organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyrrolidin-1-ium 2-(naphthalen-1-yl)acetate–2-(naphthalen-1-yl)acetic acid (1/1)

aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, bJiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, cHuaiyin Insititute of Technology, Huaiyin 223003, People's Republic of China, dDepartment of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, and eQian'an College, Hebei United University, Tangshan 063009, People's Republic of China
*Correspondence e-mail: yfj1999@126.com

(Received 24 February 2012; accepted 7 March 2012; online 17 March 2012)

In the title compound, C4H10N+·C12H9O2·C12H10O2, the pyrrolidine ring adopts an envelope conformation and the dihedral angle between the planes of the two naphthalene ring systems is 8.34 (10)°. The crystal structure is stabilized by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the crystal structures of related naphthalene-1-yl-acetate complexes, see: Yin et al. (2010[Yin, F.-J., Zhao, H. & Hu, X.-L. (2010). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 40, 606-612.]); Chen et al. (2004[Chen, L.-F., Zhang, J., Song, L.-J., Wang, W.-G. & Ju, Z.-F. (2004). Acta Cryst. E60, m1032-m1034.]); Yang et al. (2008[Yang, Y.-Q., Li, C.-H. L. W. & Kuang, Y.-F. (2008). Chin. J. Struct. Chem. 27, 404-408.]); Tang et al. (2006[Tang, D.-X., Feng, L.-X. & Zhang, X.-Q. (2006). Chin. J. Inorg. Chem. 22, 1891-1894.]); Ji et al. (2011[Ji, L.-L., Liu, J.-S. & Song, W.-D. (2011). Acta Cryst. E67, m606.]).

[Scheme 1]

Experimental

Crystal data
  • C4H10N+·C12H9O2·C12H10O2

  • Mr = 443.52

  • Monoclinic, P 21 /c

  • a = 9.4696 (12) Å

  • b = 19.359 (2) Å

  • c = 14.3888 (14) Å

  • β = 115.975 (6)°

  • V = 2371.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.24 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) Tmin = 0.980, Tmax = 0.988

  • 21508 measured reflections

  • 5453 independent reflections

  • 3296 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.211

  • S = 1.05

  • 5453 reflections

  • 298 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1B—H1B⋯O2A 0.82 1.77 2.581 (2) 170
N1C—H1C3⋯O2A 0.90 1.83 2.728 (3) 175
N1C—H1C4⋯O1Ai 0.90 1.83 2.719 (3) 169
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1-Naphthyl acetate is well known as a ligand capable of forming transition metal complexes (Yin et al., 2011; Liu et al., 2007; Yang et al., 2008; Tang et al., 2006 ; Ji et al., 2011). We intended to prepare a copper(II) complex of 1-naphthyl acetate and the co-ligand pyrrolidine, but the title compound was obtained and we report its crystal strcture here.

The pyrrolidine ring adopts an envelope conformation, with C1C as the flap atom, and the dihedral angle between the planes of the two naphthalene ring systems is 8.34 (10)° (Fig. 1). The crystal structure is stabilized by intermolecular O—H···O and N—H···O hydrogen bond interactions (Fig. 2 and Table 1).

Related literature top

For the crystal structures of related naphthalene-1-yl-acetate complexes, see: Yin et al. (2010); Chen et al. (2004); Yang et al. (2008); Tang et al. (2006); Ji et al. (2011).

Experimental top

The title compound was synthesized by the reaction of 1-naphthylacetic acid (93 mg, 0.5 mmol), pyrrolidine (17.78 mg, 0.25 mmol) and cupric acetate (100 mg, 0.5 mmol), in 16 ml of a water-ethanol (2:1) mixture under solvothermal conditions. The mixture was homogenized and transferred to a sealed Teflon-lined solvothermal bomb (volume 25 ml) and heated to 120°C for three days. After cooling, colorless crystals of the title compound were obtained.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with Csp2—H = 0.93 Å, Cmethylene—H = 0.97 Å; O—H = 0.82 Å and N—H = 0.90 Å; Uiso(H) = xUeq(C,N,O), where x = 1.5 for O—H and 1.2 for all other H atoms.

Structure description top

1-Naphthyl acetate is well known as a ligand capable of forming transition metal complexes (Yin et al., 2011; Liu et al., 2007; Yang et al., 2008; Tang et al., 2006 ; Ji et al., 2011). We intended to prepare a copper(II) complex of 1-naphthyl acetate and the co-ligand pyrrolidine, but the title compound was obtained and we report its crystal strcture here.

The pyrrolidine ring adopts an envelope conformation, with C1C as the flap atom, and the dihedral angle between the planes of the two naphthalene ring systems is 8.34 (10)° (Fig. 1). The crystal structure is stabilized by intermolecular O—H···O and N—H···O hydrogen bond interactions (Fig. 2 and Table 1).

For the crystal structures of related naphthalene-1-yl-acetate complexes, see: Yin et al. (2010); Chen et al. (2004); Yang et al. (2008); Tang et al. (2006); Ji et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonding is shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound. Hydrogen bonding is shown as dashed lines and H atoms not involved in hydrogen bonding are omitted for clarity [Symmetry code: (i) -x+1, -y+1, -z+1].
Pyrrolidin-1-ium 2-(naphthalen-1-yl)acetate–2-(naphthalen-1-yl)acetic acid (1/1) top
Crystal data top
C4H10N+·C12H9O2·C12H10O2F(000) = 944
Mr = 443.52Dx = 1.242 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2134 reflections
a = 9.4696 (12) Åθ = 2.6–26.3°
b = 19.359 (2) ŵ = 0.08 mm1
c = 14.3888 (14) ÅT = 298 K
β = 115.975 (6)°Block, colourless
V = 2371.3 (5) Å30.24 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5453 independent reflections
Radiation source: fine-focus sealed tube3296 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.980, Tmax = 0.988k = 2525
21508 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1035P)2 + 0.5472P]
where P = (Fo2 + 2Fc2)/3
5453 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.43 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C4H10N+·C12H9O2·C12H10O2V = 2371.3 (5) Å3
Mr = 443.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4696 (12) ŵ = 0.08 mm1
b = 19.359 (2) ÅT = 298 K
c = 14.3888 (14) Å0.24 × 0.18 × 0.15 mm
β = 115.975 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5453 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3296 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.988Rint = 0.024
21508 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0621 restraint
wR(F2) = 0.211H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
5453 reflectionsΔρmin = 0.22 e Å3
298 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.7694 (3)0.56919 (12)0.50959 (19)0.0600 (6)
C2A0.8778 (3)0.63106 (13)0.5294 (2)0.0737 (7)
H2A10.98370.61730.57660.088*
H2A20.87890.64450.46480.088*
C3A0.8323 (3)0.69269 (12)0.57397 (19)0.0647 (6)
C4A0.9099 (4)0.70977 (17)0.6750 (2)0.0933 (9)
H4A0.99630.68360.71790.112*
C5A0.8630 (6)0.7670 (2)0.7178 (3)0.1164 (13)
H5A0.91990.77860.78710.140*
C6A0.7344 (6)0.80433 (19)0.6562 (3)0.1088 (11)
H6A0.70200.84070.68440.131*
C7A0.6519 (4)0.78932 (13)0.5536 (2)0.0806 (8)
C8A0.7010 (3)0.73361 (11)0.51151 (19)0.0606 (6)
C9A0.6117 (3)0.71985 (14)0.4042 (2)0.0791 (7)
H9A0.64160.68320.37490.095*
C10A0.4867 (5)0.75741 (19)0.3438 (3)0.1127 (13)
H10A0.43240.74710.27390.135*
C11A0.4388 (5)0.8109 (2)0.3846 (4)0.1167 (13)
H11A0.35050.83600.34170.140*
C12A0.5152 (4)0.82859 (16)0.4856 (4)0.1041 (11)
H12A0.48030.86570.51110.125*
O1A0.7109 (2)0.55882 (9)0.56956 (15)0.0790 (5)
O2A0.7498 (2)0.52969 (9)0.43444 (13)0.0746 (5)
C1B0.8789 (2)0.49657 (11)0.25477 (15)0.0510 (5)
C2B0.9675 (3)0.51230 (13)0.19270 (18)0.0632 (6)
H2B11.07650.52050.24030.076*
H2B20.92620.55490.15490.076*
C3B0.9623 (2)0.45772 (11)0.11699 (16)0.0544 (5)
C4B1.0854 (3)0.41337 (14)0.14395 (19)0.0705 (6)
H4B1.16850.41660.20960.085*
C5B1.0904 (3)0.36336 (15)0.0760 (2)0.0816 (8)
H5B1.17620.33370.09700.098*
C6B0.9730 (3)0.35751 (13)0.0191 (2)0.0759 (7)
H6B0.97800.32380.06370.091*
C7B0.8406 (3)0.40219 (12)0.05298 (17)0.0606 (6)
C8B0.8342 (2)0.45270 (10)0.01616 (16)0.0507 (5)
C9B0.7024 (3)0.49680 (12)0.0182 (2)0.0654 (6)
H9B0.69570.52980.02680.078*
C10B0.5854 (3)0.49204 (17)0.1154 (2)0.0854 (8)
H10B0.49940.52150.13620.102*
C11B0.5930 (4)0.4435 (2)0.1842 (2)0.0950 (10)
H11B0.51330.44130.25130.114*
C12B0.7175 (4)0.39886 (16)0.1536 (2)0.0817 (8)
H12B0.72080.36600.19980.098*
O1B0.8904 (2)0.54736 (8)0.31785 (13)0.0770 (5)
H1B0.84080.53770.35060.115*
O2B0.80792 (19)0.44414 (8)0.24999 (13)0.0694 (5)
C1C0.6675 (5)0.3887 (2)0.5480 (2)0.1064 (11)
H1C10.72750.42400.59730.128*
H1C20.59640.36700.57130.128*
C2C0.7708 (4)0.3378 (3)0.5353 (4)0.1417 (17)
H2C10.78460.29870.58060.170*
H2C20.87300.35800.55270.170*
C3C0.6962 (4)0.3147 (2)0.4238 (4)0.1201 (13)
H3C10.77340.31380.39650.144*
H3C20.65210.26870.41780.144*
C4C0.5702 (4)0.36571 (15)0.3665 (2)0.0844 (8)
H4C10.58720.38680.31110.101*
H4C20.46790.34370.33730.101*
N1C0.5812 (2)0.41811 (10)0.44469 (15)0.0695 (5)
H1C30.63130.45590.43800.083*
H1C40.48420.43070.43510.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0622 (12)0.0554 (12)0.0756 (15)0.0001 (10)0.0423 (12)0.0029 (11)
C2A0.0671 (14)0.0686 (15)0.1000 (19)0.0054 (11)0.0500 (14)0.0030 (13)
C3A0.0682 (14)0.0604 (13)0.0689 (12)0.0184 (11)0.0333 (11)0.0001 (11)
C4A0.096 (2)0.095 (2)0.0720 (14)0.0309 (17)0.0205 (15)0.0050 (15)
C5A0.159 (3)0.126 (3)0.0610 (18)0.062 (3)0.046 (2)0.034 (2)
C6A0.156 (3)0.086 (2)0.108 (3)0.033 (2)0.079 (3)0.023 (2)
C7A0.107 (2)0.0526 (14)0.109 (2)0.0124 (14)0.0718 (18)0.0010 (14)
C8A0.0724 (14)0.0462 (11)0.0762 (15)0.0109 (10)0.0445 (12)0.0049 (10)
C9A0.0936 (18)0.0656 (15)0.0737 (16)0.0201 (14)0.0325 (14)0.0098 (13)
C10A0.115 (3)0.082 (2)0.106 (2)0.023 (2)0.015 (2)0.034 (2)
C11A0.106 (3)0.081 (2)0.146 (4)0.005 (2)0.040 (3)0.036 (2)
C12A0.113 (2)0.0542 (16)0.173 (4)0.0067 (17)0.088 (3)0.019 (2)
O1A0.0956 (12)0.0729 (11)0.0980 (13)0.0223 (9)0.0697 (11)0.0171 (9)
O2A0.0976 (12)0.0710 (10)0.0748 (11)0.0163 (9)0.0556 (10)0.0103 (8)
C1B0.0507 (10)0.0544 (12)0.0461 (10)0.0010 (9)0.0197 (9)0.0011 (9)
C2B0.0696 (13)0.0701 (14)0.0590 (12)0.0166 (11)0.0366 (11)0.0117 (11)
C3B0.0564 (11)0.0597 (12)0.0548 (12)0.0046 (10)0.0315 (10)0.0001 (9)
C4B0.0621 (13)0.0869 (18)0.0621 (14)0.0084 (12)0.0268 (11)0.0107 (12)
C5B0.0839 (17)0.0836 (18)0.0889 (19)0.0283 (14)0.0484 (16)0.0166 (15)
C6B0.104 (2)0.0592 (14)0.0893 (19)0.0052 (13)0.0657 (17)0.0066 (13)
C7B0.0759 (14)0.0577 (13)0.0592 (13)0.0113 (11)0.0397 (11)0.0044 (10)
C8B0.0564 (11)0.0486 (11)0.0553 (11)0.0034 (9)0.0320 (10)0.0012 (9)
C9B0.0627 (13)0.0634 (14)0.0743 (15)0.0031 (11)0.0340 (12)0.0071 (11)
C10B0.0598 (14)0.097 (2)0.087 (2)0.0012 (14)0.0210 (14)0.0242 (17)
C11B0.0810 (19)0.124 (3)0.0603 (16)0.0340 (19)0.0128 (14)0.0076 (17)
C12B0.098 (2)0.0851 (18)0.0629 (15)0.0318 (16)0.0365 (15)0.0146 (13)
O1B0.1145 (14)0.0647 (10)0.0784 (11)0.0216 (9)0.0669 (11)0.0151 (8)
O2B0.0770 (10)0.0655 (10)0.0799 (11)0.0185 (8)0.0474 (9)0.0119 (8)
C1C0.116 (3)0.111 (3)0.078 (2)0.034 (2)0.0304 (18)0.0048 (18)
C2C0.078 (2)0.205 (5)0.127 (3)0.014 (3)0.032 (2)0.053 (3)
C3C0.095 (2)0.097 (2)0.163 (4)0.0124 (19)0.052 (2)0.016 (2)
C4C0.099 (2)0.0790 (18)0.0844 (18)0.0012 (15)0.0488 (16)0.0135 (15)
N1C0.0802 (12)0.0663 (12)0.0743 (13)0.0142 (10)0.0452 (11)0.0079 (10)
Geometric parameters (Å, º) top
C1A—O1A1.229 (3)C4B—C5B1.391 (4)
C1A—O2A1.270 (3)C4B—H4B0.9300
C1A—C2A1.521 (3)C5B—C6B1.338 (4)
C2A—C3A1.504 (3)C5B—H5B0.9300
C2A—H2A10.9700C6B—C7B1.422 (4)
C2A—H2A20.9700C6B—H6B0.9300
C3A—C4A1.352 (4)C7B—C12B1.408 (4)
C3A—C8A1.415 (3)C7B—C8B1.415 (3)
C4A—C5A1.430 (5)C8B—C9B1.411 (3)
C4A—H4A0.9300C9B—C10B1.354 (4)
C5A—C6A1.359 (5)C9B—H9B0.9300
C5A—H5A0.9300C10B—C11B1.390 (5)
C6A—C7A1.365 (5)C10B—H10B0.9300
C6A—H6A0.9300C11B—C12B1.369 (5)
C7A—C8A1.412 (4)C11B—H11B0.9300
C7A—C12A1.450 (5)C12B—H12B0.9300
C8A—C9A1.424 (4)O1B—H1B0.8200
C9A—C10A1.335 (4)C1C—C2C1.455 (6)
C9A—H9A0.9300C1C—N1C1.462 (4)
C10A—C11A1.362 (6)C1C—H1C10.9700
C10A—H10A0.9300C1C—H1C20.9700
C11A—C12A1.353 (5)C2C—C3C1.510 (6)
C11A—H11A0.9300C2C—H2C10.9700
C12A—H12A0.9300C2C—H2C20.9700
C1B—O2B1.203 (2)C3C—C4C1.489 (4)
C1B—O1B1.310 (2)C3C—H3C10.9700
C1B—C2B1.500 (3)C3C—H3C20.9700
C2B—C3B1.503 (3)C4C—N1C1.484 (3)
C2B—H2B10.9700C4C—H4C10.9700
C2B—H2B20.9700C4C—H4C20.9700
C3B—C4B1.360 (3)N1C—H1C30.9000
C3B—C8B1.430 (3)N1C—H1C40.9000
O1A—C1A—O2A123.8 (2)C6B—C5B—H5B119.7
O1A—C1A—C2A118.1 (2)C4B—C5B—H5B119.7
O2A—C1A—C2A118.0 (2)C5B—C6B—C7B120.8 (2)
C3A—C2A—C1A114.16 (18)C5B—C6B—H6B119.6
C3A—C2A—H2A1108.7C7B—C6B—H6B119.6
C1A—C2A—H2A1108.7C12B—C7B—C8B118.9 (2)
C3A—C2A—H2A2108.7C12B—C7B—C6B122.2 (2)
C1A—C2A—H2A2108.7C8B—C7B—C6B118.9 (2)
H2A1—C2A—H2A2107.6C9B—C8B—C7B118.4 (2)
C4A—C3A—C8A117.3 (3)C9B—C8B—C3B122.8 (2)
C4A—C3A—C2A122.0 (3)C7B—C8B—C3B118.79 (19)
C8A—C3A—C2A120.6 (2)C10B—C9B—C8B121.2 (3)
C3A—C4A—C5A121.8 (3)C10B—C9B—H9B119.4
C3A—C4A—H4A119.1C8B—C9B—H9B119.4
C5A—C4A—H4A119.1C9B—C10B—C11B120.5 (3)
C6A—C5A—C4A119.4 (3)C9B—C10B—H10B119.7
C6A—C5A—H5A120.3C11B—C10B—H10B119.7
C4A—C5A—H5A120.3C12B—C11B—C10B120.2 (3)
C5A—C6A—C7A121.1 (3)C12B—C11B—H11B119.9
C5A—C6A—H6A119.4C10B—C11B—H11B119.9
C7A—C6A—H6A119.4C11B—C12B—C7B120.7 (3)
C6A—C7A—C8A119.1 (3)C11B—C12B—H12B119.7
C6A—C7A—C12A122.5 (3)C7B—C12B—H12B119.7
C8A—C7A—C12A118.4 (3)C1B—O1B—H1B109.5
C7A—C8A—C3A121.2 (2)C2C—C1C—N1C104.1 (3)
C7A—C8A—C9A117.2 (2)C2C—C1C—H1C1110.9
C3A—C8A—C9A121.6 (2)N1C—C1C—H1C1110.9
C10A—C9A—C8A122.7 (3)C2C—C1C—H1C2110.9
C10A—C9A—H9A118.7N1C—C1C—H1C2110.9
C8A—C9A—H9A118.7H1C1—C1C—H1C2109.0
C9A—C10A—C11A120.1 (4)C1C—C2C—C3C107.8 (3)
C9A—C10A—H10A120.0C1C—C2C—H2C1110.1
C11A—C10A—H10A120.0C3C—C2C—H2C1110.1
C12A—C11A—C10A122.2 (4)C1C—C2C—H2C2110.1
C12A—C11A—H11A118.9C3C—C2C—H2C2110.1
C10A—C11A—H11A118.9H2C1—C2C—H2C2108.5
C11A—C12A—C7A119.4 (3)C4C—C3C—C2C106.3 (3)
C11A—C12A—H12A120.3C4C—C3C—H3C1110.5
C7A—C12A—H12A120.3C2C—C3C—H3C1110.5
O2B—C1B—O1B123.24 (19)C4C—C3C—H3C2110.5
O2B—C1B—C2B125.56 (19)C2C—C3C—H3C2110.5
O1B—C1B—C2B111.19 (18)H3C1—C3C—H3C2108.7
C1B—C2B—C3B116.09 (18)N1C—C4C—C3C105.1 (3)
C1B—C2B—H2B1108.3N1C—C4C—H4C1110.7
C3B—C2B—H2B1108.3C3C—C4C—H4C1110.7
C1B—C2B—H2B2108.3N1C—C4C—H4C2110.7
C3B—C2B—H2B2108.3C3C—C4C—H4C2110.7
H2B1—C2B—H2B2107.4H4C1—C4C—H4C2108.8
C4B—C3B—C8B119.1 (2)C1C—N1C—C4C109.0 (2)
C4B—C3B—C2B119.0 (2)C1C—N1C—H1C3109.9
C8B—C3B—C2B121.8 (2)C4C—N1C—H1C3109.9
C3B—C4B—C5B121.9 (2)C1C—N1C—H1C4109.9
C3B—C4B—H4B119.1C4C—N1C—H1C4109.9
C5B—C4B—H4B119.1H1C3—N1C—H1C4108.3
C6B—C5B—C4B120.6 (2)
O1A—C1A—C2A—C3A34.4 (3)C1B—C2B—C3B—C8B83.3 (3)
O2A—C1A—C2A—C3A148.4 (2)C8B—C3B—C4B—C5B0.2 (3)
C1A—C2A—C3A—C4A103.6 (3)C2B—C3B—C4B—C5B177.6 (2)
C1A—C2A—C3A—C8A73.7 (3)C3B—C4B—C5B—C6B0.2 (4)
C8A—C3A—C4A—C5A0.4 (4)C4B—C5B—C6B—C7B0.0 (4)
C2A—C3A—C4A—C5A177.8 (3)C5B—C6B—C7B—C12B177.9 (3)
C3A—C4A—C5A—C6A1.8 (5)C5B—C6B—C7B—C8B0.6 (4)
C4A—C5A—C6A—C7A1.8 (5)C12B—C7B—C8B—C9B1.4 (3)
C5A—C6A—C7A—C8A0.5 (5)C6B—C7B—C8B—C9B180.0 (2)
C5A—C6A—C7A—C12A179.4 (3)C12B—C7B—C8B—C3B177.58 (19)
C6A—C7A—C8A—C3A0.9 (3)C6B—C7B—C8B—C3B1.0 (3)
C12A—C7A—C8A—C3A179.2 (2)C4B—C3B—C8B—C9B179.7 (2)
C6A—C7A—C8A—C9A179.9 (2)C2B—C3B—C8B—C9B1.9 (3)
C12A—C7A—C8A—C9A0.0 (3)C4B—C3B—C8B—C7B0.8 (3)
C4A—C3A—C8A—C7A1.0 (3)C2B—C3B—C8B—C7B176.95 (18)
C2A—C3A—C8A—C7A176.5 (2)C7B—C8B—C9B—C10B1.0 (3)
C4A—C3A—C8A—C9A179.9 (2)C3B—C8B—C9B—C10B177.8 (2)
C2A—C3A—C8A—C9A2.6 (3)C8B—C9B—C10B—C11B0.4 (4)
C7A—C8A—C9A—C10A0.4 (4)C9B—C10B—C11B—C12B1.4 (4)
C3A—C8A—C9A—C10A179.5 (2)C10B—C11B—C12B—C7B1.1 (4)
C8A—C9A—C10A—C11A0.8 (5)C8B—C7B—C12B—C11B0.3 (4)
C9A—C10A—C11A—C12A1.0 (5)C6B—C7B—C12B—C11B178.9 (2)
C10A—C11A—C12A—C7A0.7 (5)N1C—C1C—C2C—C3C25.7 (4)
C6A—C7A—C12A—C11A179.9 (3)C1C—C2C—C3C—C4C14.4 (5)
C8A—C7A—C12A—C11A0.2 (4)C2C—C3C—C4C—N1C2.8 (4)
O2B—C1B—C2B—C3B1.4 (3)C2C—C1C—N1C—C4C28.0 (4)
O1B—C1B—C2B—C3B179.78 (19)C3C—C4C—N1C—C1C19.1 (3)
C1B—C2B—C3B—C4B98.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O2A0.821.772.581 (2)170
N1C—H1C3···O2A0.901.832.728 (3)175
N1C—H1C4···O1Ai0.901.832.719 (3)169
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H10N+·C12H9O2·C12H10O2
Mr443.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.4696 (12), 19.359 (2), 14.3888 (14)
β (°) 115.975 (6)
V3)2371.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.980, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
21508, 5453, 3296
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.211, 1.05
No. of reflections5453
No. of parameters298
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O2A0.821.772.581 (2)170.1
N1C—H1C3···O2A0.901.832.728 (3)174.6
N1C—H1C4···O1Ai0.901.832.719 (3)168.8
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Jiangsu Marine Resources Development Research Institute and Huaihai Institute of Technology for support of this work.

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L.-F., Zhang, J., Song, L.-J., Wang, W.-G. & Ju, Z.-F. (2004). Acta Cryst. E60, m1032–m1034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJi, L.-L., Liu, J.-S. & Song, W.-D. (2011). Acta Cryst. E67, m606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, D.-X., Feng, L.-X. & Zhang, X.-Q. (2006). Chin. J. Inorg. Chem. 22, 1891–1894.  CAS Google Scholar
First citationYang, Y.-Q., Li, C.-H. L. W. & Kuang, Y.-F. (2008). Chin. J. Struct. Chem. 27, 404–408.  CAS Google Scholar
First citationYin, F.-J., Zhao, H. & Hu, X.-L. (2010). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 40, 606–612.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds