organic compounds
2-(4-Nitrobenzylidene)malononitrile
aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw
In the title compound, C10H5N3O2, the benzylidenemalononitrile unit is nearly planar, with a maximum deviation of 0.129 (2) Å for a terminal N atom; the nitro group is approximately coplanar with the benzene ring [dihedral angle = 8.8 (3)°]. An intramolecular C—H⋯N hydrogen bond stabilizes the molecular conformation.
Related literature
For the preparation of the title compound, see: Baheti et al. (2011). For the spectroscopy and applications of benzylidenemalononitrile derivatives, see: Cao et al. (2010); Ding & Zhao (2010); Elinson et al. (2010); Herbivo et al. (2010); Shigemitsu et al. (2011); Ye et al. (2010). For related structures, see: El Brahmi et al. (2011); Karthikeyan et al. (2011); Mehdi et al. (2010); Ouzidan et al. (2011); Raza et al. (2010).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812008896/xu5449sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812008896/xu5449Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812008896/xu5449Isup3.cml
The title compound was synthesized by the Knoevenagel condensation of malononitrile with 4-nitrobenzaldehyde (Baheti et al., 2011). Colorless crystals suitable for the crystallographic studies reported here were isolated over a period of four weeks by slow evaporation from a chloroform solution.
H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Organic compounds bearing benzylidenemalononitrile moieties have attracted considerable attention due to their potential applications in the design of molecular devices (Cao et al., 2010; Herbivo et al., 2010; Shigemitsu et al., 2011). In addition, the title compound and its derivatives have been used as potential precursors to prepare 5,7-diazaspiro[2,5]octane (Elinson et al., 2010), 2-amino-4H-chromene-3-carbonitrile (Ding et al., 2010) and 4H-pyran derivatives (Ye et al., 2010).
The molecular structure of the title compound is shown in Figure 1. The nitro group is close to being coplanar with the benzene ring (dihedral angle = 8.8 (3)°), which is consistent with previous studies (El Brahmi et al., 2011; Mehdi et al., 2010; Ouzidan et al., 2011; Raza et al., 2010). In addition, the benzylidenemalononitrile moiety is nearly planar with a maximum deviation of 0.129 (2))Å for atom N2 (Karthikeyan et al., 2011). An intramolecular C—H···N hydrogen bond stabilizes the molecular conformation.
For the preparation of the title compound, see: Baheti et al. (2011). For the spectroscopy and applications of benzylidenemalononitrile derivatives, see: Cao et al. (2010); Ding & Zhao (2010); Elinson et al. (2010); Herbivo et al. (2010); Shigemitsu et al. (2011); Ye et al. (2010). For related structures, see: El Brahmi et al. (2011); Karthikeyan et al. (2011); Mehdi et al. (2010); Ouzidan et al. (2011); Raza et al. (2010).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. |
C10H5N3O2 | F(000) = 408 |
Mr = 199.17 | Dx = 1.458 Mg m−3 |
Orthorhombic, Pna21 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2c -2n | Cell parameters from 2320 reflections |
a = 19.5557 (9) Å | θ = 3.7–71.5° |
b = 3.8732 (2) Å | µ = 0.89 mm−1 |
c = 11.9823 (5) Å | T = 297 K |
V = 907.58 (7) Å3 | Parallelepiped, colorless |
Z = 4 | 0.76 × 0.60 × 0.18 mm |
Bruker SMART CCD area-detector diffractometer | 1517 independent reflections |
Radiation source: fine-focus sealed tube | 1420 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ω scans | θmax = 71.7°, θmin = 4.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −24→15 |
Tmin = 0.674, Tmax = 1.000 | k = −4→3 |
3111 measured reflections | l = −14→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0621P)2 + 0.0168P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1517 reflections | Δρmax = 0.13 e Å−3 |
136 parameters | Δρmin = −0.16 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 582 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.2 (2) |
C10H5N3O2 | V = 907.58 (7) Å3 |
Mr = 199.17 | Z = 4 |
Orthorhombic, Pna21 | Cu Kα radiation |
a = 19.5557 (9) Å | µ = 0.89 mm−1 |
b = 3.8732 (2) Å | T = 297 K |
c = 11.9823 (5) Å | 0.76 × 0.60 × 0.18 mm |
Bruker SMART CCD area-detector diffractometer | 1517 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1420 reflections with I > 2σ(I) |
Tmin = 0.674, Tmax = 1.000 | Rint = 0.016 |
3111 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.091 | Δρmax = 0.13 e Å−3 |
S = 1.06 | Δρmin = −0.16 e Å−3 |
1517 reflections | Absolute structure: Flack (1983), 582 Friedel pairs |
136 parameters | Absolute structure parameter: −0.2 (2) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.19540 (9) | 1.1888 (6) | −0.10487 (14) | 0.0798 (6) | |
O2 | 0.17348 (9) | 1.4626 (5) | 0.04698 (17) | 0.0790 (6) | |
N1 | 0.21000 (8) | 1.2840 (4) | −0.01057 (15) | 0.0530 (4) | |
N2 | 0.61988 (11) | 0.5187 (6) | 0.25478 (17) | 0.0672 (5) | |
N3 | 0.53572 (10) | 0.5513 (7) | −0.07973 (17) | 0.0743 (6) | |
C1 | 0.38494 (10) | 0.9176 (5) | 0.00650 (14) | 0.0445 (4) | |
H1A | 0.4165 | 0.8120 | −0.0404 | 0.053* | |
C2 | 0.32231 (10) | 1.0153 (5) | −0.03437 (15) | 0.0449 (4) | |
H2A | 0.3110 | 0.9738 | −0.1086 | 0.054* | |
C3 | 0.27635 (9) | 1.1752 (5) | 0.03563 (14) | 0.0405 (4) | |
C4 | 0.29078 (10) | 1.2411 (5) | 0.14638 (16) | 0.0471 (5) | |
H4A | 0.2591 | 1.3505 | 0.1922 | 0.056* | |
C5 | 0.35351 (10) | 1.1396 (5) | 0.18681 (15) | 0.0447 (4) | |
H5A | 0.3641 | 1.1811 | 0.2613 | 0.054* | |
C6 | 0.40158 (9) | 0.9766 (4) | 0.11918 (14) | 0.0387 (4) | |
C7 | 0.46578 (10) | 0.8685 (5) | 0.17120 (14) | 0.0415 (4) | |
H7A | 0.4690 | 0.9154 | 0.2471 | 0.050* | |
C8 | 0.52069 (10) | 0.7129 (4) | 0.12720 (15) | 0.0408 (4) | |
C9 | 0.57642 (11) | 0.6105 (5) | 0.19838 (16) | 0.0478 (5) | |
C10 | 0.52915 (9) | 0.6242 (6) | 0.01095 (17) | 0.0489 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0629 (11) | 0.1147 (15) | 0.0617 (10) | 0.0171 (10) | −0.0179 (8) | −0.0051 (10) |
O2 | 0.0585 (9) | 0.0933 (14) | 0.0852 (13) | 0.0283 (9) | 0.0017 (9) | −0.0088 (10) |
N1 | 0.0435 (9) | 0.0578 (10) | 0.0577 (12) | 0.0029 (7) | 0.0036 (8) | 0.0085 (9) |
N2 | 0.0659 (12) | 0.0835 (14) | 0.0521 (10) | 0.0141 (11) | −0.0141 (10) | 0.0016 (9) |
N3 | 0.0567 (11) | 0.1197 (18) | 0.0464 (10) | 0.0190 (11) | −0.0019 (9) | −0.0203 (11) |
C1 | 0.0467 (9) | 0.0544 (11) | 0.0324 (8) | 0.0064 (8) | 0.0011 (7) | −0.0025 (8) |
C2 | 0.0470 (9) | 0.0543 (11) | 0.0334 (8) | 0.0003 (8) | −0.0011 (8) | −0.0006 (8) |
C3 | 0.0391 (8) | 0.0424 (9) | 0.0399 (10) | −0.0019 (7) | 0.0009 (7) | 0.0045 (7) |
C4 | 0.0480 (10) | 0.0506 (11) | 0.0426 (10) | 0.0023 (9) | 0.0106 (8) | −0.0029 (9) |
C5 | 0.0501 (10) | 0.0529 (11) | 0.0312 (8) | −0.0032 (8) | 0.0027 (8) | −0.0009 (8) |
C6 | 0.0447 (9) | 0.0394 (9) | 0.0321 (8) | −0.0029 (7) | 0.0016 (7) | 0.0030 (7) |
C7 | 0.0515 (10) | 0.0439 (11) | 0.0290 (7) | −0.0038 (8) | −0.0023 (7) | 0.0013 (7) |
C8 | 0.0447 (9) | 0.0407 (9) | 0.0370 (9) | −0.0041 (8) | −0.0039 (7) | 0.0024 (8) |
C9 | 0.0502 (10) | 0.0520 (11) | 0.0413 (10) | 0.0009 (9) | −0.0029 (9) | 0.0011 (9) |
C10 | 0.0401 (9) | 0.0618 (12) | 0.0449 (10) | 0.0041 (8) | −0.0009 (8) | −0.0037 (9) |
O1—N1 | 1.222 (2) | C3—C4 | 1.381 (3) |
O2—N1 | 1.210 (2) | C4—C5 | 1.376 (3) |
N1—C3 | 1.472 (2) | C4—H4A | 0.9300 |
N2—C9 | 1.143 (3) | C5—C6 | 1.393 (3) |
N3—C10 | 1.130 (3) | C5—H5A | 0.9300 |
C1—C2 | 1.372 (3) | C6—C7 | 1.463 (3) |
C1—C6 | 1.407 (2) | C7—C8 | 1.339 (3) |
C1—H1A | 0.9300 | C7—H7A | 0.9300 |
C2—C3 | 1.377 (3) | C8—C10 | 1.444 (3) |
C2—H2A | 0.9300 | C8—C9 | 1.440 (3) |
O2—N1—O1 | 124.15 (19) | C4—C5—C6 | 121.76 (17) |
O2—N1—C3 | 118.00 (17) | C4—C5—H5A | 119.1 |
O1—N1—C3 | 117.85 (17) | C6—C5—H5A | 119.1 |
C2—C1—C6 | 120.27 (17) | C5—C6—C1 | 118.41 (17) |
C2—C1—H1A | 119.9 | C5—C6—C7 | 117.46 (17) |
C6—C1—H1A | 119.9 | C1—C6—C7 | 124.11 (16) |
C3—C2—C1 | 119.29 (17) | C8—C7—C6 | 130.47 (17) |
C3—C2—H2A | 120.4 | C8—C7—H7A | 114.8 |
C1—C2—H2A | 120.4 | C6—C7—H7A | 114.8 |
C2—C3—C4 | 122.37 (17) | C7—C8—C10 | 125.34 (17) |
C2—C3—N1 | 118.37 (15) | C7—C8—C9 | 119.85 (17) |
C4—C3—N1 | 119.25 (16) | C10—C8—C9 | 114.78 (16) |
C5—C4—C3 | 117.89 (18) | N2—C9—C8 | 177.8 (2) |
C5—C4—H4A | 121.1 | N3—C10—C8 | 179.3 (3) |
C3—C4—H4A | 121.1 | ||
C6—C1—C2—C3 | 0.8 (3) | C3—C4—C5—C6 | 0.2 (3) |
C1—C2—C3—C4 | −0.2 (3) | C4—C5—C6—C1 | 0.4 (3) |
C1—C2—C3—N1 | 178.79 (16) | C4—C5—C6—C7 | −177.94 (17) |
O2—N1—C3—C2 | −170.72 (19) | C2—C1—C6—C5 | −0.9 (3) |
O1—N1—C3—C2 | 9.0 (3) | C2—C1—C6—C7 | 177.29 (17) |
O2—N1—C3—C4 | 8.3 (3) | C5—C6—C7—C8 | −179.0 (2) |
O1—N1—C3—C4 | −172.0 (2) | C1—C6—C7—C8 | 2.8 (3) |
C2—C3—C4—C5 | −0.3 (3) | C6—C7—C8—C10 | 2.3 (3) |
N1—C3—C4—C5 | −179.30 (17) | C6—C7—C8—C9 | −175.70 (17) |
Experimental details
Crystal data | |
Chemical formula | C10H5N3O2 |
Mr | 199.17 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 297 |
a, b, c (Å) | 19.5557 (9), 3.8732 (2), 11.9823 (5) |
V (Å3) | 907.58 (7) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.89 |
Crystal size (mm) | 0.76 × 0.60 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.674, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3111, 1517, 1420 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.091, 1.06 |
No. of reflections | 1517 |
No. of parameters | 136 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.13, −0.16 |
Absolute structure | Flack (1983), 582 Friedel pairs |
Absolute structure parameter | −0.2 (2) |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
This work was supported by the National Science Council (grant No. NSC 99–2113-M-035–001-MY2) and Feng Chia University in Taiwan.
References
Baheti, A., Singh, P. & Thomas, K. R. J. (2011). Dyes Pigm. 88, 195–203. Web of Science CrossRef CAS Google Scholar
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cao, X., Wen, Y., Guo, Y., Yu, G., Liu, Y. & Yang, L.-M. (2010). Dyes Pigm. 84, 203–207. Web of Science CrossRef CAS Google Scholar
Ding, D. & Zhao, C.-G. (2010). Tetrahedron Lett. 51, 1322–1325. Web of Science CrossRef CAS PubMed Google Scholar
El Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & Ng, S. W. (2011). Acta Cryst. E67, o3260. Web of Science CSD CrossRef IUCr Journals Google Scholar
Elinson, M. N., Vereshchagin, A. N., Stepanov, N. O., Zaimovskaya, T. A., Merkulova, V. M. & Nikishin, G. I. (2010). Tetrahedron Lett. 51, 428–431. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Herbivo, C., Comel, A., Kirsch, G., Fonseca, A. M. C., Belsley, M. & Raposo, M. M. M. (2010). Dyes Pigm. 86, 217–226. Web of Science CrossRef CAS Google Scholar
Karthikeyan, S., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2011). Acta Cryst. E67, o3469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o1845. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ouzidan, Y., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o558. Web of Science CSD CrossRef IUCr Journals Google Scholar
Raza, A. R., Nisar, B. & Tahir, M. N. (2010). Acta Cryst. E66, o1852. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shigemitsu, Y., Wang, B.-C., Nishimura, Y. & Tominaga, Y. (2011). Dyes Pigm. 92, 580–587. Web of Science CrossRef Google Scholar
Ye, Z., Xu, R., Shao, X., Xu, X. & Li, Z. (2010). Tetrahedron Lett. 51, 4991–4994. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organic compounds bearing benzylidenemalononitrile moieties have attracted considerable attention due to their potential applications in the design of molecular devices (Cao et al., 2010; Herbivo et al., 2010; Shigemitsu et al., 2011). In addition, the title compound and its derivatives have been used as potential precursors to prepare 5,7-diazaspiro[2,5]octane (Elinson et al., 2010), 2-amino-4H-chromene-3-carbonitrile (Ding et al., 2010) and 4H-pyran derivatives (Ye et al., 2010).
The molecular structure of the title compound is shown in Figure 1. The nitro group is close to being coplanar with the benzene ring (dihedral angle = 8.8 (3)°), which is consistent with previous studies (El Brahmi et al., 2011; Mehdi et al., 2010; Ouzidan et al., 2011; Raza et al., 2010). In addition, the benzylidenemalononitrile moiety is nearly planar with a maximum deviation of 0.129 (2))Å for atom N2 (Karthikeyan et al., 2011). An intramolecular C—H···N hydrogen bond stabilizes the molecular conformation.