organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis­(guanidinium) naphthalene-1,5-di­sulfonate–18-crown-6 (1/1)

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: seuwei@126.com

(Received 28 February 2012; accepted 1 March 2012; online 7 March 2012)

In the crystal of the title compound, 2CH6N3+·C10H6O6S22−·C12H24O6, the 1,5-naphthnalenedisulfonate anion and the 18-crown-6 mol­ecule lie across inversion centers. The guanidin­ium cation links with the 1,5-naphthnalenedisulfonate anion and 18-crown-6 mol­ecule via N—H⋯O hydrogen bonds.

Related literature

For applications of crown ethers, see: Clark et al. (1998[Clark, D. L., Keogh, D. W. & Palmer, C. L. (1998). Angew. Chem. Int. Ed. 37, 164-169.]). The title compound was obtained during a search for new hydrogen-bonding-type dielectric materials. For ferroelectric metal-organic 18-crown-6 clathrates, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.], 2011[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z. & Xiong, R.-G. (2011). J. Am. Chem. Soc. 133, 12780-12786.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • 2CH6N3+·C10H6O6S2·C12H24O6

  • Mr = 670.76

  • Triclinic, [P \overline 1]

  • a = 8.5275 (17) Å

  • b = 9.1291 (18) Å

  • c = 11.470 (2) Å

  • α = 111.97 (3)°

  • β = 96.10 (3)°

  • γ = 99.38 (3)°

  • V = 803.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • 8245 measured reflections

  • 3638 independent reflections

  • 3070 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.104

  • S = 1.05

  • 3638 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H24⋯O2i 0.75 (3) 2.36 (3) 2.897 (3) 131 (2)
N1—H25⋯O2ii 0.84 (3) 2.05 (3) 2.887 (3) 175 (3)
N2—H22⋯O6iii 0.81 (3) 2.28 (3) 3.029 (3) 154 (3)
N2—H23⋯O5iii 0.80 (3) 2.43 (3) 2.867 (3) 115 (3)
N3—H20⋯O3ii 0.90 (3) 2.01 (3) 2.913 (3) 179 (2)
N3—H21⋯O4 0.81 (3) 2.18 (3) 2.952 (3) 159 (2)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) -x+1, -y, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recent years, crown ethers have attracted much attention because of their wide application in catalysis, solvent extraction, isotopeseparation, bionice, host–guest chemistry and supramolecular chemistry (Clark et al., 1998). Several 18-crown-6 clathrates were discovered to be dielectric-ferroelectric materials (Fu et al., 2011), hence we design the title compound to find new hydrogen bonding type dielectric materials. Dielectric-ferroelectric materials, comprising organic ligands, metal-organic coordination compounds and organic-inorganic hybrids almost show dielectric constant of temperature-dependent (Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008; Ye et al., 2006). Unfortunately, the dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent, below the melting point (395k-396k) of the compound, we have found that title compound has no dielectric disuniform from 80 K to 405 K. Herein we descibe the crystal structure of this compound.

At home temperature (25°C), the single-crystal X-ray diffraction reveals that the structure get crystallization in the triclinic system, space group P-1 and the asymmetric unit of the title compound consists of a guanidinium cation, a 1,5-naphthalenedisulfonate anion and a 18-crown-6 molecule (Fig. 1). The three –NH2+ groups form guanidinium interact with three O atoms of one crown ether molecule and other three O atoms from two 1,5-naphthalenedisulfonate anions through six N—H···O hydraogen bonds (Table 1), composing a three-dimensional crystal structure (Fig. 2).

Related literature top

For applications of crown ethers, see: Clark et al. 1998). The title compoundwas obtained during a search for new hydrogen-bonding-type dielectric materials.

For ferroelectric metal-organic 18-crown-6 clathrates, see: Fu et al. (2009, 2011); Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental top

The 1,5-naphthalene disulfonic acid (1.15 g, 4 mmol) and guanidinium tetrafluoroborate (1.17 g, 8 mmol) were dissolved in 30 ml water and the solution was combined with methanol solution of dibenzo-18-crown-6 (1.44 g 4 mmol). The mixture solution was stirred for 30 min to reaction fully and good quality blocky single crystals were obtained by slow evaporation of the filtrate after two weeks (the chemical yield 61%).

Refinement top

Amino H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed in geometrically idealized positions nd constrained to ride on their parent atoms with C—H = 0.93–0.97 Å, Uiso(H) = 1.2Uiso(C).

Structure description top

Recent years, crown ethers have attracted much attention because of their wide application in catalysis, solvent extraction, isotopeseparation, bionice, host–guest chemistry and supramolecular chemistry (Clark et al., 1998). Several 18-crown-6 clathrates were discovered to be dielectric-ferroelectric materials (Fu et al., 2011), hence we design the title compound to find new hydrogen bonding type dielectric materials. Dielectric-ferroelectric materials, comprising organic ligands, metal-organic coordination compounds and organic-inorganic hybrids almost show dielectric constant of temperature-dependent (Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008; Ye et al., 2006). Unfortunately, the dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent, below the melting point (395k-396k) of the compound, we have found that title compound has no dielectric disuniform from 80 K to 405 K. Herein we descibe the crystal structure of this compound.

At home temperature (25°C), the single-crystal X-ray diffraction reveals that the structure get crystallization in the triclinic system, space group P-1 and the asymmetric unit of the title compound consists of a guanidinium cation, a 1,5-naphthalenedisulfonate anion and a 18-crown-6 molecule (Fig. 1). The three –NH2+ groups form guanidinium interact with three O atoms of one crown ether molecule and other three O atoms from two 1,5-naphthalenedisulfonate anions through six N—H···O hydraogen bonds (Table 1), composing a three-dimensional crystal structure (Fig. 2).

For applications of crown ethers, see: Clark et al. 1998). The title compoundwas obtained during a search for new hydrogen-bonding-type dielectric materials.

For ferroelectric metal-organic 18-crown-6 clathrates, see: Fu et al. (2009, 2011); Ye et al. (2006); Zhang et al. (2008, 2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
Bis(guanidinium) naphthalene-1,5-disulfonate 1,4,7,10,13,16-hexaoxacyclooctadecane top
Crystal data top
2CH6N3+·C10H6O6S2·C12H24O6Z = 1
Mr = 670.76F(000) = 356
Triclinic, P1Dx = 1.387 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5275 (17) ÅCell parameters from 3638 reflections
b = 9.1291 (18) Åθ = 3.0–27.5°
c = 11.470 (2) ŵ = 0.23 mm1
α = 111.97 (3)°T = 293 K
β = 96.10 (3)°Block, colorless
γ = 99.38 (3)°0.20 × 0.20 × 0.20 mm
V = 803.3 (3) Å3
Data collection top
Rigaku SCXmini
diffractometer
3070 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 27.4°, θmin = 3.1°
CCD_Profile_fitting scansh = 1110
8245 measured reflectionsk = 1111
3638 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.3633P]
where P = (Fo2 + 2Fc2)/3
3638 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
2CH6N3+·C10H6O6S2·C12H24O6γ = 99.38 (3)°
Mr = 670.76V = 803.3 (3) Å3
Triclinic, P1Z = 1
a = 8.5275 (17) ÅMo Kα radiation
b = 9.1291 (18) ŵ = 0.23 mm1
c = 11.470 (2) ÅT = 293 K
α = 111.97 (3)°0.20 × 0.20 × 0.20 mm
β = 96.10 (3)°
Data collection top
Rigaku SCXmini
diffractometer
3070 reflections with I > 2σ(I)
8245 measured reflectionsRint = 0.025
3638 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.34 e Å3
3638 reflectionsΔρmin = 0.46 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11339 (5)0.65053 (5)0.31289 (4)0.03167 (13)
O30.09429 (17)0.50066 (14)0.33254 (12)0.0414 (3)
O40.63864 (17)0.01790 (16)0.23799 (13)0.0459 (3)
O50.47238 (18)0.22644 (16)0.24927 (13)0.0490 (4)
C30.02394 (19)0.78364 (18)0.43259 (15)0.0277 (3)
O60.40620 (17)0.26914 (16)0.01217 (13)0.0468 (3)
C40.03593 (18)0.94983 (18)0.45050 (15)0.0263 (3)
C10.1274 (2)0.8214 (2)0.60430 (18)0.0387 (4)
H10.18210.77820.65410.046*
O10.28092 (17)0.73046 (16)0.33171 (17)0.0608 (5)
C20.0571 (2)0.7217 (2)0.50692 (17)0.0345 (4)
H20.06580.61340.49310.041*
O20.0209 (2)0.62768 (18)0.19082 (13)0.0574 (4)
C120.7991 (2)0.1911 (2)0.04975 (18)0.0415 (4)
N30.8556 (3)0.2086 (3)0.16648 (19)0.0569 (5)
C50.1159 (2)1.0194 (2)0.37412 (17)0.0349 (4)
H50.16110.95500.30850.042*
N20.6973 (3)0.0547 (2)0.0292 (2)0.0626 (6)
C80.5725 (3)0.2333 (3)0.35990 (19)0.0539 (5)
H8A0.53190.29120.43610.065*
H8B0.68200.29030.36720.065*
C110.3022 (3)0.2636 (3)0.0967 (2)0.0532 (5)
H11A0.29550.37270.08650.064*
H11B0.19430.20370.10340.064*
C90.4799 (3)0.3797 (2)0.2418 (2)0.0575 (6)
H9A0.58780.42170.23260.069*
H9B0.45630.45580.31970.069*
C70.5717 (3)0.0633 (3)0.34750 (19)0.0493 (5)
H7A0.63510.06550.42380.059*
H7B0.46190.00580.33820.059*
C60.6336 (3)0.1836 (3)0.2156 (2)0.0501 (5)
H6A0.52310.23930.20660.060*
H6B0.69810.18980.28790.060*
N10.8482 (3)0.3087 (3)0.0127 (2)0.0653 (6)
C100.3593 (3)0.3611 (3)0.1293 (2)0.0552 (6)
H10A0.25370.30700.13340.066*
H10B0.35200.46720.13180.066*
H200.928 (3)0.299 (3)0.219 (2)0.066 (7)*
H210.819 (3)0.142 (3)0.193 (2)0.065 (8)*
H250.903 (3)0.399 (3)0.065 (3)0.074 (9)*
H220.670 (3)0.012 (3)0.000 (3)0.070 (9)*
H240.829 (3)0.289 (3)0.057 (3)0.059 (8)*
H230.659 (4)0.047 (4)0.099 (3)0.094 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0417 (2)0.0225 (2)0.0323 (2)0.00950 (16)0.01195 (17)0.01017 (16)
O30.0617 (9)0.0267 (6)0.0411 (7)0.0161 (6)0.0153 (6)0.0150 (5)
O40.0520 (8)0.0399 (7)0.0458 (8)0.0041 (6)0.0122 (6)0.0188 (6)
O50.0553 (9)0.0386 (7)0.0412 (7)0.0067 (6)0.0003 (6)0.0068 (6)
C30.0293 (8)0.0254 (8)0.0291 (8)0.0073 (6)0.0054 (6)0.0108 (6)
O60.0498 (8)0.0426 (7)0.0513 (8)0.0232 (6)0.0100 (6)0.0168 (6)
C40.0264 (8)0.0250 (7)0.0294 (8)0.0065 (6)0.0055 (6)0.0126 (6)
C10.0454 (10)0.0369 (9)0.0487 (11)0.0129 (8)0.0237 (9)0.0279 (8)
O10.0477 (8)0.0351 (7)0.0928 (12)0.0100 (6)0.0374 (8)0.0111 (7)
C20.0409 (9)0.0260 (8)0.0425 (10)0.0091 (7)0.0125 (8)0.0182 (7)
O20.0952 (12)0.0506 (8)0.0305 (7)0.0300 (8)0.0092 (7)0.0157 (6)
C120.0424 (10)0.0352 (9)0.0421 (10)0.0033 (8)0.0097 (8)0.0118 (8)
N30.0583 (12)0.0525 (11)0.0517 (11)0.0154 (9)0.0037 (9)0.0265 (10)
C50.0416 (10)0.0326 (9)0.0391 (9)0.0140 (7)0.0197 (8)0.0182 (7)
N20.0723 (14)0.0400 (11)0.0573 (13)0.0042 (10)0.0098 (11)0.0118 (10)
C80.0543 (13)0.0537 (13)0.0358 (11)0.0051 (10)0.0011 (9)0.0027 (9)
C110.0518 (12)0.0508 (12)0.0676 (14)0.0241 (10)0.0093 (11)0.0305 (11)
C90.0706 (15)0.0356 (10)0.0540 (13)0.0146 (10)0.0116 (11)0.0031 (9)
C70.0464 (11)0.0597 (13)0.0354 (10)0.0030 (10)0.0027 (9)0.0169 (9)
C60.0518 (12)0.0495 (12)0.0577 (13)0.0097 (9)0.0050 (10)0.0328 (10)
N10.0971 (18)0.0497 (12)0.0444 (12)0.0041 (11)0.0146 (12)0.0215 (10)
C100.0662 (14)0.0402 (11)0.0608 (14)0.0278 (10)0.0200 (11)0.0133 (10)
Geometric parameters (Å, º) top
S1—O11.4481 (15)C5—C1i1.365 (2)
S1—O31.4544 (12)C5—H50.9300
S1—O21.4556 (15)N2—H220.81 (3)
S1—C31.7943 (17)N2—H230.80 (3)
O4—C61.429 (2)C8—C71.504 (3)
O4—C71.430 (2)C8—H8A0.9700
O5—C91.425 (3)C8—H8B0.9700
O5—C81.427 (2)C11—C6ii1.496 (3)
C3—C21.372 (2)C11—H11A0.9700
C3—C41.437 (2)C11—H11B0.9700
O6—C101.431 (2)C9—C101.499 (3)
O6—C111.432 (2)C9—H9A0.9700
C4—C51.428 (2)C9—H9B0.9700
C4—C4i1.434 (3)C7—H7A0.9700
C1—C5i1.365 (2)C7—H7B0.9700
C1—C21.412 (2)C6—C11ii1.496 (3)
C1—H10.9300C6—H6A0.9700
C2—H20.9300C6—H6B0.9700
C12—N31.314 (3)N1—H250.84 (3)
C12—N11.319 (3)N1—H240.75 (3)
C12—N21.327 (3)C10—H10A0.9700
N3—H200.90 (3)C10—H10B0.9700
N3—H210.81 (3)
O1—S1—O3113.09 (9)O5—C8—H8B110.0
O1—S1—O2112.57 (11)C7—C8—H8B110.0
O3—S1—O2111.83 (9)H8A—C8—H8B108.3
O1—S1—C3107.06 (9)O6—C11—C6ii109.94 (16)
O3—S1—C3106.12 (8)O6—C11—H11A109.7
O2—S1—C3105.53 (8)C6ii—C11—H11A109.7
C6—O4—C7112.50 (15)O6—C11—H11B109.7
C9—O5—C8113.94 (16)C6ii—C11—H11B109.7
C2—C3—C4120.72 (15)H11A—C11—H11B108.2
C2—C3—S1117.84 (12)O5—C9—C10109.51 (17)
C4—C3—S1121.44 (12)O5—C9—H9A109.8
C10—O6—C11111.63 (15)C10—C9—H9A109.8
C5—C4—C4i118.55 (17)O5—C9—H9B109.8
C5—C4—C3122.97 (14)C10—C9—H9B109.8
C4i—C4—C3118.48 (17)H9A—C9—H9B108.2
C5i—C1—C2120.57 (15)O4—C7—C8109.21 (17)
C5i—C1—H1119.7O4—C7—H7A109.8
C2—C1—H1119.7C8—C7—H7A109.8
C3—C2—C1120.44 (15)O4—C7—H7B109.8
C3—C2—H2119.8C8—C7—H7B109.8
C1—C2—H2119.8H7A—C7—H7B108.3
N3—C12—N1119.0 (2)O4—C6—C11ii109.89 (17)
N3—C12—N2119.6 (2)O4—C6—H6A109.7
N1—C12—N2121.4 (2)C11ii—C6—H6A109.7
C12—N3—H20119.7 (16)O4—C6—H6B109.7
C12—N3—H21119.9 (18)C11ii—C6—H6B109.7
H20—N3—H21120 (2)H6A—C6—H6B108.2
C1i—C5—C4121.22 (16)C12—N1—H25120.7 (19)
C1i—C5—H5119.4C12—N1—H24116 (2)
C4—C5—H5119.4H25—N1—H24123 (3)
C12—N2—H22116.7 (19)O6—C10—C9110.54 (17)
C12—N2—H23119 (2)O6—C10—H10A109.5
H22—N2—H23124 (3)C9—C10—H10A109.5
O5—C8—C7108.65 (16)O6—C10—H10B109.5
O5—C8—H8A110.0C9—C10—H10B109.5
C7—C8—H8A110.0H10A—C10—H10B108.1
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H24···O2iii0.75 (3)2.36 (3)2.897 (3)131 (2)
N1—H25···O2iv0.84 (3)2.05 (3)2.887 (3)175 (3)
N2—H22···O6ii0.81 (3)2.28 (3)3.029 (3)154 (3)
N2—H23···O5ii0.80 (3)2.43 (3)2.867 (3)115 (3)
N3—H20···O3iv0.90 (3)2.01 (3)2.913 (3)179 (2)
N3—H21···O40.81 (3)2.18 (3)2.952 (3)159 (2)
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula2CH6N3+·C10H6O6S2·C12H24O6
Mr670.76
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5275 (17), 9.1291 (18), 11.470 (2)
α, β, γ (°)111.97 (3), 96.10 (3), 99.38 (3)
V3)803.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8245, 3638, 3070
Rint0.025
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.104, 1.05
No. of reflections3638
No. of parameters223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.46

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H24···O2i0.75 (3)2.36 (3)2.897 (3)131 (2)
N1—H25···O2ii0.84 (3)2.05 (3)2.887 (3)175 (3)
N2—H22···O6iii0.81 (3)2.28 (3)3.029 (3)154 (3)
N2—H23···O5iii0.80 (3)2.43 (3)2.867 (3)115 (3)
N3—H20···O3ii0.90 (3)2.01 (3)2.913 (3)179 (2)
N3—H21···O40.81 (3)2.18 (3)2.952 (3)159 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

References

First citationClark, D. L., Keogh, D. W. & Palmer, C. L. (1998). Angew. Chem. Int. Ed. 37, 164–169.  CrossRef CAS Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z. & Xiong, R.-G. (2011). J. Am. Chem. Soc. 133, 12780–12786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds