydrazine carbodithioates, see: Ravoof et al. (2010). For the synthesis, see: Ravoof et al. (2004). For related structures, see: Hossain et al. (1996); Paulus et al. (2011). For H-atom treatment in the refinement, see: Cooper et al. (2010).

Experimental top

Zinc saccharinate, [Zn(sac)2(H2O)4]. 2H2O was prepared according to the method outlined in Ravoof et al. (2004). The 2-benzoylpyridine Schiff base of S-benzyldithiocarbazate was prepared following the method by Hossain et al. (1996). The Schiff base was dissolved in acetonitrile (50 ml) and mixed with an equimolar quantity of zinc saccharinate in acetonitrile (25 ml). The resulting mixture was heated on a water bath until the volume reduced to about 30 ml. On standing overnight, the mixture yielded orange crystals which were filtered off, washed with acetonitrile and dried in a desiccator over anhydrous silica gel, overnight. Crystals of the zinc complex suitable for X-ray diffraction analysis were obtained by recrystallisation from a mixture of acetonitrile, THF and chloroform. Slow evaporation over 3 weeks yielded crystals suitable for diffraction experiments.

Refinement top

H atoms were all located in difference maps, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010).

Structure description top

The title compound was preferentially formed during the synthesis of the tridentate Schiff base with zinc saccharinate, by eliminating the saccharinate anion and instead coordinating one metal ion with two tridentate deprotonated Schiff base moieties. Background on the coordination chemistry of hydrazine carbodithioates is given by Ravoof et al. (2010). Similar Cu(II) complexes have been previously synthesized by Hossain et al. (1996).

There is one independent molecule in the asymmetric unit which contains the ZnII ion coordinated to two tridentate Schiff bases via the pyridyl nitrogen (N115, N215), azomethine nitrogen (N102, N202) and thiolate sulfur (S105, S205) atoms (Fig. 1). A solvent acetonitrile molecule in also present in the lattice. The coordination of the metal ion is distorted octahedral with equatorial angles ranging from 73.24 (6)° to 120.54 (5)°. The angle between the planes containing the atoms of the tridentate chelating rings is 83.65 (5). The planes containing the benzyl rings attached to the sulfur atom on both Schiff bases are almost parallel to each other with an angle of 16.41 (10). Similarly, the benzyl rings on the ketone moiety of the two Schiff bases are also almost parallel with an angle of 11.69 (9)°. However, the pyridine rings of the ketone moiety of the two Schiff bases are at an angle of 66.52 (10)°.

The packing diagram viewed along the b axis shows an arrangement where the benzyl ring of the ketone moiety of Schiff base 2 are arranged in such a way that it is facing each other between molecules. The crystal packing is consolidated by weak C—H···N hydrogen bonding interactions (Table 2).

For related structures, see: Hossain et al. (1996); Ravoof et al. (2010); Paulus et al. (2011).

For background to the coordination chemistry of hydrazine carbodithioates, see: Ravoof et al. (2010). For the synthesis, see: Ravoof et al. (2004). For related structures, see: Hossain et al. (1996); Paulus et al. (2011). For H-atom treatment in the refinement, see: Cooper et al. (2010).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. Molecular packing diagram of the title compound viewed along the b axis. Hydrogen atoms are omitted for clarity.
Bis{S-benzyl 3-[(phenyl)(pyridin-2-yl)methylidene]dithiocarbazato}zinc acetonitrile monosolvate top
Crystal data top
[Zn(C20H16N3S2)2]·C2H3NF(000) = 1720
Mr = 831.43Dx = 1.434 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6190 reflections
a = 12.5918 (3) Åθ = 2–29°
b = 14.0025 (3) ŵ = 0.90 mm1
c = 22.2129 (5) ÅT = 150 K
β = 100.429 (2)°Prismatic, yellow
V = 3851.79 (14) Å30.27 × 0.18 × 0.04 mm
Z = 4
Data collection top
Oxford Diffraction Gemini CCD
diffractometer
8678 independent reflections
Radiation source: sealed X-ray tube, Oxford Diffraction Enhance X-ray7022 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.032
φ scansθmax = 28.8°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 1217
Tmin = 0.85, Tmax = 0.96k = 1717
17196 measured reflectionsl = 2830
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.081 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.03P)2 + 2.81P],
where P = (max(Fo2,0) + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
8677 reflectionsΔρmax = 0.63 e Å3
487 parametersΔρmin = 0.56 e Å3
0 restraints
Crystal data top
[Zn(C20H16N3S2)2]·C2H3NV = 3851.79 (14) Å3
Mr = 831.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.5918 (3) ŵ = 0.90 mm1
b = 14.0025 (3) ÅT = 150 K
c = 22.2129 (5) Å0.27 × 0.18 × 0.04 mm
β = 100.429 (2)°
Data collection top
Oxford Diffraction Gemini CCD
diffractometer
8678 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
7022 reflections with I > 2.0σ(I)
Tmin = 0.85, Tmax = 0.96Rint = 0.032
17196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 0.99Δρmax = 0.63 e Å3
8677 reflectionsΔρmin = 0.56 e Å3
487 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105–107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.52827 (2)0.992001 (17)0.315553 (11)0.0157
C1010.54238 (16)0.96909 (14)0.18279 (9)0.0151
N1020.57756 (13)1.02145 (12)0.23042 (8)0.0145
N1030.66583 (14)1.07951 (12)0.22781 (8)0.0165
C1040.69996 (17)1.12459 (14)0.27968 (9)0.0170
S1050.64556 (5)1.12917 (4)0.34537 (3)0.0223
S1060.82077 (5)1.18896 (4)0.28549 (3)0.0218
C1070.86887 (19)1.16235 (16)0.21458 (10)0.0227
C1080.92336 (18)1.06688 (16)0.21381 (10)0.0201
C1091.02461 (19)1.04967 (18)0.24911 (11)0.0271
C1101.0748 (2)0.96228 (19)0.24752 (11)0.0306
C1111.0238 (2)0.88970 (18)0.21068 (11)0.0276
C1120.92326 (19)0.90545 (17)0.17534 (10)0.0257
C1130.87376 (18)0.99394 (16)0.17643 (10)0.0212
C1140.45800 (16)0.89875 (15)0.19093 (9)0.0160
N1150.43995 (14)0.88792 (12)0.24871 (8)0.0173
C1160.36456 (17)0.82562 (16)0.25873 (10)0.0211
C1170.30530 (18)0.77079 (16)0.21274 (11)0.0247
C1180.32364 (19)0.78172 (17)0.15367 (11)0.0264
C1190.40036 (18)0.84708 (16)0.14234 (10)0.0220
C1200.58251 (17)0.97419 (15)0.12405 (9)0.0169
C1210.62547 (18)0.89391 (16)0.10049 (10)0.0218
C1220.6655 (2)0.90042 (18)0.04628 (11)0.0288
C1230.6611 (2)0.98605 (18)0.01499 (10)0.0289
C1240.6161 (2)1.06568 (18)0.03757 (10)0.0281
C1250.57791 (19)1.06006 (16)0.09211 (10)0.0223
C2010.59004 (16)0.84982 (14)0.41713 (9)0.0150
N2020.51528 (13)0.90998 (12)0.39390 (8)0.0157
N2030.42040 (14)0.90721 (13)0.41716 (8)0.0193
C2040.34919 (17)0.96989 (16)0.39193 (10)0.0189
S2050.35673 (4)1.05422 (4)0.33664 (3)0.0213
S2060.22568 (5)0.96742 (5)0.41839 (3)0.0309
C2070.2312 (2)0.85102 (19)0.45623 (11)0.0322
C2080.22822 (18)0.76718 (18)0.41302 (11)0.0276
C2090.14642 (19)0.7582 (2)0.36166 (12)0.0346
C2100.1418 (2)0.6803 (2)0.32314 (12)0.0394
C2110.2202 (2)0.6104 (2)0.33423 (13)0.0409
C2120.3031 (2)0.61924 (19)0.38429 (13)0.0391
C2130.3062 (2)0.69618 (18)0.42340 (11)0.0310
C2140.68809 (17)0.85023 (14)0.38898 (9)0.0155
N2150.67706 (14)0.89154 (12)0.33326 (8)0.0163
C2160.76099 (17)0.88769 (15)0.30420 (10)0.0192
C2170.85827 (18)0.84506 (16)0.32896 (10)0.0220
C2180.87086 (17)0.80787 (15)0.38733 (10)0.0208
C2190.78445 (17)0.81014 (15)0.41769 (10)0.0192
C2200.58100 (16)0.77931 (15)0.46577 (9)0.0157
C2210.59856 (18)0.68281 (16)0.45448 (10)0.0204
C2220.58656 (19)0.61414 (16)0.49780 (11)0.0245
C2230.55935 (19)0.64118 (17)0.55269 (10)0.0260
C2240.54377 (18)0.73704 (17)0.56474 (10)0.0237
C2250.55425 (17)0.80586 (16)0.52144 (9)0.0189
C3010.5638 (2)0.54258 (19)0.08460 (13)0.0421
C3020.5150 (2)0.63022 (19)0.05801 (11)0.0308
N3030.4777 (2)0.69814 (17)0.03609 (10)0.0421
H10710.92131.21320.21110.0279*
H10720.80691.16710.18090.0280*
H10911.05971.09950.27500.0331*
H11011.14430.95110.27010.0389*
H11111.05830.82880.20940.0346*
H11210.88770.85600.15000.0322*
H11310.80411.00540.15100.0267*
H11610.35280.81990.30020.0264*
H11710.25300.72720.22240.0297*
H11810.28350.74520.12120.0328*
H11910.41380.85670.10190.0273*
H12110.62880.83420.12220.0266*
H12210.69650.84470.03070.0360*
H12310.68900.98970.02200.0349*
H12410.61061.12550.01600.0344*
H12510.54791.11500.10790.0278*
H20710.29680.84790.48860.0407*
H20720.16550.84900.47580.0406*
H20910.09200.80790.35270.0422*
H21010.08450.67520.28970.0485*
H21110.21790.55660.30740.0489*
H21210.35920.57280.39160.0497*
H21310.36340.70180.45920.0396*
H21610.75360.91490.26450.0237*
H21710.91460.84310.30630.0266*
H21810.93840.78100.40670.0256*
H21910.78900.78450.45860.0233*
H22110.61860.66410.41650.0255*
H22210.59700.54790.48910.0300*
H22310.55120.59400.58290.0323*
H22410.52640.75530.60380.0282*
H22510.54270.87190.52990.0240*
H30120.53940.52970.12340.0643*
H30110.64060.55070.09060.0637*
H30130.54320.49200.05660.0642*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01798 (13)0.01668 (12)0.01312 (12)0.00072 (10)0.00433 (10)0.00122 (10)
C1010.0149 (10)0.0139 (10)0.0156 (10)0.0010 (8)0.0004 (8)0.0023 (8)
N1020.0142 (8)0.0126 (8)0.0155 (8)0.0019 (7)0.0003 (7)0.0011 (7)
N1030.0180 (9)0.0146 (9)0.0167 (9)0.0030 (7)0.0022 (7)0.0005 (7)
C1040.0204 (11)0.0111 (10)0.0189 (11)0.0026 (8)0.0023 (9)0.0022 (8)
S1050.0278 (3)0.0216 (3)0.0190 (3)0.0035 (2)0.0079 (2)0.0067 (2)
S1060.0242 (3)0.0198 (3)0.0209 (3)0.0079 (2)0.0026 (2)0.0038 (2)
C1070.0239 (12)0.0229 (12)0.0221 (11)0.0070 (10)0.0060 (10)0.0035 (9)
C1080.0207 (11)0.0233 (12)0.0178 (11)0.0053 (9)0.0077 (9)0.0037 (9)
C1090.0259 (12)0.0316 (13)0.0232 (12)0.0078 (11)0.0029 (10)0.0008 (10)
C1100.0218 (12)0.0416 (15)0.0280 (13)0.0016 (11)0.0032 (11)0.0045 (11)
C1110.0287 (13)0.0325 (14)0.0241 (12)0.0064 (11)0.0113 (11)0.0029 (10)
C1120.0284 (13)0.0291 (13)0.0215 (12)0.0023 (11)0.0101 (10)0.0046 (10)
C1130.0178 (11)0.0282 (12)0.0181 (11)0.0031 (9)0.0044 (9)0.0012 (9)
C1140.0156 (10)0.0150 (10)0.0166 (10)0.0012 (8)0.0009 (9)0.0003 (8)
N1150.0180 (9)0.0168 (9)0.0178 (9)0.0003 (7)0.0050 (8)0.0008 (7)
C1160.0220 (11)0.0205 (11)0.0227 (11)0.0017 (9)0.0098 (10)0.0003 (9)
C1170.0195 (11)0.0230 (12)0.0333 (13)0.0069 (10)0.0091 (10)0.0027 (10)
C1180.0226 (12)0.0273 (12)0.0283 (13)0.0085 (10)0.0019 (11)0.0059 (10)
C1190.0224 (11)0.0243 (12)0.0190 (11)0.0057 (10)0.0031 (10)0.0012 (9)
C1200.0163 (10)0.0204 (11)0.0128 (10)0.0057 (9)0.0007 (8)0.0006 (8)
C1210.0255 (12)0.0211 (11)0.0185 (11)0.0004 (9)0.0031 (10)0.0003 (9)
C1220.0303 (13)0.0330 (14)0.0243 (12)0.0030 (11)0.0082 (11)0.0088 (11)
C1230.0296 (13)0.0420 (15)0.0164 (11)0.0131 (12)0.0077 (10)0.0047 (11)
C1240.0373 (14)0.0281 (13)0.0182 (11)0.0119 (11)0.0035 (11)0.0046 (10)
C1250.0290 (12)0.0214 (11)0.0156 (11)0.0047 (10)0.0021 (10)0.0004 (9)
C2010.0161 (10)0.0152 (10)0.0137 (10)0.0003 (8)0.0028 (9)0.0009 (8)
N2020.0144 (8)0.0188 (9)0.0151 (9)0.0016 (7)0.0056 (7)0.0001 (7)
N2030.0153 (9)0.0253 (10)0.0192 (9)0.0040 (8)0.0083 (8)0.0017 (8)
C2040.0176 (10)0.0238 (11)0.0164 (10)0.0037 (9)0.0058 (9)0.0041 (9)
S2050.0210 (3)0.0203 (3)0.0225 (3)0.0064 (2)0.0035 (2)0.0022 (2)
S2060.0202 (3)0.0392 (4)0.0365 (3)0.0097 (3)0.0140 (3)0.0043 (3)
C2070.0254 (13)0.0447 (16)0.0299 (13)0.0013 (12)0.0136 (11)0.0072 (12)
C2080.0206 (12)0.0377 (14)0.0267 (12)0.0046 (11)0.0101 (10)0.0079 (11)
C2090.0185 (12)0.0499 (17)0.0352 (14)0.0056 (12)0.0048 (11)0.0121 (13)
C2100.0319 (15)0.0522 (18)0.0321 (14)0.0204 (14)0.0006 (12)0.0077 (13)
C2110.0484 (17)0.0385 (16)0.0355 (15)0.0211 (14)0.0063 (14)0.0019 (12)
C2120.0406 (16)0.0307 (14)0.0448 (16)0.0017 (12)0.0051 (14)0.0070 (12)
C2130.0270 (13)0.0353 (14)0.0298 (13)0.0052 (11)0.0028 (11)0.0077 (11)
C2140.0160 (10)0.0133 (10)0.0177 (10)0.0007 (8)0.0047 (9)0.0003 (8)
N2150.0184 (9)0.0145 (9)0.0159 (9)0.0017 (7)0.0029 (8)0.0022 (7)
C2160.0216 (11)0.0183 (11)0.0200 (11)0.0002 (9)0.0098 (9)0.0024 (9)
C2170.0183 (11)0.0235 (12)0.0263 (12)0.0019 (9)0.0094 (10)0.0000 (10)
C2180.0146 (10)0.0190 (11)0.0286 (12)0.0032 (9)0.0033 (10)0.0020 (9)
C2190.0193 (11)0.0200 (11)0.0184 (11)0.0004 (9)0.0037 (9)0.0031 (9)
C2200.0119 (10)0.0192 (10)0.0161 (10)0.0022 (8)0.0027 (8)0.0030 (8)
C2210.0215 (11)0.0228 (11)0.0187 (11)0.0015 (9)0.0085 (10)0.0004 (9)
C2220.0295 (13)0.0168 (11)0.0295 (12)0.0035 (10)0.0114 (11)0.0027 (9)
C2230.0283 (12)0.0268 (12)0.0245 (12)0.0029 (10)0.0089 (11)0.0099 (10)
C2240.0274 (12)0.0286 (12)0.0166 (11)0.0044 (10)0.0083 (10)0.0022 (9)
C2250.0184 (11)0.0206 (11)0.0176 (11)0.0024 (9)0.0030 (9)0.0000 (9)
C3010.0438 (17)0.0337 (15)0.0425 (16)0.0025 (13)0.0089 (14)0.0034 (13)
C3020.0297 (13)0.0346 (14)0.0253 (13)0.0064 (12)0.0024 (11)0.0048 (11)
N3030.0498 (15)0.0334 (13)0.0372 (13)0.0009 (11)0.0082 (12)0.0027 (11)
Geometric parameters (Å, º) top
Zn1—N1022.1346 (17)C201—N2021.299 (3)
Zn1—S1052.4403 (6)C201—C2141.481 (3)
Zn1—N1152.2288 (17)C201—C2201.483 (3)
Zn1—N2022.1160 (17)N202—N2031.385 (2)
Zn1—S2052.4516 (6)N203—C2041.306 (3)
Zn1—N2152.3188 (17)C204—S2051.719 (2)
C101—N1021.297 (3)C204—S2061.760 (2)
C101—C1141.484 (3)S206—C2071.829 (3)
C101—C1201.484 (3)C207—C2081.512 (4)
N102—N1031.387 (2)C207—H20710.994
N103—C1041.316 (3)C207—H20721.002
C104—S1051.722 (2)C208—C2091.397 (3)
C104—S1061.753 (2)C208—C2131.387 (3)
S106—C1071.825 (2)C209—C2101.382 (4)
C107—C1081.504 (3)C209—H20910.971
C107—H10710.984C210—C2111.381 (4)
C107—H10720.982C210—H21010.939
C108—C1091.392 (3)C211—C2121.386 (4)
C108—C1131.391 (3)C211—H21110.957
C109—C1101.380 (4)C212—C2131.380 (4)
C109—H10910.960C212—H21210.952
C110—C1111.387 (3)C213—H21310.974
C110—H11010.940C214—N2151.350 (3)
C111—C1121.382 (3)C214—C2191.383 (3)
C111—H11110.960N215—C2161.335 (3)
C112—C1131.389 (3)C216—C2171.384 (3)
C112—H11210.952C216—H21610.949
C113—H11310.967C217—C2181.379 (3)
C114—N1151.352 (3)C217—H21710.942
C114—C1191.390 (3)C218—C2191.380 (3)
N115—C1161.337 (3)C218—H21810.958
C116—C1171.383 (3)C219—H21910.970
C116—H11610.961C220—C2211.399 (3)
C117—C1181.381 (3)C220—C2251.390 (3)
C117—H11710.950C221—C2221.388 (3)
C118—C1191.386 (3)C221—H22110.960
C118—H11810.952C222—C2231.378 (3)
C119—H11910.954C222—H22210.961
C120—C1211.390 (3)C223—C2241.389 (3)
C120—C1251.392 (3)C223—H22310.959
C121—C1221.390 (3)C224—C2251.385 (3)
C121—H12110.962C224—H22410.967
C122—C1231.382 (3)C225—H22510.961
C122—H12210.964C301—C3021.449 (4)
C123—C1241.385 (3)C301—H30120.983
C123—H12310.951C301—H30110.958
C124—C1251.384 (3)C301—H30130.947
C124—H12410.962C302—N3031.131 (3)
C125—H12510.951
N102—Zn1—S10580.19 (5)C120—C125—C124120.4 (2)
N102—Zn1—N11574.11 (6)C120—C125—H1251119.5
S105—Zn1—N115154.15 (5)C124—C125—H1251120.0
N102—Zn1—N202155.73 (7)N202—C201—C214115.42 (18)
S105—Zn1—N202109.70 (5)N202—C201—C220125.14 (19)
N115—Zn1—N20295.14 (6)C214—C201—C220119.33 (17)
N102—Zn1—S205120.54 (5)Zn1—N202—C201121.37 (14)
S105—Zn1—S205100.33 (2)Zn1—N202—N203121.48 (13)
N115—Zn1—S20590.52 (5)C201—N202—N203116.47 (17)
N202—Zn1—S20580.43 (5)N202—N203—C204113.11 (17)
N102—Zn1—N21584.94 (6)N203—C204—S205130.23 (17)
S105—Zn1—N21590.04 (5)N203—C204—S206115.02 (16)
N115—Zn1—N21590.39 (6)S205—C204—S206114.75 (12)
N202—Zn1—N21573.24 (6)C204—S205—Zn193.26 (7)
S205—Zn1—N215153.63 (5)C204—S206—C207102.05 (11)
N102—C101—C114114.98 (18)S206—C207—C208113.92 (17)
N102—C101—C120124.71 (19)S206—C207—H2071109.2
C114—C101—C120120.29 (17)C208—C207—H2071110.3
Zn1—N102—C101120.13 (14)S206—C207—H2072105.1
Zn1—N102—N103120.93 (12)C208—C207—H2072109.0
C101—N102—N103117.09 (17)H2071—C207—H2072109.1
N102—N103—C104112.46 (17)C207—C208—C209121.2 (2)
N103—C104—S105130.01 (17)C207—C208—C213121.0 (2)
N103—C104—S106116.92 (16)C209—C208—C213117.8 (2)
S105—C104—S106113.05 (12)C208—C209—C210121.2 (3)
C104—S105—Zn193.14 (7)C208—C209—H2091119.4
C104—S106—C107104.51 (10)C210—C209—H2091119.4
S106—C107—C108114.49 (15)C209—C210—C211120.1 (3)
S106—C107—H1071104.6C209—C210—H2101119.3
C108—C107—H1071109.2C211—C210—H2101120.7
S106—C107—H1072107.6C210—C211—C212119.3 (3)
C108—C107—H1072110.7C210—C211—H2111120.4
H1071—C107—H1072110.1C212—C211—H2111120.2
C107—C108—C109121.4 (2)C211—C212—C213120.4 (3)
C107—C108—C113120.2 (2)C211—C212—H2121120.2
C109—C108—C113118.4 (2)C213—C212—H2121119.3
C108—C109—C110121.0 (2)C208—C213—C212121.1 (2)
C108—C109—H1091119.2C208—C213—H2131118.3
C110—C109—H1091119.8C212—C213—H2131120.6
C109—C110—C111120.0 (2)C201—C214—N215115.68 (18)
C109—C110—H1101121.3C201—C214—C219122.15 (19)
C111—C110—H1101118.7N215—C214—C219122.17 (19)
C110—C111—C112119.8 (2)Zn1—N215—C214111.17 (13)
C110—C111—H1111120.4Zn1—N215—C216128.93 (14)
C112—C111—H1111119.9C214—N215—C216117.82 (18)
C111—C112—C113120.0 (2)N215—C216—C217123.1 (2)
C111—C112—H1121120.3N215—C216—H2161118.6
C113—C112—H1121119.7C217—C216—H2161118.3
C108—C113—C112120.7 (2)C216—C217—C218118.6 (2)
C108—C113—H1131119.3C216—C217—H2171119.8
C112—C113—H1131120.0C218—C217—H2171121.5
C101—C114—N115115.93 (18)C217—C218—C219118.9 (2)
C101—C114—C119122.40 (19)C217—C218—H2181120.8
N115—C114—C119121.67 (19)C219—C218—H2181120.3
Zn1—N115—C114114.19 (13)C214—C219—C218119.2 (2)
Zn1—N115—C116126.82 (14)C214—C219—H2191118.7
C114—N115—C116118.53 (18)C218—C219—H2191122.1
N115—C116—C117122.9 (2)C201—C220—C221118.48 (18)
N115—C116—H1161116.8C201—C220—C225122.21 (19)
C117—C116—H1161120.3C221—C220—C225119.30 (19)
C116—C117—C118118.6 (2)C220—C221—C222120.3 (2)
C116—C117—H1171119.5C220—C221—H2211119.8
C118—C117—H1171121.8C222—C221—H2211119.9
C117—C118—C119119.2 (2)C221—C222—C223119.9 (2)
C117—C118—H1181120.2C221—C222—H2221119.6
C119—C118—H1181120.6C223—C222—H2221120.5
C114—C119—C118119.1 (2)C222—C223—C224120.1 (2)
C114—C119—H1191120.1C222—C223—H2231120.3
C118—C119—H1191120.9C224—C223—H2231119.6
C101—C120—C121120.65 (19)C223—C224—C225120.3 (2)
C101—C120—C125120.0 (2)C223—C224—H2241119.4
C121—C120—C125119.3 (2)C225—C224—H2241120.3
C120—C121—C122120.0 (2)C220—C225—C224120.1 (2)
C120—C121—H1211119.9C220—C225—H2251120.1
C122—C121—H1211120.0C224—C225—H2251119.8
C121—C122—C123120.3 (2)C302—C301—H3012109.6
C121—C122—H1221119.5C302—C301—H3011107.4
C123—C122—H1221120.2H3012—C301—H3011111.6
C122—C123—C124119.9 (2)C302—C301—H3013108.6
C122—C123—H1231119.5H3012—C301—H3013110.3
C124—C123—H1231120.6H3011—C301—H3013109.2
C123—C124—C125120.0 (2)C301—C302—N303178.5 (3)
C123—C124—H1241121.2C301—C302—N303178.5 (3)
C125—C124—H1241118.8C301—C302—N303178.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C216—H2161···N1030.952.623.285 (3)127

Experimental details

Crystal data
Chemical formula[Zn(C20H16N3S2)2]·C2H3N
Mr831.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)12.5918 (3), 14.0025 (3), 22.2129 (5)
β (°) 100.429 (2)
V3)3851.79 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.27 × 0.18 × 0.04
Data collection
DiffractometerOxford Diffraction Gemini CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.85, 0.96
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
17196, 8678, 7022
Rint0.032
(sin θ/λ)max1)0.679
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.081, 0.99
No. of reflections8677
No. of parameters487
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.56

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Selected bond lengths (Å) top
Zn1—N1022.1346 (17)Zn1—N2022.1160 (17)
Zn1—S1052.4403 (6)Zn1—S2052.4516 (6)
Zn1—N1152.2288 (17)Zn1—N2152.3188 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C216—H2161···N1030.952.623.285 (3)127
 

Acknowledgements

Support for this project came from Universiti Putra Malaysia (UPM) under the research University Grant Scheme (RUGS No. 05–01-11–1243RU) and the Malaysian Fundamental Research Grant Scheme (FRGS No: 01–03-11–986FR). SAO wishes to thank UPM for a Graduate Research Fellowship award.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHossain, M. E., Alam, M. N., Begum, J., Ali, M. A., Nazimuddin, M., Smith, F. E. & Hynes, R. C. (1996). Inorg. Chim. Acta, 249, 207–213.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPaulus, G., Crouse, K. A., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1370–o1371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., Cowley, A. R. & Ali, M. A. (2004). Polyhedron, 23, 2491–2498.  Web of Science CSD CrossRef CAS Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m390-m391
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds