organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(3-Meth­­oxy­anilino)methyl­­idene]-2-phenyl-1,3-oxazol-5(4H)-one

aDepartment of Chemistry, Guilin Normal College, Xinyi Road 21, Guilin 541001, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China
*Correspondence e-mail: lizhangdong2005@163.com

(Received 1 February 2012; accepted 24 February 2012; online 10 March 2012)

In the title compound, C17H14N2O3, the oxazolone ring is essentially planar [maximum deviation = 0.004 (1) Å] and is oriented with respect to the phenyl and benzene rings at 10.06 (9) and 5.63 (8)°, respectively; the dihedral angle between the phenyl ring and the benzene ring is 15.69 (8)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into chains running along the a axis. Neighbouring chains are inter­connected by ππ stacking, the centroid–centroid distance being 3.6201 (9) Å.

Related literature

For background to the oxazolones, see: Fisk et al. (2007[Fisk, J. S., Mosey, R. A. & Tepe, J. J. (2007). Chem. Soc. Rev. 36, 1432-1440.]); Mosey et al. (2008[Mosey, R. A., Fisk, J. S. & Tepe, J. J. (2008). Tetrahedron Asymmetry, 19, 2755-2762.]); Hewlett et al. (2009[Hewlett, N. M., Hupp, C. D. & Tepe, J. J. (2009). Synthesis, 17, 2825-2839.]). For the bioactivities of 4-(amino­methyl­ene)-2-phenyl-4H-oxazol-5-one derivatives, see: Tandon et al. (2004[Tandon, M., Coffen, D. L., Gallant, P., Keith, D. & Ashwell, M. A. (2004). Bioorg. Med. Chem. Lett. 14, 1909-1911.]); John et al. (2008[John, F., Mark, S., Mark, H. & Kedar, G. C. (2008). Bioorg. Med. Chem. Lett. 18, 3932-3937.]). For the synthesis, see: Matos et al. (2003[Matos, M. R. P. N., Gois, P. M. P., Mata, M. L. E. N., Cabrita, E. J. & Afonso, C. A. M. (2003). Synth. Commun. 33, 1285-1299.]). For related structures, see: Romeiro et al. (2010[Romeiro, G. A., Ribeiro, C. M. R., Wardell, S. M. S. V., Wardell, J. L., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1450-o1451.]); Vasuki et al. (2002[Vasuki, G., Thamotharan, S., Ramamurthi, K., Ambika, S. & Singh, R. M. (2002). Acta Cryst. E58, o740-o741.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N2O3

  • Mr = 294.30

  • Triclinic, [P \overline 1]

  • a = 6.6085 (5) Å

  • b = 7.1887 (5) Å

  • c = 15.3659 (10) Å

  • α = 98.629 (5)°

  • β = 94.096 (5)°

  • γ = 108.715 (6)°

  • V = 677.96 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent SuperNova (single source at offset) Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Santa Clara, USA.]) Tmin = 0.975, Tmax = 0.985

  • 5557 measured reflections

  • 2759 independent reflections

  • 2317 reflections with I > 2σ(I)

  • Rint = 0.023

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.118

  • S = 1.02

  • 2759 reflections

  • 204 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.92 (2) 2.26 (2) 3.0110 (18) 138.1 (17)
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Santa Clara, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Oxazolones are heterocyclic compounds which serve as a very important role in the synthesis of amino acids, peptides and natural product (Fisk et al., 2007; Mosey et al., 2008; Hewlett et al., 2009). Among them, 4- (aminomethylene)-2-phenyl-4H-oxazol-5-one derivatives show a range of interesting and medicinally relevant bioactivities (Tandon et al., 2004; John et al., 2008). Recently, Romeiro reported the crystal structure of the 4-[(Dimethylamino)methylidene]-2- (4-nitrophenyl)-1,3-oxazol-5(4H)-one (Romeiro et al., 2010). Herein, we wish to report the synthesis and crystal structure of 4-[(3-Methoxy-phenylamino)-methylene]-2- phenyl-4H-oxazol-5-one. The molecule with the Z-configuration (Fig. 1) of the title compound is planar with the maximum deviations from the least-squares plane through all non-hydrogen atoms being 0.292 Å for atom C4 and -0.237 Å for atom C1; the r.m.s. = 0.089 Å. The sequence of C7—N1, N1—C9, C9—C10, C10—N2, and N2—C11 bond distances of 1.2917 (19), 1.407 (2), 1.372 (2), 1.337 (2), and 1.4201 (19) Å, respectively, indicate substantial delocalization of π-electron density over these atoms. The geometric parameters match closely those related structure (Romeiro et al., 2010; Vasuki et al., 2002). The crystal packing is dominated by N—H···O and π-π interactions. An intermolecular N(2)—H(2 A)···O(1) (Symmetry code: x + 1, y, z) hydrogen bond (Table 1) link the molecule into a one-dimensional chain along the a axis (Fig. 2). And the neighbouring chains are interconnected by π-π stacking interactions occurring between oxazolin-5-one and the 3-methoxy-phenyl ring with a centroid-centroid distance of 3.62 Å, which lead to form a two-dimensional network (Fig. 3).

Related literature top

For background to the oxazolones, see: Fisk et al. (2007); Mosey et al. (2008); Hewlett et al. (2009). For the bioactivities of 4-(aminomethylene)-2-phenyl-4H-oxazol-5-one derivatives, see: Tandon et al. (2004); John et al. (2008). For the synthesis, see: Matos et al. (2003). For related structures, see: Romeiro et al. (2010); Vasuki et al. (2002).

Experimental top

A mixture of 4-ethoxymethylene-2-phenyl-4H-oxazol-5-one (Matos et al., 2003) (0.01 mol) and 3-methoxy-phenylamine (0.01 mol) in THF (25 ml) was stirred at room temperature for 4 h. The solvent was then evaporated under reduced pressure and the residue was crystallized from ethyl acetate to give orange crystals suitable for X-ray analysis (yield 82%).

Refinement top

Amino-H atom was located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions and refined as riding atoms with C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

Oxazolones are heterocyclic compounds which serve as a very important role in the synthesis of amino acids, peptides and natural product (Fisk et al., 2007; Mosey et al., 2008; Hewlett et al., 2009). Among them, 4- (aminomethylene)-2-phenyl-4H-oxazol-5-one derivatives show a range of interesting and medicinally relevant bioactivities (Tandon et al., 2004; John et al., 2008). Recently, Romeiro reported the crystal structure of the 4-[(Dimethylamino)methylidene]-2- (4-nitrophenyl)-1,3-oxazol-5(4H)-one (Romeiro et al., 2010). Herein, we wish to report the synthesis and crystal structure of 4-[(3-Methoxy-phenylamino)-methylene]-2- phenyl-4H-oxazol-5-one. The molecule with the Z-configuration (Fig. 1) of the title compound is planar with the maximum deviations from the least-squares plane through all non-hydrogen atoms being 0.292 Å for atom C4 and -0.237 Å for atom C1; the r.m.s. = 0.089 Å. The sequence of C7—N1, N1—C9, C9—C10, C10—N2, and N2—C11 bond distances of 1.2917 (19), 1.407 (2), 1.372 (2), 1.337 (2), and 1.4201 (19) Å, respectively, indicate substantial delocalization of π-electron density over these atoms. The geometric parameters match closely those related structure (Romeiro et al., 2010; Vasuki et al., 2002). The crystal packing is dominated by N—H···O and π-π interactions. An intermolecular N(2)—H(2 A)···O(1) (Symmetry code: x + 1, y, z) hydrogen bond (Table 1) link the molecule into a one-dimensional chain along the a axis (Fig. 2). And the neighbouring chains are interconnected by π-π stacking interactions occurring between oxazolin-5-one and the 3-methoxy-phenyl ring with a centroid-centroid distance of 3.62 Å, which lead to form a two-dimensional network (Fig. 3).

For background to the oxazolones, see: Fisk et al. (2007); Mosey et al. (2008); Hewlett et al. (2009). For the bioactivities of 4-(aminomethylene)-2-phenyl-4H-oxazol-5-one derivatives, see: Tandon et al. (2004); John et al. (2008). For the synthesis, see: Matos et al. (2003). For related structures, see: Romeiro et al. (2010); Vasuki et al. (2002).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atomic labeling scheme with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the one-dimensional chain along a axis sustained by N(2)—H(2 A)···O(1)(i) ((i) x + 1, y, z) hydrogen bond (shown as dashed lines).
[Figure 3] Fig. 3. View of the two-dimensional network constructed by hydrogen bond and π-π interactions shown as green and purple dashed lines respectively.
4-[(3-Methoxyanilino)methylidene]-2-phenyl-1,3-oxazol-5(4H)-one top
Crystal data top
C17H14N2O3Z = 2
Mr = 294.30F(000) = 308
Triclinic, P1Dx = 1.442 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6085 (5) ÅCell parameters from 2524 reflections
b = 7.1887 (5) Åθ = 3.0–28.7°
c = 15.3659 (10) ŵ = 0.10 mm1
α = 98.629 (5)°T = 150 K
β = 94.096 (5)°Block, green
γ = 108.715 (6)°0.25 × 0.20 × 0.15 mm
V = 677.96 (8) Å3
Data collection top
Agilent SuperNova (single source at offset) Eos
diffractometer
2759 independent reflections
Radiation source: fine-focus sealed tube2317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 88
Tmin = 0.975, Tmax = 0.985k = 88
5557 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.060P)2 + 0.1704P]
where P = (Fo2 + 2Fc2)/3
2759 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C17H14N2O3γ = 108.715 (6)°
Mr = 294.30V = 677.96 (8) Å3
Triclinic, P1Z = 2
a = 6.6085 (5) ÅMo Kα radiation
b = 7.1887 (5) ŵ = 0.10 mm1
c = 15.3659 (10) ÅT = 150 K
α = 98.629 (5)°0.25 × 0.20 × 0.15 mm
β = 94.096 (5)°
Data collection top
Agilent SuperNova (single source at offset) Eos
diffractometer
2759 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2317 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.985Rint = 0.023
5557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.22 e Å3
2759 reflectionsΔρmin = 0.29 e Å3
204 parameters
Special details top

Experimental. 1H NMR (DMSO, 500 MHz) δ: 10.70 (d, 1H, NH), 7.97–8.05 (m, 3H, Ar—H), 7.55–7.57(m, 3H, Ar—H), 7.25 (t, 1H, Ar—H), 7.10–7.14 (m, 2H, Ar—H), 6.67 (q, 1H, Ar—H), 3.78 (s, 3H, CH3). 13C NMR (DMSO, 125.77 MHz) δ: 167.11, 160.27, 154.44, 141.21, 135.31, 131.34, 130.28, 129.09, 126.55, 126.40, 125.82, 111.06, 109.81, 109.29, 102.70, 55.23.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2537 (3)0.6133 (3)0.85604 (11)0.0242 (4)
H10.33960.57320.81510.029*
C20.3478 (3)0.7213 (3)0.93963 (11)0.0311 (4)
H20.49810.75440.95620.037*
C30.2225 (3)0.7811 (3)0.99922 (11)0.0318 (4)
H30.28760.85521.05650.038*
C40.0043 (3)0.7337 (3)0.97570 (11)0.0297 (4)
H40.08030.77621.01650.036*
C50.0917 (3)0.6238 (3)0.89242 (11)0.0243 (4)
H50.24250.58950.87660.029*
C60.0327 (2)0.5636 (2)0.83184 (10)0.0189 (3)
C70.0642 (2)0.4518 (2)0.74310 (10)0.0176 (3)
C80.3384 (3)0.2824 (2)0.63810 (10)0.0192 (3)
C90.1337 (2)0.3036 (2)0.60730 (10)0.0177 (3)
C100.1006 (2)0.2327 (2)0.52347 (10)0.0177 (3)
H100.22160.16600.47960.021*
C110.1565 (3)0.2043 (2)0.41664 (9)0.0179 (3)
C120.3751 (3)0.2674 (2)0.40875 (10)0.0194 (3)
H120.47740.34090.45880.023*
C130.4433 (3)0.2222 (2)0.32722 (10)0.0214 (4)
H130.59250.26690.32130.026*
C140.2950 (3)0.1127 (2)0.25468 (10)0.0220 (4)
H140.34220.08180.19910.026*
C150.0758 (3)0.0477 (2)0.26330 (10)0.0184 (3)
C160.0038 (2)0.0943 (2)0.34428 (10)0.0184 (3)
H160.14570.05220.34990.022*
C170.2821 (3)0.1308 (3)0.19348 (11)0.0292 (4)
H17A0.31220.21170.24000.044*
H17B0.35920.21180.13640.044*
H17C0.33000.01540.20770.044*
N10.0328 (2)0.41031 (19)0.67659 (8)0.0183 (3)
N20.0970 (2)0.2548 (2)0.50167 (9)0.0194 (3)
O10.52599 (17)0.20389 (18)0.60520 (7)0.0254 (3)
O20.28635 (16)0.38163 (16)0.72695 (7)0.0195 (3)
O30.05667 (17)0.06328 (17)0.18811 (7)0.0235 (3)
H2A0.211 (3)0.304 (3)0.5461 (13)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0235 (9)0.0242 (9)0.0223 (8)0.0044 (7)0.0045 (7)0.0031 (7)
C20.0262 (9)0.0315 (10)0.0271 (9)0.0013 (8)0.0029 (7)0.0013 (8)
C30.0432 (11)0.0260 (10)0.0179 (8)0.0048 (8)0.0032 (8)0.0026 (7)
C40.0415 (11)0.0292 (10)0.0195 (8)0.0148 (8)0.0068 (8)0.0006 (7)
C50.0278 (9)0.0256 (9)0.0211 (8)0.0117 (7)0.0037 (7)0.0033 (7)
C60.0229 (8)0.0160 (8)0.0172 (8)0.0054 (6)0.0026 (6)0.0043 (6)
C70.0183 (8)0.0166 (8)0.0189 (8)0.0063 (6)0.0037 (6)0.0046 (6)
C80.0226 (9)0.0213 (8)0.0153 (7)0.0096 (7)0.0034 (6)0.0030 (6)
C90.0182 (8)0.0186 (8)0.0167 (7)0.0066 (6)0.0029 (6)0.0034 (6)
C100.0190 (8)0.0176 (8)0.0174 (7)0.0074 (6)0.0016 (6)0.0031 (6)
C110.0244 (8)0.0161 (8)0.0161 (8)0.0098 (6)0.0053 (6)0.0038 (6)
C120.0200 (8)0.0185 (8)0.0188 (8)0.0061 (6)0.0022 (6)0.0018 (6)
C130.0199 (8)0.0222 (9)0.0233 (8)0.0076 (7)0.0070 (7)0.0047 (7)
C140.0247 (9)0.0258 (9)0.0178 (8)0.0106 (7)0.0086 (7)0.0035 (7)
C150.0225 (8)0.0172 (8)0.0163 (7)0.0075 (6)0.0022 (6)0.0034 (6)
C160.0176 (8)0.0200 (8)0.0201 (8)0.0085 (6)0.0056 (6)0.0052 (6)
C170.0196 (9)0.0384 (11)0.0251 (9)0.0087 (8)0.0001 (7)0.0043 (7)
N10.0184 (7)0.0196 (7)0.0170 (6)0.0064 (5)0.0037 (5)0.0028 (5)
N20.0170 (7)0.0246 (8)0.0156 (7)0.0073 (6)0.0025 (5)0.0001 (5)
O10.0177 (6)0.0362 (7)0.0209 (6)0.0083 (5)0.0005 (5)0.0030 (5)
O20.0157 (6)0.0264 (6)0.0151 (5)0.0068 (5)0.0031 (4)0.0003 (4)
O30.0217 (6)0.0296 (7)0.0158 (6)0.0059 (5)0.0027 (5)0.0002 (5)
Geometric parameters (Å, º) top
C1—C21.384 (2)C10—N21.337 (2)
C1—C61.395 (2)C10—H100.9500
C1—H10.9500C11—C121.389 (2)
C2—C31.388 (3)C11—C161.394 (2)
C2—H20.9500C11—N21.4201 (19)
C3—C41.378 (3)C12—C131.389 (2)
C3—H30.9500C12—H120.9500
C4—C51.387 (2)C13—C141.381 (2)
C4—H40.9500C13—H130.9500
C5—C61.396 (2)C14—C151.395 (2)
C5—H50.9500C14—H140.9500
C6—C71.460 (2)C15—O31.3670 (19)
C7—N11.2917 (19)C15—C161.396 (2)
C7—O21.3810 (18)C16—H160.9500
C8—O11.2191 (19)C17—O31.4237 (19)
C8—O21.4051 (18)C17—H17A0.9800
C8—C91.435 (2)C17—H17B0.9800
C9—C101.372 (2)C17—H17C0.9800
C9—N11.407 (2)N2—H2A0.92 (2)
C2—C1—C6120.00 (16)C12—C11—C16121.14 (14)
C2—C1—H1120.0C12—C11—N2116.95 (14)
C6—C1—H1120.0C16—C11—N2121.90 (14)
C1—C2—C3120.03 (17)C13—C12—C11119.60 (15)
C1—C2—H2120.0C13—C12—H12120.2
C3—C2—H2120.0C11—C12—H12120.2
C4—C3—C2120.38 (16)C14—C13—C12120.30 (15)
C4—C3—H3119.8C14—C13—H13119.8
C2—C3—H3119.8C12—C13—H13119.8
C3—C4—C5120.01 (16)C13—C14—C15119.82 (14)
C3—C4—H4120.0C13—C14—H14120.1
C5—C4—H4120.0C15—C14—H14120.1
C4—C5—C6120.10 (16)O3—C15—C14115.12 (13)
C4—C5—H5119.9O3—C15—C16124.11 (14)
C6—C5—H5119.9C14—C15—C16120.77 (15)
C1—C6—C5119.48 (15)C11—C16—C15118.35 (14)
C1—C6—C7119.49 (14)C11—C16—H16120.8
C5—C6—C7121.03 (15)C15—C16—H16120.8
N1—C7—O2115.14 (13)O3—C17—H17A109.5
N1—C7—C6127.89 (14)O3—C17—H17B109.5
O2—C7—C6116.97 (13)H17A—C17—H17B109.5
O1—C8—O2120.54 (14)O3—C17—H17C109.5
O1—C8—C9135.12 (15)H17A—C17—H17C109.5
O2—C8—C9104.33 (13)H17B—C17—H17C109.5
C10—C9—N1124.09 (14)C7—N1—C9104.91 (13)
C10—C9—C8126.24 (15)C10—N2—C11128.04 (14)
N1—C9—C8109.67 (13)C10—N2—H2A118.3 (12)
N2—C10—C9121.89 (15)C11—N2—H2A113.6 (13)
N2—C10—H10119.1C7—O2—C8105.95 (11)
C9—C10—H10119.1C15—O3—C17117.09 (12)
C6—C1—C2—C30.4 (3)C12—C13—C14—C150.2 (2)
C1—C2—C3—C40.0 (3)C13—C14—C15—O3178.56 (13)
C2—C3—C4—C50.6 (3)C13—C14—C15—C160.9 (2)
C3—C4—C5—C60.9 (3)C12—C11—C16—C150.4 (2)
C2—C1—C6—C50.1 (2)N2—C11—C16—C15178.82 (13)
C2—C1—C6—C7179.27 (15)O3—C15—C16—C11178.24 (13)
C4—C5—C6—C10.5 (2)C14—C15—C16—C111.2 (2)
C4—C5—C6—C7178.59 (14)O2—C7—N1—C90.53 (17)
C1—C6—C7—N19.5 (2)C6—C7—N1—C9179.07 (14)
C5—C6—C7—N1169.59 (15)C10—C9—N1—C7179.11 (14)
C1—C6—C7—O2170.88 (13)C8—C9—N1—C70.69 (16)
C5—C6—C7—O210.0 (2)C9—C10—N2—C11174.39 (14)
O1—C8—C9—C100.7 (3)C12—C11—N2—C10171.24 (15)
O2—C8—C9—C10179.20 (14)C16—C11—N2—C109.5 (2)
O1—C8—C9—N1179.47 (17)N1—C7—O2—C80.17 (17)
O2—C8—C9—N10.59 (16)C6—C7—O2—C8179.48 (12)
N1—C9—C10—N22.3 (2)O1—C8—O2—C7179.78 (14)
C8—C9—C10—N2177.99 (14)C9—C8—O2—C70.27 (15)
C16—C11—C12—C130.7 (2)C14—C15—O3—C17179.23 (14)
N2—C11—C12—C13179.92 (14)C16—C15—O3—C171.3 (2)
C11—C12—C13—C141.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.92 (2)2.26 (2)3.0110 (18)138.1 (17)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H14N2O3
Mr294.30
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.6085 (5), 7.1887 (5), 15.3659 (10)
α, β, γ (°)98.629 (5), 94.096 (5), 108.715 (6)
V3)677.96 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent SuperNova (single source at offset) Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.975, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5557, 2759, 2317
Rint0.023
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.118, 1.02
No. of reflections2759
No. of parameters204
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.29

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.92 (2)2.26 (2)3.0110 (18)138.1 (17)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the Science Foundation of Guilin Normal College (grant No. 2008), Guilin Scientific Research and Technological Development Projects (grant No. 20110106-2) and Guangxi University Scientific Research Projects (grant No. 200103YB159).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Santa Clara, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFisk, J. S., Mosey, R. A. & Tepe, J. J. (2007). Chem. Soc. Rev. 36, 1432–1440.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHewlett, N. M., Hupp, C. D. & Tepe, J. J. (2009). Synthesis, 17, 2825–2839.  Google Scholar
First citationJohn, F., Mark, S., Mark, H. & Kedar, G. C. (2008). Bioorg. Med. Chem. Lett. 18, 3932–3937.  Web of Science PubMed Google Scholar
First citationMatos, M. R. P. N., Gois, P. M. P., Mata, M. L. E. N., Cabrita, E. J. & Afonso, C. A. M. (2003). Synth. Commun. 33, 1285–1299.  CAS Google Scholar
First citationMosey, R. A., Fisk, J. S. & Tepe, J. J. (2008). Tetrahedron Asymmetry, 19, 2755–2762.  Web of Science CrossRef CAS Google Scholar
First citationRomeiro, G. A., Ribeiro, C. M. R., Wardell, S. M. S. V., Wardell, J. L., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1450–o1451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTandon, M., Coffen, D. L., Gallant, P., Keith, D. & Ashwell, M. A. (2004). Bioorg. Med. Chem. Lett. 14, 1909–1911.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVasuki, G., Thamotharan, S., Ramamurthi, K., Ambika, S. & Singh, R. M. (2002). Acta Cryst. E58, o740–o741.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds