organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Piperidin-1-yl)-6-(1H-pyrrol-1-yl)pyridine-3,5-dicarbo­nitrile

aSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, bChemistry and Environmental Science Division, School of Science, Manchester Metropolitan University, England, cDepartment of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt, and dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 22 February 2012; accepted 26 February 2012; online 3 March 2012)

The piperidine ring of the title compound, C16H15N5, adopts a chair conformation. The pyridine ring is essentially planar, with a maximum deviation of 0.035 (3) Å. The pyrrole and pyridine rings are almost coplanar, forming a dihedral angle of 3.48 (14)°. In the crystal, no classical hydrogen bonds were found. In the crystal, the molecules are linked by aromatic ππ stacking [centroid–centroid separations = 3.4984 (16) and 3.9641 (15) Å between pyrrole and pyridine rings and between pyridine rings, respectively].

Related literature

For the biological activity of cyano-amino pyridines, see: Al-Haiza et al. (2003[Al-Haiza, M. A., Mostafa, M. S. & El-Kady, M. Y. (2003). Molecules, 8, 275-286.]); Bhalerao & Krishnaiah (1995[Bhalerao, U. T. & Krishnaiah, A. (1995). Indian J. Chem. Sect. B, 34, 587-590.]); Doe et al. (1990[Doe, K., Avasthi, K., Pratap, R., Bakuni, D. S. & Joshi, M. N. (1990). Indian J. Chem. Sect B, 29, 459-463.]); Murata et al. (2003[Murata, T., Shimada, M., Sakakibara, S., Yoshino, T., Kadono, H., Masuda, T., Shimazaki, M., Shintani, T., Fuchikami, K., Sakai, K., Inbe, H., Takeshita, K., Niki, T., Umeda, M., Bacon, K. B., Ziegelbauer, K. B. & Lowinger, T. B. (2003). Bioorg. Med. Chem. Lett. 13, 913-918.]); Shankaraiah et al. (2010[Shankaraiah, G. K., Vishnu, T. K. & Bhaskar, S. D. (2010). J. Chem. Pharm. Res. 2, 187-191.]); Shishoo et al. (1983[Shishoo, C. J., Devani, M. B., Bhadti, V. C., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. 24, 4611-4612.]); Soliman et al. (2012[Soliman, A. M., Mohamed, S. K., El Remail, M. A. & Abdel Ghany, H. (2012). Eur. J. Med. Chem. 47, 138-142.]); Temple et al. (1992[Temple, C., Rener, G. A., Raud, W. R. & Noker, P. E. (1992). J. Med. Chem. 35, 3686-3690.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N5

  • Mr = 277.33

  • Monoclinic, P 21 /c

  • a = 11.9372 (16) Å

  • b = 6.6919 (8) Å

  • c = 17.158 (2) Å

  • β = 92.280 (7)°

  • V = 1369.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.32 × 0.04 × 0.02 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.973, Tmax = 0.998

  • 7877 measured reflections

  • 3098 independent reflections

  • 1503 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.140

  • S = 0.96

  • 3098 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SIR2004 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Among the wide variety of active heterocycles, cyano-amino pyridines have showed important and useful intermediates in preparing variety of heterocyclic compounds (Shishoo et al., 1983; Doe et al., 1990; Bhalerao & Krishnaiah, 1995; Al-Haiza et al., 2003). In addition to this, many naturally occurring and synthetic compounds containing the pyridine scaffold possess interesting pharmacological properties (Temple et al., 1992). Among them, 2-amino-3-cyanopyridines have been identified as IKK-β inhibitors (Murata et al., 2003) and as antibacterial (Shankaraiah et al., 2010). Therefore, the synthesis of 2-amino-3-cyanopyridine derivatives continues to attract much interest in organic chemistry. In this respect, and also in continuation of our earlier work on synthesis of different heterocyclic system that containing highly biological activity (Soliman et al., 2012), we prompted to prepare the new title compound (I) with potential biological activity.

Fig. 1 shows the molecule of (I) which has an open conformation. The N3/C12–C16 piperidine ring adopts a chair conformation [puckering parameters (Cremer & Pople, 1975): QT = 0.574 (3) Å, θ = 179.5 (3) ° and φ = 137 (13) °]. The N1/C1–C5 pyridine ring is essentially planar with a maximum deviation of -0.035 (3) Å for C5. The N2/C8–C11 pyrrole and pyridine rings are almost co-planar and they make a dihedral angle of 3.48 (14)° with each other.

The structure exists no classic hydrogen bonds. The crystal packing exhibits ππ interactions with centroid—centroid distances: Cg1—Cg2i = 3.4984 (16) Å and Cg2—Cg2ii = 3.9641 (15) Å [Fig. 2; Cg1 and Cg2 are the centroids of the N2/C8–C11 pyrrole and N1/C1–C5 pyridine rings, respectively. Symmetry codes: (i) 1 - x, 1 - y, -z and (ii) 1 - x, -y, -z].

Related literature top

For the biological activity of cyano-amino pyridines, see: Al-Haiza et al. (2003); Bhalerao & Krishnaiah (1995); Doe et al. (1990); Murata et al. (2003); Shankaraiah et al. (2010); Shishoo et al. (1983); Soliman et al. (2012); Temple et al. (1992). For ring conformations, see: Cremer & Pople (1975).

Experimental top

An equimolar mixture of 2-chloro-6-(1H-pyrrol-1-yl) pyridine-3,5-dicarbonitrile and piperidine in THF/EtOH (1:3) with few drops of TEA was refluxed at 351 K for 2–3 h. The product was obtained on cooling, collected, washed and re-crystallized from ethanol to afford the title compound. 90% yield, m.p. 413 K. Block-like pure crystals of the title compound, suitable for X-ray diffraction, were obtained by slow evaporation of a solution in ethanol for 24 h.

Refinement top

All H atoms were positioned geometrically and refined as riding on their parent atoms with C—H distances of 0.93 Å and 0.97 Å. Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) times Ueq of the parent atom. The (1 3 10) and (-4 6 14) reflections were omitted owing to bad disagreement. The ADDSYM routine in PLATON (Spek, 2009) suggests the space group P21/c which is consistent with the P21/c assignment of our structure.

Structure description top

Among the wide variety of active heterocycles, cyano-amino pyridines have showed important and useful intermediates in preparing variety of heterocyclic compounds (Shishoo et al., 1983; Doe et al., 1990; Bhalerao & Krishnaiah, 1995; Al-Haiza et al., 2003). In addition to this, many naturally occurring and synthetic compounds containing the pyridine scaffold possess interesting pharmacological properties (Temple et al., 1992). Among them, 2-amino-3-cyanopyridines have been identified as IKK-β inhibitors (Murata et al., 2003) and as antibacterial (Shankaraiah et al., 2010). Therefore, the synthesis of 2-amino-3-cyanopyridine derivatives continues to attract much interest in organic chemistry. In this respect, and also in continuation of our earlier work on synthesis of different heterocyclic system that containing highly biological activity (Soliman et al., 2012), we prompted to prepare the new title compound (I) with potential biological activity.

Fig. 1 shows the molecule of (I) which has an open conformation. The N3/C12–C16 piperidine ring adopts a chair conformation [puckering parameters (Cremer & Pople, 1975): QT = 0.574 (3) Å, θ = 179.5 (3) ° and φ = 137 (13) °]. The N1/C1–C5 pyridine ring is essentially planar with a maximum deviation of -0.035 (3) Å for C5. The N2/C8–C11 pyrrole and pyridine rings are almost co-planar and they make a dihedral angle of 3.48 (14)° with each other.

The structure exists no classic hydrogen bonds. The crystal packing exhibits ππ interactions with centroid—centroid distances: Cg1—Cg2i = 3.4984 (16) Å and Cg2—Cg2ii = 3.9641 (15) Å [Fig. 2; Cg1 and Cg2 are the centroids of the N2/C8–C11 pyrrole and N1/C1–C5 pyridine rings, respectively. Symmetry codes: (i) 1 - x, 1 - y, -z and (ii) 1 - x, -y, -z].

For the biological activity of cyano-amino pyridines, see: Al-Haiza et al. (2003); Bhalerao & Krishnaiah (1995); Doe et al. (1990); Murata et al. (2003); Shankaraiah et al. (2010); Shishoo et al. (1983); Soliman et al. (2012); Temple et al. (1992). For ring conformations, see: Cremer & Pople (1975).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SIR2004 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of (I) down the b axis. The hydrogen atoms have been omitted for clarity.
2-(Piperidin-1-yl)-6-(1H-pyrrol-1-yl)pyridine-3,5-dicarbonitrile top
Crystal data top
C16H15N5F(000) = 584
Mr = 277.33Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4756 reflections
a = 11.9372 (16) Åθ = 3.3–27.5°
b = 6.6919 (8) ŵ = 0.09 mm1
c = 17.158 (2) ÅT = 100 K
β = 92.280 (7)°Lath, colourless
V = 1369.5 (3) Å30.32 × 0.04 × 0.02 mm
Z = 4
Data collection top
Rigaku Saturn724+
diffractometer
3098 independent reflections
Radiation source: Rotating Anode1503 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.095
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.3°
profile data from ω–scansh = 1515
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 78
Tmin = 0.973, Tmax = 0.998l = 2122
7877 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0431P)2]
where P = (Fo2 + 2Fc2)/3
3098 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H15N5V = 1369.5 (3) Å3
Mr = 277.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9372 (16) ŵ = 0.09 mm1
b = 6.6919 (8) ÅT = 100 K
c = 17.158 (2) Å0.32 × 0.04 × 0.02 mm
β = 92.280 (7)°
Data collection top
Rigaku Saturn724+
diffractometer
3098 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
1503 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.998Rint = 0.095
7877 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 0.96Δρmax = 0.21 e Å3
3098 reflectionsΔρmin = 0.24 e Å3
190 parameters
Special details top

Experimental. CrystalClear-SM Expert

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.57393 (18)0.2530 (3)0.06283 (13)0.0173 (7)
N20.38710 (18)0.2792 (3)0.03066 (13)0.0168 (7)
N30.75463 (17)0.2158 (3)0.11176 (13)0.0192 (7)
N40.3876 (2)0.2027 (4)0.19418 (14)0.0312 (9)
N50.9243 (2)0.2228 (3)0.06919 (14)0.0262 (8)
C10.4966 (2)0.2520 (4)0.00532 (16)0.0169 (9)
C20.5227 (2)0.2225 (4)0.07288 (15)0.0150 (8)
C30.6365 (2)0.2034 (4)0.08826 (15)0.0180 (9)
C40.7185 (2)0.2039 (4)0.02904 (15)0.0167 (9)
C50.6829 (2)0.2212 (4)0.04902 (15)0.0153 (8)
C60.4457 (2)0.2118 (4)0.13900 (16)0.0209 (9)
C70.8327 (2)0.2111 (4)0.05098 (15)0.0174 (9)
C80.2865 (2)0.2905 (4)0.01382 (17)0.0207 (9)
C90.2014 (2)0.3079 (4)0.03534 (16)0.0206 (9)
C100.2483 (2)0.3078 (4)0.11287 (16)0.0199 (9)
C110.3609 (2)0.2903 (4)0.10890 (16)0.0191 (9)
C120.7216 (2)0.2875 (4)0.18847 (16)0.0250 (9)
C130.8159 (2)0.4145 (4)0.22429 (17)0.0255 (10)
C140.9264 (2)0.3013 (4)0.22895 (17)0.0263 (10)
C150.9552 (2)0.2224 (4)0.14853 (17)0.0233 (9)
C160.8582 (2)0.0981 (4)0.11522 (16)0.0212 (9)
H30.657500.190000.139600.0220*
H80.279400.286700.068000.0250*
H90.125700.318000.021000.0250*
H100.208600.318000.158300.0240*
H110.412000.286300.151200.0230*
H12A0.707000.174800.222200.0300*
H12B0.653500.366300.182700.0300*
H13A0.796500.455400.276300.0310*
H13B0.824400.534100.193100.0310*
H14A0.921000.190400.265000.0320*
H14B0.985700.389400.248500.0320*
H15A0.969400.333400.113900.0280*
H15B1.022400.141100.152900.0280*
H16A0.874900.053000.063200.0250*
H16B0.848200.018800.147600.0250*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0151 (12)0.0199 (13)0.0168 (13)0.0004 (10)0.0007 (10)0.0011 (10)
N20.0133 (11)0.0187 (12)0.0183 (13)0.0017 (10)0.0011 (9)0.0014 (10)
N30.0146 (12)0.0250 (13)0.0179 (13)0.0045 (10)0.0004 (10)0.0054 (11)
N40.0255 (14)0.0450 (17)0.0230 (15)0.0032 (13)0.0010 (12)0.0044 (13)
N50.0203 (14)0.0315 (15)0.0267 (15)0.0043 (12)0.0014 (11)0.0003 (12)
C10.0169 (14)0.0124 (15)0.0213 (16)0.0017 (11)0.0012 (12)0.0013 (11)
C20.0158 (14)0.0143 (15)0.0146 (14)0.0008 (12)0.0030 (11)0.0021 (11)
C30.0235 (15)0.0159 (15)0.0149 (15)0.0011 (13)0.0049 (12)0.0010 (12)
C40.0178 (15)0.0158 (15)0.0166 (15)0.0001 (13)0.0006 (12)0.0003 (12)
C50.0144 (14)0.0155 (15)0.0161 (15)0.0038 (12)0.0009 (11)0.0011 (11)
C60.0185 (15)0.0262 (16)0.0183 (15)0.0012 (13)0.0038 (13)0.0002 (13)
C70.0212 (15)0.0182 (15)0.0126 (15)0.0034 (13)0.0012 (12)0.0007 (12)
C80.0187 (15)0.0206 (16)0.0227 (16)0.0008 (13)0.0016 (12)0.0012 (13)
C90.0162 (15)0.0227 (16)0.0229 (17)0.0004 (13)0.0025 (12)0.0010 (13)
C100.0185 (15)0.0186 (16)0.0231 (16)0.0027 (12)0.0065 (12)0.0003 (13)
C110.0198 (15)0.0214 (15)0.0160 (15)0.0013 (13)0.0003 (12)0.0010 (13)
C120.0184 (15)0.0321 (17)0.0243 (17)0.0003 (14)0.0000 (12)0.0095 (14)
C130.0227 (17)0.0302 (18)0.0233 (17)0.0015 (14)0.0017 (13)0.0052 (14)
C140.0215 (16)0.0304 (18)0.0268 (17)0.0030 (14)0.0022 (13)0.0068 (15)
C150.0157 (15)0.0266 (17)0.0278 (17)0.0013 (13)0.0019 (12)0.0004 (14)
C160.0186 (15)0.0251 (16)0.0199 (17)0.0039 (13)0.0016 (13)0.0002 (12)
Geometric parameters (Å, º) top
N1—C11.324 (3)C12—C131.521 (4)
N1—C51.348 (3)C13—C141.520 (3)
N2—C11.406 (3)C14—C151.529 (4)
N2—C81.399 (3)C15—C161.519 (4)
N2—C111.392 (4)C3—H30.9300
N3—C51.349 (3)C8—H80.9300
N3—C121.470 (3)C9—H90.9300
N3—C161.465 (3)C10—H100.9300
N4—C61.153 (4)C11—H110.9300
N5—C71.152 (3)C12—H12A0.9700
C1—C21.403 (4)C12—H12B0.9700
C2—C31.400 (3)C13—H13A0.9700
C2—C61.433 (4)C13—H13B0.9700
C3—C41.383 (4)C14—H14A0.9700
C4—C51.426 (4)C14—H14B0.9700
C4—C71.429 (3)C15—H15A0.9700
C8—C91.351 (4)C15—H15B0.9700
C9—C101.423 (4)C16—H16A0.9700
C10—C111.354 (3)C16—H16B0.9700
C1—N1—C5121.1 (2)N2—C8—H8126.00
C1—N2—C8128.8 (2)C9—C8—H8126.00
C1—N2—C11123.5 (2)C8—C9—H9126.00
C8—N2—C11107.6 (2)C10—C9—H9126.00
C5—N3—C12121.4 (2)C9—C10—H10126.00
C5—N3—C16123.7 (2)C11—C10—H10126.00
C12—N3—C16113.3 (2)N2—C11—H11126.00
N1—C1—N2113.5 (2)C10—C11—H11126.00
N1—C1—C2122.6 (2)N3—C12—H12A110.00
N2—C1—C2124.0 (2)N3—C12—H12B110.00
C1—C2—C3116.6 (2)C13—C12—H12A110.00
C1—C2—C6127.2 (2)C13—C12—H12B110.00
C3—C2—C6116.3 (2)H12A—C12—H12B108.00
C2—C3—C4121.7 (2)C12—C13—H13A109.00
C3—C4—C5117.5 (2)C12—C13—H13B109.00
C3—C4—C7117.5 (2)C14—C13—H13A109.00
C5—C4—C7124.6 (2)C14—C13—H13B109.00
N1—C5—N3116.8 (2)H13A—C13—H13B108.00
N1—C5—C4120.2 (2)C13—C14—H14A110.00
N3—C5—C4123.0 (2)C13—C14—H14B110.00
N4—C6—C2177.1 (3)C15—C14—H14A110.00
N5—C7—C4178.0 (3)C15—C14—H14B110.00
N2—C8—C9108.3 (2)H14A—C14—H14B108.00
C8—C9—C10107.8 (2)C14—C15—H15A110.00
C9—C10—C11107.9 (2)C14—C15—H15B110.00
N2—C11—C10108.3 (2)C16—C15—H15A110.00
N3—C12—C13108.9 (2)C16—C15—H15B110.00
C12—C13—C14111.7 (2)H15A—C15—H15B108.00
C13—C14—C15110.5 (2)N3—C16—H16A110.00
C14—C15—C16109.5 (2)N3—C16—H16B110.00
N3—C16—C15110.5 (2)C15—C16—H16A110.00
C2—C3—H3119.00C15—C16—H16B110.00
C4—C3—H3119.00H16A—C16—H16B108.00
C5—N1—C1—N2177.4 (2)N2—C1—C2—C3178.3 (2)
C5—N1—C1—C21.4 (4)N2—C1—C2—C61.0 (4)
C1—N1—C5—N3177.0 (2)N1—C1—C2—C6177.7 (3)
C1—N1—C5—C45.8 (4)N1—C1—C2—C33.0 (4)
C8—N2—C1—N1178.4 (2)C1—C2—C3—C43.0 (4)
C11—N2—C1—C2174.0 (2)C6—C2—C3—C4177.6 (3)
C1—N2—C8—C9177.1 (2)C2—C3—C4—C7171.7 (3)
C1—N2—C11—C10177.3 (2)C2—C3—C4—C51.1 (4)
C8—N2—C11—C100.0 (3)C3—C4—C5—N15.5 (4)
C8—N2—C1—C22.8 (4)C7—C4—C5—N310.5 (4)
C11—N2—C8—C90.0 (3)C3—C4—C5—N3177.4 (2)
C11—N2—C1—N14.8 (3)C7—C4—C5—N1166.6 (2)
C5—N3—C16—C15134.0 (2)N2—C8—C9—C100.0 (3)
C12—N3—C5—N114.1 (3)C8—C9—C10—C110.0 (3)
C12—N3—C16—C1560.3 (3)C9—C10—C11—N20.0 (3)
C16—N3—C5—C432.4 (4)N3—C12—C13—C1455.5 (3)
C5—N3—C12—C13135.4 (2)C12—C13—C14—C1555.1 (3)
C16—N3—C12—C1358.5 (3)C13—C14—C15—C1654.7 (3)
C16—N3—C5—N1150.5 (2)C14—C15—C16—N356.7 (3)
C12—N3—C5—C4163.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···N10.972.362.740 (3)103

Experimental details

Crystal data
Chemical formulaC16H15N5
Mr277.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.9372 (16), 6.6919 (8), 17.158 (2)
β (°) 92.280 (7)
V3)1369.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.04 × 0.02
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2011)
Tmin, Tmax0.973, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
7877, 3098, 1503
Rint0.095
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.140, 0.96
No. of reflections3098
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SIR2004 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The EPSRC National Crystallography Service is gratefully acknowledged for the X-ray diffraction measurements. The authors are thankful to Manchester Metropolitan University and Sohag University for supporting this study.

References

First citationAl-Haiza, M. A., Mostafa, M. S. & El-Kady, M. Y. (2003). Molecules, 8, 275–286.  CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBhalerao, U. T. & Krishnaiah, A. (1995). Indian J. Chem. Sect. B, 34, 587–590.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDoe, K., Avasthi, K., Pratap, R., Bakuni, D. S. & Joshi, M. N. (1990). Indian J. Chem. Sect B, 29, 459–463.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMurata, T., Shimada, M., Sakakibara, S., Yoshino, T., Kadono, H., Masuda, T., Shimazaki, M., Shintani, T., Fuchikami, K., Sakai, K., Inbe, H., Takeshita, K., Niki, T., Umeda, M., Bacon, K. B., Ziegelbauer, K. B. & Lowinger, T. B. (2003). Bioorg. Med. Chem. Lett. 13, 913–918.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShankaraiah, G. K., Vishnu, T. K. & Bhaskar, S. D. (2010). J. Chem. Pharm. Res. 2, 187–191.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShishoo, C. J., Devani, M. B., Bhadti, V. C., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. 24, 4611–4612.  CrossRef CAS Web of Science Google Scholar
First citationSoliman, A. M., Mohamed, S. K., El Remail, M. A. & Abdel Ghany, H. (2012). Eur. J. Med. Chem. 47, 138–142.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTemple, C., Rener, G. A., Raud, W. R. & Noker, P. E. (1992). J. Med. Chem. 35, 3686–3690.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds