organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Nitro­benzyl­­idene)malono­nitrile

aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw

(Received 13 January 2012; accepted 28 February 2012; online 3 March 2012)

In the title compound, C10H5N3O2, the benzyl­idene­malono­nitrile unit is nearly planar, with a maximum deviation of 0.129 (2) Å for a terminal N atom; the nitro group is approximately coplanar with the benzene ring [dihedral angle = 8.8 (3)°]. An intra­molecular C—H⋯N hydrogen bond stabilizes the mol­ecular conformation.

Related literature

For the preparation of the title compound, see: Baheti et al. (2011[Baheti, A., Singh, P. & Thomas, K. R. J. (2011). Dyes Pigm. 88, 195-203.]). For the spectroscopy and applications of benzyl­idenemalononitrile derivatives, see: Cao et al. (2010[Cao, X., Wen, Y., Guo, Y., Yu, G., Liu, Y. & Yang, L.-M. (2010). Dyes Pigm. 84, 203-207.]); Ding & Zhao (2010[Ding, D. & Zhao, C.-G. (2010). Tetrahedron Lett. 51, 1322-1325.]); Elinson et al. (2010[Elinson, M. N., Vereshchagin, A. N., Stepanov, N. O., Zaimovskaya, T. A., Merkulova, V. M. & Nikishin, G. I. (2010). Tetrahedron Lett. 51, 428-431.]); Herbivo et al. (2010[Herbivo, C., Comel, A., Kirsch, G., Fonseca, A. M. C., Belsley, M. & Raposo, M. M. M. (2010). Dyes Pigm. 86, 217-226.]); Shigemitsu et al. (2011[Shigemitsu, Y., Wang, B.-C., Nishimura, Y. & Tominaga, Y. (2011). Dyes Pigm. 92, 580-587.]); Ye et al. (2010[Ye, Z., Xu, R., Shao, X., Xu, X. & Li, Z. (2010). Tetrahedron Lett. 51, 4991-4994.]). For related structures, see: El Brahmi et al. (2011[El Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & Ng, S. W. (2011). Acta Cryst. E67, o3260.]); Karthikeyan et al. (2011[Karthikeyan, S., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2011). Acta Cryst. E67, o3469.]); Mehdi et al. (2010[Mehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o1845.]); Ouzidan et al. (2011[Ouzidan, Y., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o558.]); Raza et al. (2010[Raza, A. R., Nisar, B. & Tahir, M. N. (2010). Acta Cryst. E66, o1852.]).

[Scheme 1]

Experimental

Crystal data
  • C10H5N3O2

  • Mr = 199.17

  • Orthorhombic, P n a 21

  • a = 19.5557 (9) Å

  • b = 3.8732 (2) Å

  • c = 11.9823 (5) Å

  • V = 907.58 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.89 mm−1

  • T = 297 K

  • 0.76 × 0.60 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.674, Tmax = 1.000

  • 3111 measured reflections

  • 1517 independent reflections

  • 1420 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.06

  • 1517 reflections

  • 136 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 582 Friedel pairs

  • Flack parameter: −0.2 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯N3 0.93 2.58 3.431 (3) 152

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Organic compounds bearing benzylidenemalononitrile moieties have attracted considerable attention due to their potential applications in the design of molecular devices (Cao et al., 2010; Herbivo et al., 2010; Shigemitsu et al., 2011). In addition, the title compound and its derivatives have been used as potential precursors to prepare 5,7-diazaspiro[2,5]octane (Elinson et al., 2010), 2-amino-4H-chromene-3-carbonitrile (Ding et al., 2010) and 4H-pyran derivatives (Ye et al., 2010).

The molecular structure of the title compound is shown in Figure 1. The nitro group is close to being coplanar with the benzene ring (dihedral angle = 8.8 (3)°), which is consistent with previous studies (El Brahmi et al., 2011; Mehdi et al., 2010; Ouzidan et al., 2011; Raza et al., 2010). In addition, the benzylidenemalononitrile moiety is nearly planar with a maximum deviation of 0.129 (2))Å for atom N2 (Karthikeyan et al., 2011). An intramolecular C—H···N hydrogen bond stabilizes the molecular conformation.

Related literature top

For the preparation of the title compound, see: Baheti et al. (2011). For the spectroscopy and applications of benzylidenemalononitrile derivatives, see: Cao et al. (2010); Ding & Zhao (2010); Elinson et al. (2010); Herbivo et al. (2010); Shigemitsu et al. (2011); Ye et al. (2010). For related structures, see: El Brahmi et al. (2011); Karthikeyan et al. (2011); Mehdi et al. (2010); Ouzidan et al. (2011); Raza et al. (2010).

Experimental top

The title compound was synthesized by the Knoevenagel condensation of malononitrile with 4-nitrobenzaldehyde (Baheti et al., 2011). Colorless crystals suitable for the crystallographic studies reported here were isolated over a period of four weeks by slow evaporation from a chloroform solution.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Organic compounds bearing benzylidenemalononitrile moieties have attracted considerable attention due to their potential applications in the design of molecular devices (Cao et al., 2010; Herbivo et al., 2010; Shigemitsu et al., 2011). In addition, the title compound and its derivatives have been used as potential precursors to prepare 5,7-diazaspiro[2,5]octane (Elinson et al., 2010), 2-amino-4H-chromene-3-carbonitrile (Ding et al., 2010) and 4H-pyran derivatives (Ye et al., 2010).

The molecular structure of the title compound is shown in Figure 1. The nitro group is close to being coplanar with the benzene ring (dihedral angle = 8.8 (3)°), which is consistent with previous studies (El Brahmi et al., 2011; Mehdi et al., 2010; Ouzidan et al., 2011; Raza et al., 2010). In addition, the benzylidenemalononitrile moiety is nearly planar with a maximum deviation of 0.129 (2))Å for atom N2 (Karthikeyan et al., 2011). An intramolecular C—H···N hydrogen bond stabilizes the molecular conformation.

For the preparation of the title compound, see: Baheti et al. (2011). For the spectroscopy and applications of benzylidenemalononitrile derivatives, see: Cao et al. (2010); Ding & Zhao (2010); Elinson et al. (2010); Herbivo et al. (2010); Shigemitsu et al. (2011); Ye et al. (2010). For related structures, see: El Brahmi et al. (2011); Karthikeyan et al. (2011); Mehdi et al. (2010); Ouzidan et al. (2011); Raza et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
2-(4-Nitrobenzylidene)propanedinitrile top
Crystal data top
C10H5N3O2F(000) = 408
Mr = 199.17Dx = 1.458 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 2320 reflections
a = 19.5557 (9) Åθ = 3.7–71.5°
b = 3.8732 (2) ŵ = 0.89 mm1
c = 11.9823 (5) ÅT = 297 K
V = 907.58 (7) Å3Parallelepiped, colorless
Z = 40.76 × 0.60 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1517 independent reflections
Radiation source: fine-focus sealed tube1420 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 71.7°, θmin = 4.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2415
Tmin = 0.674, Tmax = 1.000k = 43
3111 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.0168P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1517 reflectionsΔρmax = 0.13 e Å3
136 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 582 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (2)
Crystal data top
C10H5N3O2V = 907.58 (7) Å3
Mr = 199.17Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 19.5557 (9) ŵ = 0.89 mm1
b = 3.8732 (2) ÅT = 297 K
c = 11.9823 (5) Å0.76 × 0.60 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1517 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1420 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 1.000Rint = 0.016
3111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.13 e Å3
S = 1.06Δρmin = 0.16 e Å3
1517 reflectionsAbsolute structure: Flack (1983), 582 Friedel pairs
136 parametersAbsolute structure parameter: 0.2 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19540 (9)1.1888 (6)0.10487 (14)0.0798 (6)
O20.17348 (9)1.4626 (5)0.04698 (17)0.0790 (6)
N10.21000 (8)1.2840 (4)0.01057 (15)0.0530 (4)
N20.61988 (11)0.5187 (6)0.25478 (17)0.0672 (5)
N30.53572 (10)0.5513 (7)0.07973 (17)0.0743 (6)
C10.38494 (10)0.9176 (5)0.00650 (14)0.0445 (4)
H1A0.41650.81200.04040.053*
C20.32231 (10)1.0153 (5)0.03437 (15)0.0449 (4)
H2A0.31100.97380.10860.054*
C30.27635 (9)1.1752 (5)0.03563 (14)0.0405 (4)
C40.29078 (10)1.2411 (5)0.14638 (16)0.0471 (5)
H4A0.25911.35050.19220.056*
C50.35351 (10)1.1396 (5)0.18681 (15)0.0447 (4)
H5A0.36411.18110.26130.054*
C60.40158 (9)0.9766 (4)0.11918 (14)0.0387 (4)
C70.46578 (10)0.8685 (5)0.17120 (14)0.0415 (4)
H7A0.46900.91540.24710.050*
C80.52069 (10)0.7129 (4)0.12720 (15)0.0408 (4)
C90.57642 (11)0.6105 (5)0.19838 (16)0.0478 (5)
C100.52915 (9)0.6242 (6)0.01095 (17)0.0489 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0629 (11)0.1147 (15)0.0617 (10)0.0171 (10)0.0179 (8)0.0051 (10)
O20.0585 (9)0.0933 (14)0.0852 (13)0.0283 (9)0.0017 (9)0.0088 (10)
N10.0435 (9)0.0578 (10)0.0577 (12)0.0029 (7)0.0036 (8)0.0085 (9)
N20.0659 (12)0.0835 (14)0.0521 (10)0.0141 (11)0.0141 (10)0.0016 (9)
N30.0567 (11)0.1197 (18)0.0464 (10)0.0190 (11)0.0019 (9)0.0203 (11)
C10.0467 (9)0.0544 (11)0.0324 (8)0.0064 (8)0.0011 (7)0.0025 (8)
C20.0470 (9)0.0543 (11)0.0334 (8)0.0003 (8)0.0011 (8)0.0006 (8)
C30.0391 (8)0.0424 (9)0.0399 (10)0.0019 (7)0.0009 (7)0.0045 (7)
C40.0480 (10)0.0506 (11)0.0426 (10)0.0023 (9)0.0106 (8)0.0029 (9)
C50.0501 (10)0.0529 (11)0.0312 (8)0.0032 (8)0.0027 (8)0.0009 (8)
C60.0447 (9)0.0394 (9)0.0321 (8)0.0029 (7)0.0016 (7)0.0030 (7)
C70.0515 (10)0.0439 (11)0.0290 (7)0.0038 (8)0.0023 (7)0.0013 (7)
C80.0447 (9)0.0407 (9)0.0370 (9)0.0041 (8)0.0039 (7)0.0024 (8)
C90.0502 (10)0.0520 (11)0.0413 (10)0.0009 (9)0.0029 (9)0.0011 (9)
C100.0401 (9)0.0618 (12)0.0449 (10)0.0041 (8)0.0009 (8)0.0037 (9)
Geometric parameters (Å, º) top
O1—N11.222 (2)C3—C41.381 (3)
O2—N11.210 (2)C4—C51.376 (3)
N1—C31.472 (2)C4—H4A0.9300
N2—C91.143 (3)C5—C61.393 (3)
N3—C101.130 (3)C5—H5A0.9300
C1—C21.372 (3)C6—C71.463 (3)
C1—C61.407 (2)C7—C81.339 (3)
C1—H1A0.9300C7—H7A0.9300
C2—C31.377 (3)C8—C101.444 (3)
C2—H2A0.9300C8—C91.440 (3)
O2—N1—O1124.15 (19)C4—C5—C6121.76 (17)
O2—N1—C3118.00 (17)C4—C5—H5A119.1
O1—N1—C3117.85 (17)C6—C5—H5A119.1
C2—C1—C6120.27 (17)C5—C6—C1118.41 (17)
C2—C1—H1A119.9C5—C6—C7117.46 (17)
C6—C1—H1A119.9C1—C6—C7124.11 (16)
C3—C2—C1119.29 (17)C8—C7—C6130.47 (17)
C3—C2—H2A120.4C8—C7—H7A114.8
C1—C2—H2A120.4C6—C7—H7A114.8
C2—C3—C4122.37 (17)C7—C8—C10125.34 (17)
C2—C3—N1118.37 (15)C7—C8—C9119.85 (17)
C4—C3—N1119.25 (16)C10—C8—C9114.78 (16)
C5—C4—C3117.89 (18)N2—C9—C8177.8 (2)
C5—C4—H4A121.1N3—C10—C8179.3 (3)
C3—C4—H4A121.1
C6—C1—C2—C30.8 (3)C3—C4—C5—C60.2 (3)
C1—C2—C3—C40.2 (3)C4—C5—C6—C10.4 (3)
C1—C2—C3—N1178.79 (16)C4—C5—C6—C7177.94 (17)
O2—N1—C3—C2170.72 (19)C2—C1—C6—C50.9 (3)
O1—N1—C3—C29.0 (3)C2—C1—C6—C7177.29 (17)
O2—N1—C3—C48.3 (3)C5—C6—C7—C8179.0 (2)
O1—N1—C3—C4172.0 (2)C1—C6—C7—C82.8 (3)
C2—C3—C4—C50.3 (3)C6—C7—C8—C102.3 (3)
N1—C3—C4—C5179.30 (17)C6—C7—C8—C9175.70 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N30.932.583.431 (3)152

Experimental details

Crystal data
Chemical formulaC10H5N3O2
Mr199.17
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)297
a, b, c (Å)19.5557 (9), 3.8732 (2), 11.9823 (5)
V3)907.58 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.89
Crystal size (mm)0.76 × 0.60 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.674, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3111, 1517, 1420
Rint0.016
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.06
No. of reflections1517
No. of parameters136
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.16
Absolute structureFlack (1983), 582 Friedel pairs
Absolute structure parameter0.2 (2)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N30.932.583.431 (3)152
 

Acknowledgements

This work was supported by the National Science Council (grant No. NSC 99–2113-M-035–001-MY2) and Feng Chia University in Taiwan.

References

First citationBaheti, A., Singh, P. & Thomas, K. R. J. (2011). Dyes Pigm. 88, 195–203.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, X., Wen, Y., Guo, Y., Yu, G., Liu, Y. & Yang, L.-M. (2010). Dyes Pigm. 84, 203–207.  Web of Science CrossRef CAS Google Scholar
First citationDing, D. & Zhao, C.-G. (2010). Tetrahedron Lett. 51, 1322–1325.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEl Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & Ng, S. W. (2011). Acta Cryst. E67, o3260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElinson, M. N., Vereshchagin, A. N., Stepanov, N. O., Zaimovskaya, T. A., Merkulova, V. M. & Nikishin, G. I. (2010). Tetrahedron Lett. 51, 428–431.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHerbivo, C., Comel, A., Kirsch, G., Fonseca, A. M. C., Belsley, M. & Raposo, M. M. M. (2010). Dyes Pigm. 86, 217–226.  Web of Science CrossRef CAS Google Scholar
First citationKarthikeyan, S., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2011). Acta Cryst. E67, o3469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o1845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaza, A. R., Nisar, B. & Tahir, M. N. (2010). Acta Cryst. E66, o1852.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShigemitsu, Y., Wang, B.-C., Nishimura, Y. & Tominaga, Y. (2011). Dyes Pigm. 92, 580–587.  Web of Science CrossRef Google Scholar
First citationYe, Z., Xu, R., Shao, X., Xu, X. & Li, Z. (2010). Tetrahedron Lett. 51, 4991–4994.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds