organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(5-Chloro-2-hy­dr­oxy­benzyl­­idene)-2,4-dihy­droxybenzohydrazide methanol monosolvate

aCollege of Life Sciences, Liaoning Normal University, Dalian 116029, People's Republic of China
*Correspondence e-mail: doctorkun@yeah.net

(Received 27 February 2012; accepted 1 March 2012; online 7 March 2012)

In the title compound, C14H11ClN2O4·CH3OH, the mol­ecule adopts an E conformation about the C=N bond. The compound is in the enamine–keto form. The two terminal benzene rings make a dihedral angle of 10.53 (9)°. Intra-mol­ecular O—H⋯O and O—H⋯N hydrogen bonding stabilizes the mol­ecular structure. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules, forming chains running along the b axis.

Related literature

For general background to the bioactivity of Schiff bases in the pharmaceutical and agrochemical fields, see: Bernardino et al. (2006[Bernardino, A. M. R., Gomes, A. O., Charret, K. S., Freita, A. C. C., Machado, G. M. C., Canto-Cavalheiro, M. M., Leon, L. L. & Amaral, V. F. (2006). Eur. J. Med. Chem. 41, 80-87.]); Zhang et al. (2008[Zhang, H.-Q., Li, J.-Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990-993.]). For related compounds, see: Huang et al. (2008[Huang, S.-S., Diao, Y.-P. & Kang, T.-G. (2008). Z. Kristallogr. New Cryst. Struct. 223, 167-168.]); Zhang et al. (2007[Zhang, H.-Q., Li, J.-Z., Zhang, Y., Zhang, D. & Su, Z.-H. (2007). Acta Cryst. E63, o3536.]). For a related structure, see: Deng et al. (2009[Deng, S., Han, L., Huang, S., Zhang, H., Diao, Y. & Liu, K. (2009). Acta Cryst. E65, o721.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN2O4·CH4O

  • Mr = 338.74

  • Monoclinic, P 21 /c

  • a = 7.5438 (11) Å

  • b = 13.1623 (19) Å

  • c = 15.903 (2) Å

  • β = 103.251 (3)°

  • V = 1537.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.20 × 0.12 × 0.10 mm

Data collection
  • Brucker SMART 1000 CCD diffractometer

  • 14496 measured reflections

  • 3808 independent reflections

  • 2407 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.119

  • S = 1.01

  • 3808 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O5 0.86 2.01 2.833 (2) 159
O1—H1A⋯N1 0.82 1.81 2.5333 (19) 146
O3—H3⋯O2 0.82 1.77 2.5030 (18) 148
O4—H4A⋯O1i 0.82 2.00 2.7401 (19) 151
O5—H5A⋯O3i 0.82 2.03 2.8346 (19) 168
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have attracted much attention due to their diverse range of bioactivities in pharmaceutical and agrochemical field (Bernardino et al., 2006; Zhang et al., 2008). In order to expand this field, we now report the synthsis and structure of the title compound, (I), (Fig. 1).

In the title compound, the bond length of 1.274 (2) Å between atoms C(1) and N(1) is similar to those observed in other Schiff basess (Deng et al., 2009; Huang et al.., 2008; Zhang et al.., 2007), indicating it is a double bond. The bond length of C(8)–N(2), 1.357 (2) Å, is intermediate between C–N and C=N bonds due to the conjugation effects in the molecule. The mean planes of the two benzene rings make a dihedral angle of 10.53 (3)°. As expected, the molecule adopts a trans configuration about the C=N double bond. As expected, the molecule adopts a trans configuration about the C=N double bond. The torsion angles C(9)–C(8)–N(2)–N(1), O(2)–C(8)–N(2)–N(1), C(2)–C(1)–N(1)–N(2)–and C(1)–N(1)–N(2)–C(8) are -174.10 (14), 5.6 (2), -178.63 (14) and 177.27 (15)°, respectively. Three Intramolecular hydrogen bonds are observed in the molecular structure. The lattice methanol and hydroxyl group of the Schiff base in the crystal are linked to the Schiff base moieties through intermolecular N–H···O, O–H···O hydrogen bonds (Table 1, Figs. 1 and2). The title compound extends further to its final two-dimensional network through intermolecular N—H···O, O–H···O hydrogen bonds which interlink molecules stabilize the structure. (Table 1, Fig 2).

Related literature top

For general background to the bioactivity of Schiff bases in the pharmaceutical and agrochemical fields, see: Bernardino et al. (2006); Zhang et al. (2008). For related compounds, see: Huang et al. (2008); Zhang et al. (2007). For a related structure, see: Deng et al. (2009).

Experimental top

5-chloro-2-hydroxybenzaldehyde (0.1 mmol, 15.6 mg) and 2,4-Dihydroxybenzhydrazide (0.1 mmol, 16.8 mg) were dissolved in a methanol solution (10 ml). The mixture was stirred at room temperature for 1 h and filtered. After keeping the filtrate in air for three days, yellow rod-like crystals were formed.

Refinement top

H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, O—H = 0.82, N—H = 0.86, C—H = 0.93–0.96 Å, with Uiso(H) = 1.5Ueq(C,O) for methyl H and hydroxyl H atoms, and 1.2Ueq(C,N) for the others.

Structure description top

Schiff bases have attracted much attention due to their diverse range of bioactivities in pharmaceutical and agrochemical field (Bernardino et al., 2006; Zhang et al., 2008). In order to expand this field, we now report the synthsis and structure of the title compound, (I), (Fig. 1).

In the title compound, the bond length of 1.274 (2) Å between atoms C(1) and N(1) is similar to those observed in other Schiff basess (Deng et al., 2009; Huang et al.., 2008; Zhang et al.., 2007), indicating it is a double bond. The bond length of C(8)–N(2), 1.357 (2) Å, is intermediate between C–N and C=N bonds due to the conjugation effects in the molecule. The mean planes of the two benzene rings make a dihedral angle of 10.53 (3)°. As expected, the molecule adopts a trans configuration about the C=N double bond. As expected, the molecule adopts a trans configuration about the C=N double bond. The torsion angles C(9)–C(8)–N(2)–N(1), O(2)–C(8)–N(2)–N(1), C(2)–C(1)–N(1)–N(2)–and C(1)–N(1)–N(2)–C(8) are -174.10 (14), 5.6 (2), -178.63 (14) and 177.27 (15)°, respectively. Three Intramolecular hydrogen bonds are observed in the molecular structure. The lattice methanol and hydroxyl group of the Schiff base in the crystal are linked to the Schiff base moieties through intermolecular N–H···O, O–H···O hydrogen bonds (Table 1, Figs. 1 and2). The title compound extends further to its final two-dimensional network through intermolecular N—H···O, O–H···O hydrogen bonds which interlink molecules stabilize the structure. (Table 1, Fig 2).

For general background to the bioactivity of Schiff bases in the pharmaceutical and agrochemical fields, see: Bernardino et al. (2006); Zhang et al. (2008). For related compounds, see: Huang et al. (2008); Zhang et al. (2007). For a related structure, see: Deng et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (thermal ellipsoids are shown at 30% probability levels).
[Figure 2] Fig. 2. A diagram showing hydrogen bonds of the title compound.
(E)-N'-(5-Chloro-2-hydroxybenzylidene)-2,4- dihydroxybenzohydrazide methanol monosolvate top
Crystal data top
C14H11ClN2O4·CH4OF(000) = 704
Mr = 338.74Dx = 1.464 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2195 reflections
a = 7.5438 (11) Åθ = 3.1–26.4°
b = 13.1623 (19) ŵ = 0.28 mm1
c = 15.903 (2) ÅT = 296 K
β = 103.251 (3)°Rod, yellow
V = 1537.0 (4) Å30.20 × 0.12 × 0.10 mm
Z = 4
Data collection top
Brucker SMART 1000 CCD
diffractometer
2407 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 28.3°, θmin = 2.0°
ω scansh = 1010
14496 measured reflectionsk = 1717
3808 independent reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.2991P]
where P = (Fo2 + 2Fc2)/3
3808 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H11ClN2O4·CH4OV = 1537.0 (4) Å3
Mr = 338.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5438 (11) ŵ = 0.28 mm1
b = 13.1623 (19) ÅT = 296 K
c = 15.903 (2) Å0.20 × 0.12 × 0.10 mm
β = 103.251 (3)°
Data collection top
Brucker SMART 1000 CCD
diffractometer
2407 reflections with I > 2σ(I)
14496 measured reflectionsRint = 0.038
3808 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
3808 reflectionsΔρmin = 0.29 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2107 (2)0.06032 (14)0.02905 (10)0.0381 (4)
H10.21030.13100.02850.046*
C20.0958 (2)0.00413 (13)0.09970 (10)0.0350 (4)
C30.0877 (2)0.10217 (14)0.09981 (11)0.0393 (4)
C40.0226 (3)0.15334 (16)0.16831 (13)0.0504 (5)
H40.02830.22390.16790.060*
C50.1240 (3)0.09963 (17)0.23709 (13)0.0529 (5)
H50.19710.13410.28330.063*
C60.1173 (3)0.00494 (17)0.23758 (12)0.0464 (5)
C70.0092 (2)0.05704 (15)0.16963 (11)0.0424 (4)
H70.00640.12770.17040.051*
C80.5164 (2)0.00088 (13)0.16440 (11)0.0361 (4)
C90.6206 (2)0.04621 (12)0.24364 (10)0.0335 (4)
C100.7254 (2)0.01654 (12)0.30783 (11)0.0361 (4)
C110.8242 (3)0.02260 (14)0.38451 (11)0.0431 (4)
H110.89480.02010.42550.052*
C120.8181 (3)0.12552 (14)0.40030 (11)0.0412 (4)
C130.7145 (3)0.19012 (13)0.33873 (11)0.0419 (4)
H130.71000.25940.34960.050*
C140.6194 (2)0.15036 (13)0.26201 (11)0.0386 (4)
H140.55180.19390.22080.046*
C150.4082 (4)0.3243 (2)0.00103 (16)0.0741 (7)
H15A0.30010.35880.03110.111*
H15B0.44780.27810.03970.111*
H15C0.50250.37320.01990.111*
Cl10.24386 (8)0.07252 (5)0.32463 (4)0.0732 (2)
N10.31182 (19)0.01011 (11)0.03204 (8)0.0374 (3)
N20.4195 (2)0.05913 (11)0.10084 (9)0.0390 (3)
H20.42540.12430.10370.047*
O10.18685 (19)0.15812 (10)0.03310 (8)0.0525 (4)
H1A0.24640.11990.00340.079*
O20.51353 (19)0.09463 (9)0.15379 (8)0.0459 (3)
O30.73109 (19)0.11901 (9)0.29692 (8)0.0478 (3)
H30.66820.13440.24940.072*
O40.9180 (2)0.15923 (11)0.47749 (9)0.0637 (4)
H4A0.90570.22090.48080.096*
O50.3709 (2)0.27020 (11)0.06876 (10)0.0668 (5)
H5A0.34050.30990.10260.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0412 (10)0.0383 (9)0.0348 (9)0.0007 (8)0.0088 (8)0.0010 (7)
C20.0332 (9)0.0423 (10)0.0307 (8)0.0003 (7)0.0095 (7)0.0008 (7)
C30.0393 (10)0.0418 (10)0.0367 (9)0.0017 (8)0.0084 (8)0.0029 (8)
C40.0501 (12)0.0474 (11)0.0518 (11)0.0101 (9)0.0080 (10)0.0052 (9)
C50.0449 (12)0.0689 (15)0.0416 (10)0.0118 (10)0.0030 (9)0.0095 (10)
C60.0369 (10)0.0652 (13)0.0350 (9)0.0005 (9)0.0039 (8)0.0061 (9)
C70.0406 (10)0.0473 (11)0.0392 (9)0.0026 (8)0.0090 (8)0.0055 (8)
C80.0392 (10)0.0365 (10)0.0334 (8)0.0019 (8)0.0104 (7)0.0019 (7)
C90.0364 (9)0.0333 (9)0.0310 (8)0.0008 (7)0.0082 (7)0.0012 (7)
C100.0417 (10)0.0291 (9)0.0375 (9)0.0018 (7)0.0095 (8)0.0025 (7)
C110.0486 (11)0.0393 (10)0.0370 (9)0.0080 (8)0.0004 (8)0.0031 (8)
C120.0420 (10)0.0414 (10)0.0360 (9)0.0044 (8)0.0004 (8)0.0053 (8)
C130.0493 (11)0.0312 (9)0.0425 (10)0.0036 (8)0.0049 (8)0.0052 (7)
C140.0443 (10)0.0330 (9)0.0363 (9)0.0059 (8)0.0049 (8)0.0029 (7)
C150.0878 (19)0.0742 (17)0.0599 (15)0.0097 (14)0.0158 (14)0.0039 (12)
Cl10.0588 (4)0.1009 (5)0.0494 (3)0.0050 (3)0.0089 (3)0.0195 (3)
N10.0392 (8)0.0417 (8)0.0310 (7)0.0023 (7)0.0073 (6)0.0023 (6)
N20.0483 (9)0.0352 (8)0.0309 (7)0.0009 (7)0.0035 (6)0.0020 (6)
O10.0621 (9)0.0389 (7)0.0491 (8)0.0038 (6)0.0025 (7)0.0075 (6)
O20.0591 (9)0.0321 (7)0.0428 (7)0.0057 (6)0.0037 (6)0.0020 (5)
O30.0663 (9)0.0286 (6)0.0439 (7)0.0034 (6)0.0026 (6)0.0018 (5)
O40.0773 (11)0.0503 (8)0.0474 (8)0.0148 (7)0.0187 (7)0.0138 (6)
O50.1037 (13)0.0446 (8)0.0534 (8)0.0176 (8)0.0206 (9)0.0007 (7)
Geometric parameters (Å, º) top
C1—N11.274 (2)C10—O31.362 (2)
C1—C21.454 (2)C10—C111.375 (2)
C1—H10.9300C11—C121.380 (3)
C2—C71.395 (2)C11—H110.9300
C2—C31.400 (3)C12—O41.359 (2)
C3—O11.365 (2)C12—C131.393 (2)
C3—C41.385 (3)C13—C141.370 (2)
C4—C51.377 (3)C13—H130.9300
C4—H40.9300C14—H140.9300
C5—C61.377 (3)C15—O51.401 (3)
C5—H50.9300C15—H15A0.9600
C6—C71.378 (3)C15—H15B0.9600
C6—Cl11.7360 (19)C15—H15C0.9600
C7—H70.9300N1—N21.3658 (18)
C8—O21.245 (2)N2—H20.8600
C8—N21.357 (2)O1—H1A0.8200
C8—C91.461 (2)O3—H30.8200
C9—C141.402 (2)O4—H4A0.8200
C9—C101.407 (2)O5—H5A0.8200
N1—C1—C2118.17 (16)O3—C10—C9121.19 (15)
N1—C1—H1120.9C11—C10—C9121.57 (16)
C2—C1—H1120.9C10—C11—C12119.67 (16)
C7—C2—C3118.76 (16)C10—C11—H11120.2
C7—C2—C1119.42 (16)C12—C11—H11120.2
C3—C2—C1121.83 (16)O4—C12—C11116.74 (16)
O1—C3—C4118.19 (16)O4—C12—C13122.75 (16)
O1—C3—C2121.47 (16)C11—C12—C13120.51 (16)
C4—C3—C2120.34 (17)C14—C13—C12119.19 (16)
C5—C4—C3119.95 (18)C14—C13—H13120.4
C5—C4—H4120.0C12—C13—H13120.4
C3—C4—H4120.0C13—C14—C9122.15 (16)
C6—C5—C4120.20 (18)C13—C14—H14118.9
C6—C5—H5119.9C9—C14—H14118.9
C4—C5—H5119.9O5—C15—H15A109.5
C5—C6—C7120.58 (18)O5—C15—H15B109.5
C5—C6—Cl1120.16 (15)H15A—C15—H15B109.5
C7—C6—Cl1119.26 (16)O5—C15—H15C109.5
C6—C7—C2120.17 (18)H15A—C15—H15C109.5
C6—C7—H7119.9H15B—C15—H15C109.5
C2—C7—H7119.9C1—N1—N2120.53 (15)
O2—C8—N2119.10 (15)C8—N2—N1116.21 (14)
O2—C8—C9121.77 (15)C8—N2—H2121.9
N2—C8—C9119.14 (15)N1—N2—H2121.9
C14—C9—C10116.89 (15)C3—O1—H1A109.5
C14—C9—C8124.50 (15)C10—O3—H3109.5
C10—C9—C8118.58 (15)C12—O4—H4A109.5
O3—C10—C11117.23 (15)C15—O5—H5A109.5
N1—C1—C2—C7176.71 (16)N2—C8—C9—C10177.89 (15)
N1—C1—C2—C33.2 (3)C14—C9—C10—O3178.17 (16)
C7—C2—C3—O1179.78 (16)C8—C9—C10—O30.2 (2)
C1—C2—C3—O10.4 (3)C14—C9—C10—C110.9 (3)
C7—C2—C3—C40.1 (3)C8—C9—C10—C11178.90 (16)
C1—C2—C3—C4179.76 (16)O3—C10—C11—C12177.66 (17)
O1—C3—C4—C5179.61 (18)C9—C10—C11—C121.5 (3)
C2—C3—C4—C50.5 (3)C10—C11—C12—O4179.64 (17)
C3—C4—C5—C60.6 (3)C10—C11—C12—C130.8 (3)
C4—C5—C6—C70.1 (3)O4—C12—C13—C14179.18 (18)
C4—C5—C6—Cl1179.57 (16)C11—C12—C13—C140.3 (3)
C5—C6—C7—C20.5 (3)C12—C13—C14—C90.9 (3)
Cl1—C6—C7—C2178.96 (13)C10—C9—C14—C130.3 (3)
C3—C2—C7—C60.6 (3)C8—C9—C14—C13177.58 (17)
C1—C2—C7—C6179.28 (16)C2—C1—N1—N2178.63 (14)
O2—C8—C9—C14175.36 (17)O2—C8—N2—N15.6 (2)
N2—C8—C9—C144.3 (3)C9—C8—N2—N1174.10 (14)
O2—C8—C9—C102.5 (3)C1—N1—N2—C8177.27 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O50.862.012.833 (2)159
O1—H1A···N10.821.812.5333 (19)146
O3—H3···O20.821.772.5030 (18)148
O4—H4A···O1i0.822.002.7401 (19)151
O5—H5A···O3i0.822.032.8346 (19)168
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11ClN2O4·CH4O
Mr338.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.5438 (11), 13.1623 (19), 15.903 (2)
β (°) 103.251 (3)
V3)1537.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.20 × 0.12 × 0.10
Data collection
DiffractometerBrucker SMART 1000 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14496, 3808, 2407
Rint0.038
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.119, 1.01
No. of reflections3808
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.29

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O50.862.012.833 (2)158.6
O1—H1A···N10.821.812.5333 (19)146.2
O3—H3···O20.821.772.5030 (18)147.8
O4—H4A···O1i0.822.002.7401 (19)150.7
O5—H5A···O3i0.822.032.8346 (19)167.5
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the College of Life Sciences, Liaoning Normal University, China.

References

First citationBernardino, A. M. R., Gomes, A. O., Charret, K. S., Freita, A. C. C., Machado, G. M. C., Canto-Cavalheiro, M. M., Leon, L. L. & Amaral, V. F. (2006). Eur. J. Med. Chem. 41, 80–87.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, S., Han, L., Huang, S., Zhang, H., Diao, Y. & Liu, K. (2009). Acta Cryst. E65, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, S.-S., Diao, Y.-P. & Kang, T.-G. (2008). Z. Kristallogr. New Cryst. Struct. 223, 167–168.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H.-Q., Li, J.-Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990–993.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, H.-Q., Li, J.-Z., Zhang, Y., Zhang, D. & Su, Z.-H. (2007). Acta Cryst. E63, o3536.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds