organic compounds
Bis(guanidinium) naphthalene-1,5-disulfonate–18-crown-6 (1/1)
aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: seuwei@126.com
In the crystal of the title compound, 2CH6N3+·C10H6O6S22−·C12H24O6, the 1,5-naphthnalenedisulfonate anion and the 18-crown-6 molecule lie across inversion centers. The guanidinium cation links with the 1,5-naphthnalenedisulfonate anion and 18-crown-6 molecule via N—H⋯O hydrogen bonds.
Related literature
For applications of et al. (1998). The title compound was obtained during a search for new hydrogen-bonding-type dielectric materials. For ferroelectric metal-organic 18-crown-6 see: Fu et al. (2009, 2011); Ye et al. (2006); Zhang et al. (2008, 2010).
see: ClarkExperimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812009154/xu5475sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812009154/xu5475Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812009154/xu5475Isup3.cml
The 1,5-naphthalene disulfonic acid (1.15 g, 4 mmol) and guanidinium tetrafluoroborate (1.17 g, 8 mmol) were dissolved in 30 ml water and the solution was combined with methanol solution of dibenzo-18-crown-6 (1.44 g 4 mmol). The mixture solution was stirred for 30 min to reaction fully and good quality blocky single crystals were obtained by slow evaporation of the filtrate after two weeks (the
61%).Amino H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed in geometrically idealized positions nd constrained to ride on their parent atoms with C—H = 0.93–0.97 Å, Uiso(H) = 1.2Uiso(C).
Recent years,
have attracted much attention because of their wide application in catalysis, isotopeseparation, bionice, host–guest chemistry and supramolecular chemistry (Clark et al., 1998). Several 18-crown-6 were discovered to be dielectric-ferroelectric materials (Fu et al., 2011), hence we design the title compound to find new hydrogen bonding type dielectric materials. Dielectric-ferroelectric materials, comprising organic ligands, metal-organic coordination compounds and organic-inorganic hybrids almost show of temperature-dependent (Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008; Ye et al., 2006). Unfortunately, the of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent, below the melting point (395k-396k) of the compound, we have found that title compound has no dielectric disuniform from 80 K to 405 K. Herein we descibe the of this compound.At home temperature (25°C), the single-crystal X-ray diffraction reveals that the structure get crystallization in the triclinic system,
P-1 and the of the title compound consists of a guanidinium cation, a 1,5-naphthalenedisulfonate anion and a 18-crown-6 molecule (Fig. 1). The three –NH2+ groups form guanidinium interact with three O atoms of one crown ether molecule and other three O atoms from two 1,5-naphthalenedisulfonate anions through six N—H···O hydraogen bonds (Table 1), composing a three-dimensional (Fig. 2).For applications of
see: Clark et al. 1998). The title compoundwas obtained during a search for new hydrogen-bonding-type dielectric materials.For ferroelectric metal-organic 18-crown-6
see: Fu et al. (2009, 2011); Ye et al. (2006); Zhang et al. (2008, 2010).Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds. |
2CH6N3+·C10H6O6S2−·C12H24O6 | Z = 1 |
Mr = 670.76 | F(000) = 356 |
Triclinic, P1 | Dx = 1.387 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5275 (17) Å | Cell parameters from 3638 reflections |
b = 9.1291 (18) Å | θ = 3.0–27.5° |
c = 11.470 (2) Å | µ = 0.23 mm−1 |
α = 111.97 (3)° | T = 293 K |
β = 96.10 (3)° | Block, colorless |
γ = 99.38 (3)° | 0.20 × 0.20 × 0.20 mm |
V = 803.3 (3) Å3 |
Rigaku SCXmini diffractometer | 3070 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.025 |
Graphite monochromator | θmax = 27.4°, θmin = 3.1° |
CCD_Profile_fitting scans | h = −11→10 |
8245 measured reflections | k = −11→11 |
3638 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0379P)2 + 0.3633P] where P = (Fo2 + 2Fc2)/3 |
3638 reflections | (Δ/σ)max < 0.001 |
223 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
2CH6N3+·C10H6O6S2−·C12H24O6 | γ = 99.38 (3)° |
Mr = 670.76 | V = 803.3 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.5275 (17) Å | Mo Kα radiation |
b = 9.1291 (18) Å | µ = 0.23 mm−1 |
c = 11.470 (2) Å | T = 293 K |
α = 111.97 (3)° | 0.20 × 0.20 × 0.20 mm |
β = 96.10 (3)° |
Rigaku SCXmini diffractometer | 3070 reflections with I > 2σ(I) |
8245 measured reflections | Rint = 0.025 |
3638 independent reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.104 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.34 e Å−3 |
3638 reflections | Δρmin = −0.46 e Å−3 |
223 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.11339 (5) | 0.65053 (5) | 0.31289 (4) | 0.03167 (13) | |
O3 | 0.09429 (17) | 0.50066 (14) | 0.33254 (12) | 0.0414 (3) | |
O4 | 0.63864 (17) | −0.01790 (16) | 0.23799 (13) | 0.0459 (3) | |
O5 | 0.47238 (18) | 0.22644 (16) | 0.24927 (13) | 0.0490 (4) | |
C3 | 0.02394 (19) | 0.78364 (18) | 0.43259 (15) | 0.0277 (3) | |
O6 | 0.40620 (17) | 0.26914 (16) | 0.01217 (13) | 0.0468 (3) | |
C4 | 0.03593 (18) | 0.94983 (18) | 0.45050 (15) | 0.0263 (3) | |
C1 | −0.1274 (2) | 0.8214 (2) | 0.60430 (18) | 0.0387 (4) | |
H1 | −0.1821 | 0.7782 | 0.6541 | 0.046* | |
O1 | 0.28092 (17) | 0.73046 (16) | 0.33171 (17) | 0.0608 (5) | |
C2 | −0.0571 (2) | 0.7217 (2) | 0.50692 (17) | 0.0345 (4) | |
H2 | −0.0658 | 0.6134 | 0.4931 | 0.041* | |
O2 | 0.0209 (2) | 0.62768 (18) | 0.19082 (13) | 0.0574 (4) | |
C12 | 0.7991 (2) | 0.1911 (2) | 0.04975 (18) | 0.0415 (4) | |
N3 | 0.8556 (3) | 0.2086 (3) | 0.16648 (19) | 0.0569 (5) | |
C5 | 0.1159 (2) | 1.0194 (2) | 0.37412 (17) | 0.0349 (4) | |
H5 | 0.1611 | 0.9550 | 0.3085 | 0.042* | |
N2 | 0.6973 (3) | 0.0547 (2) | −0.0292 (2) | 0.0626 (6) | |
C8 | 0.5725 (3) | 0.2333 (3) | 0.35990 (19) | 0.0539 (5) | |
H8A | 0.5319 | 0.2912 | 0.4361 | 0.065* | |
H8B | 0.6820 | 0.2903 | 0.3672 | 0.065* | |
C11 | 0.3022 (3) | 0.2636 (3) | −0.0967 (2) | 0.0532 (5) | |
H11A | 0.2955 | 0.3727 | −0.0865 | 0.064* | |
H11B | 0.1943 | 0.2037 | −0.1034 | 0.064* | |
C9 | 0.4799 (3) | 0.3797 (2) | 0.2418 (2) | 0.0575 (6) | |
H9A | 0.5878 | 0.4217 | 0.2326 | 0.069* | |
H9B | 0.4563 | 0.4558 | 0.3197 | 0.069* | |
C7 | 0.5717 (3) | 0.0633 (3) | 0.34750 (19) | 0.0493 (5) | |
H7A | 0.6351 | 0.0655 | 0.4238 | 0.059* | |
H7B | 0.4619 | 0.0058 | 0.3382 | 0.059* | |
C6 | 0.6336 (3) | −0.1836 (3) | 0.2156 (2) | 0.0501 (5) | |
H6A | 0.5231 | −0.2393 | 0.2066 | 0.060* | |
H6B | 0.6981 | −0.1898 | 0.2879 | 0.060* | |
N1 | 0.8482 (3) | 0.3087 (3) | 0.0127 (2) | 0.0653 (6) | |
C10 | 0.3593 (3) | 0.3611 (3) | 0.1293 (2) | 0.0552 (6) | |
H10A | 0.2537 | 0.3070 | 0.1334 | 0.066* | |
H10B | 0.3520 | 0.4672 | 0.1318 | 0.066* | |
H20 | 0.928 (3) | 0.299 (3) | 0.219 (2) | 0.066 (7)* | |
H21 | 0.819 (3) | 0.142 (3) | 0.193 (2) | 0.065 (8)* | |
H25 | 0.903 (3) | 0.399 (3) | 0.065 (3) | 0.074 (9)* | |
H22 | 0.670 (3) | −0.012 (3) | 0.000 (3) | 0.070 (9)* | |
H24 | 0.829 (3) | 0.289 (3) | −0.057 (3) | 0.059 (8)* | |
H23 | 0.659 (4) | 0.047 (4) | −0.099 (3) | 0.094 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0417 (2) | 0.0225 (2) | 0.0323 (2) | 0.00950 (16) | 0.01195 (17) | 0.01017 (16) |
O3 | 0.0617 (9) | 0.0267 (6) | 0.0411 (7) | 0.0161 (6) | 0.0153 (6) | 0.0150 (5) |
O4 | 0.0520 (8) | 0.0399 (7) | 0.0458 (8) | 0.0041 (6) | 0.0122 (6) | 0.0188 (6) |
O5 | 0.0553 (9) | 0.0386 (7) | 0.0412 (7) | 0.0067 (6) | −0.0003 (6) | 0.0068 (6) |
C3 | 0.0293 (8) | 0.0254 (8) | 0.0291 (8) | 0.0073 (6) | 0.0054 (6) | 0.0108 (6) |
O6 | 0.0498 (8) | 0.0426 (7) | 0.0513 (8) | 0.0232 (6) | 0.0100 (6) | 0.0168 (6) |
C4 | 0.0264 (8) | 0.0250 (7) | 0.0294 (8) | 0.0065 (6) | 0.0055 (6) | 0.0126 (6) |
C1 | 0.0454 (10) | 0.0369 (9) | 0.0487 (11) | 0.0129 (8) | 0.0237 (9) | 0.0279 (8) |
O1 | 0.0477 (8) | 0.0351 (7) | 0.0928 (12) | 0.0100 (6) | 0.0374 (8) | 0.0111 (7) |
C2 | 0.0409 (9) | 0.0260 (8) | 0.0425 (10) | 0.0091 (7) | 0.0125 (8) | 0.0182 (7) |
O2 | 0.0952 (12) | 0.0506 (8) | 0.0305 (7) | 0.0300 (8) | 0.0092 (7) | 0.0157 (6) |
C12 | 0.0424 (10) | 0.0352 (9) | 0.0421 (10) | 0.0033 (8) | 0.0097 (8) | 0.0118 (8) |
N3 | 0.0583 (12) | 0.0525 (11) | 0.0517 (11) | −0.0154 (9) | −0.0037 (9) | 0.0265 (10) |
C5 | 0.0416 (10) | 0.0326 (9) | 0.0391 (9) | 0.0140 (7) | 0.0197 (8) | 0.0182 (7) |
N2 | 0.0723 (14) | 0.0400 (11) | 0.0573 (13) | −0.0042 (10) | −0.0098 (11) | 0.0118 (10) |
C8 | 0.0543 (13) | 0.0537 (13) | 0.0358 (11) | 0.0051 (10) | 0.0011 (9) | 0.0027 (9) |
C11 | 0.0518 (12) | 0.0508 (12) | 0.0676 (14) | 0.0241 (10) | 0.0093 (11) | 0.0305 (11) |
C9 | 0.0706 (15) | 0.0356 (10) | 0.0540 (13) | 0.0146 (10) | 0.0116 (11) | 0.0031 (9) |
C7 | 0.0464 (11) | 0.0597 (13) | 0.0354 (10) | 0.0030 (10) | 0.0027 (9) | 0.0169 (9) |
C6 | 0.0518 (12) | 0.0495 (12) | 0.0577 (13) | 0.0097 (9) | 0.0050 (10) | 0.0328 (10) |
N1 | 0.0971 (18) | 0.0497 (12) | 0.0444 (12) | −0.0041 (11) | 0.0146 (12) | 0.0215 (10) |
C10 | 0.0662 (14) | 0.0402 (11) | 0.0608 (14) | 0.0278 (10) | 0.0200 (11) | 0.0133 (10) |
S1—O1 | 1.4481 (15) | C5—C1i | 1.365 (2) |
S1—O3 | 1.4544 (12) | C5—H5 | 0.9300 |
S1—O2 | 1.4556 (15) | N2—H22 | 0.81 (3) |
S1—C3 | 1.7943 (17) | N2—H23 | 0.80 (3) |
O4—C6 | 1.429 (2) | C8—C7 | 1.504 (3) |
O4—C7 | 1.430 (2) | C8—H8A | 0.9700 |
O5—C9 | 1.425 (3) | C8—H8B | 0.9700 |
O5—C8 | 1.427 (2) | C11—C6ii | 1.496 (3) |
C3—C2 | 1.372 (2) | C11—H11A | 0.9700 |
C3—C4 | 1.437 (2) | C11—H11B | 0.9700 |
O6—C10 | 1.431 (2) | C9—C10 | 1.499 (3) |
O6—C11 | 1.432 (2) | C9—H9A | 0.9700 |
C4—C5 | 1.428 (2) | C9—H9B | 0.9700 |
C4—C4i | 1.434 (3) | C7—H7A | 0.9700 |
C1—C5i | 1.365 (2) | C7—H7B | 0.9700 |
C1—C2 | 1.412 (2) | C6—C11ii | 1.496 (3) |
C1—H1 | 0.9300 | C6—H6A | 0.9700 |
C2—H2 | 0.9300 | C6—H6B | 0.9700 |
C12—N3 | 1.314 (3) | N1—H25 | 0.84 (3) |
C12—N1 | 1.319 (3) | N1—H24 | 0.75 (3) |
C12—N2 | 1.327 (3) | C10—H10A | 0.9700 |
N3—H20 | 0.90 (3) | C10—H10B | 0.9700 |
N3—H21 | 0.81 (3) | ||
O1—S1—O3 | 113.09 (9) | O5—C8—H8B | 110.0 |
O1—S1—O2 | 112.57 (11) | C7—C8—H8B | 110.0 |
O3—S1—O2 | 111.83 (9) | H8A—C8—H8B | 108.3 |
O1—S1—C3 | 107.06 (9) | O6—C11—C6ii | 109.94 (16) |
O3—S1—C3 | 106.12 (8) | O6—C11—H11A | 109.7 |
O2—S1—C3 | 105.53 (8) | C6ii—C11—H11A | 109.7 |
C6—O4—C7 | 112.50 (15) | O6—C11—H11B | 109.7 |
C9—O5—C8 | 113.94 (16) | C6ii—C11—H11B | 109.7 |
C2—C3—C4 | 120.72 (15) | H11A—C11—H11B | 108.2 |
C2—C3—S1 | 117.84 (12) | O5—C9—C10 | 109.51 (17) |
C4—C3—S1 | 121.44 (12) | O5—C9—H9A | 109.8 |
C10—O6—C11 | 111.63 (15) | C10—C9—H9A | 109.8 |
C5—C4—C4i | 118.55 (17) | O5—C9—H9B | 109.8 |
C5—C4—C3 | 122.97 (14) | C10—C9—H9B | 109.8 |
C4i—C4—C3 | 118.48 (17) | H9A—C9—H9B | 108.2 |
C5i—C1—C2 | 120.57 (15) | O4—C7—C8 | 109.21 (17) |
C5i—C1—H1 | 119.7 | O4—C7—H7A | 109.8 |
C2—C1—H1 | 119.7 | C8—C7—H7A | 109.8 |
C3—C2—C1 | 120.44 (15) | O4—C7—H7B | 109.8 |
C3—C2—H2 | 119.8 | C8—C7—H7B | 109.8 |
C1—C2—H2 | 119.8 | H7A—C7—H7B | 108.3 |
N3—C12—N1 | 119.0 (2) | O4—C6—C11ii | 109.89 (17) |
N3—C12—N2 | 119.6 (2) | O4—C6—H6A | 109.7 |
N1—C12—N2 | 121.4 (2) | C11ii—C6—H6A | 109.7 |
C12—N3—H20 | 119.7 (16) | O4—C6—H6B | 109.7 |
C12—N3—H21 | 119.9 (18) | C11ii—C6—H6B | 109.7 |
H20—N3—H21 | 120 (2) | H6A—C6—H6B | 108.2 |
C1i—C5—C4 | 121.22 (16) | C12—N1—H25 | 120.7 (19) |
C1i—C5—H5 | 119.4 | C12—N1—H24 | 116 (2) |
C4—C5—H5 | 119.4 | H25—N1—H24 | 123 (3) |
C12—N2—H22 | 116.7 (19) | O6—C10—C9 | 110.54 (17) |
C12—N2—H23 | 119 (2) | O6—C10—H10A | 109.5 |
H22—N2—H23 | 124 (3) | C9—C10—H10A | 109.5 |
O5—C8—C7 | 108.65 (16) | O6—C10—H10B | 109.5 |
O5—C8—H8A | 110.0 | C9—C10—H10B | 109.5 |
C7—C8—H8A | 110.0 | H10A—C10—H10B | 108.1 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H24···O2iii | 0.75 (3) | 2.36 (3) | 2.897 (3) | 131 (2) |
N1—H25···O2iv | 0.84 (3) | 2.05 (3) | 2.887 (3) | 175 (3) |
N2—H22···O6ii | 0.81 (3) | 2.28 (3) | 3.029 (3) | 154 (3) |
N2—H23···O5ii | 0.80 (3) | 2.43 (3) | 2.867 (3) | 115 (3) |
N3—H20···O3iv | 0.90 (3) | 2.01 (3) | 2.913 (3) | 179 (2) |
N3—H21···O4 | 0.81 (3) | 2.18 (3) | 2.952 (3) | 159 (2) |
Symmetry codes: (ii) −x+1, −y, −z; (iii) −x+1, −y+1, −z; (iv) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | 2CH6N3+·C10H6O6S2−·C12H24O6 |
Mr | 670.76 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.5275 (17), 9.1291 (18), 11.470 (2) |
α, β, γ (°) | 111.97 (3), 96.10 (3), 99.38 (3) |
V (Å3) | 803.3 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.23 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Rigaku SCXmini |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8245, 3638, 3070 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.104, 1.05 |
No. of reflections | 3638 |
No. of parameters | 223 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.34, −0.46 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H24···O2i | 0.75 (3) | 2.36 (3) | 2.897 (3) | 131 (2) |
N1—H25···O2ii | 0.84 (3) | 2.05 (3) | 2.887 (3) | 175 (3) |
N2—H22···O6iii | 0.81 (3) | 2.28 (3) | 3.029 (3) | 154 (3) |
N2—H23···O5iii | 0.80 (3) | 2.43 (3) | 2.867 (3) | 115 (3) |
N3—H20···O3ii | 0.90 (3) | 2.01 (3) | 2.913 (3) | 179 (2) |
N3—H21···O4 | 0.81 (3) | 2.18 (3) | 2.952 (3) | 159 (2) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z; (iii) −x+1, −y, −z. |
Acknowledgements
The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.
References
Clark, D. L., Keogh, D. W. & Palmer, C. L. (1998). Angew. Chem. Int. Ed. 37, 164–169. CrossRef CAS Google Scholar
Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997. Web of Science CSD CrossRef CAS Google Scholar
Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z. & Xiong, R.-G. (2011). J. Am. Chem. Soc. 133, 12780–12786. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recent years, crown ethers have attracted much attention because of their wide application in catalysis, solvent extraction, isotopeseparation, bionice, host–guest chemistry and supramolecular chemistry (Clark et al., 1998). Several 18-crown-6 clathrates were discovered to be dielectric-ferroelectric materials (Fu et al., 2011), hence we design the title compound to find new hydrogen bonding type dielectric materials. Dielectric-ferroelectric materials, comprising organic ligands, metal-organic coordination compounds and organic-inorganic hybrids almost show dielectric constant of temperature-dependent (Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008; Ye et al., 2006). Unfortunately, the dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent, below the melting point (395k-396k) of the compound, we have found that title compound has no dielectric disuniform from 80 K to 405 K. Herein we descibe the crystal structure of this compound.
At home temperature (25°C), the single-crystal X-ray diffraction reveals that the structure get crystallization in the triclinic system, space group P-1 and the asymmetric unit of the title compound consists of a guanidinium cation, a 1,5-naphthalenedisulfonate anion and a 18-crown-6 molecule (Fig. 1). The three –NH2+ groups form guanidinium interact with three O atoms of one crown ether molecule and other three O atoms from two 1,5-naphthalenedisulfonate anions through six N—H···O hydraogen bonds (Table 1), composing a three-dimensional crystal structure (Fig. 2).