organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Polymorph of 4-(carbazol-9-yl)benzo­nitrile

aDepartment of Chemistry, Yanbian University, Yanji Jilin 133002, People's Republic of China
*Correspondence e-mail: whyjs@ybu.edu.cn

(Received 5 March 2012; accepted 22 March 2012; online 28 March 2012)

The asymmetric unit of the title compound, C19H12N2, contains two independent mol­ecules with a similar structure. In the two mol­ecules, the dihedral angles between the carbazole ring system and the benzene ring are 47.9 (5) and 45.4 (4)°, similar to the value of 47.89 (6)° found in the previously reported structure [Saha & Samanta (1999[Saha, S. & Samanta, A. (1999). Acta Cryst. C55, 1299-1300.]). Acta Cryst. C55, 1299–1300]. In the crystal, there is a weak C—H⋯N hydrogen bond between the two independent mol­ecules.

Related literature

For related literature on intra­molecular charge transfer in electron donor–acceptor mol­ecules, see: Samanta et al. (2001[Samanta, A., Saha, S. & Fessenden, R. W. (2001). J. Phys. Chem. A, 105, 5438-5441.]); Galievsky et al. (2010[Galievsky, V. A., Druzhinin, S. I., Demeter, A., Mayer, P., Kovalenko, S. A., Senyushkina, T. A. & Zachariasse, K. A. (2010). J. Phys. Chem. A, 114, 12622-12638.]); Megerle et al.(2008[Megerle, U., Selmaier, F., Lambert, C., Riedle, E. & Lochbrunner, S. (2008). Phys. Chem. Chem. Phys. 10, 6245-6251.]). For the previously reported structure of the title compound, see: Saha & Samanta (1999[Saha, S. & Samanta, A. (1999). Acta Cryst. C55, 1299-1300.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12N2

  • Mr = 268.31

  • Monoclinic, P 21 /c

  • a = 15.5780 (17) Å

  • b = 8.054 (3) Å

  • c = 23.078 (5) Å

  • β = 93.088 (3)°

  • V = 2891.3 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.42 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • 13972 measured reflections

  • 5092 independent reflections

  • 2310 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.192

  • S = 0.97

  • 5092 reflections

  • 380 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N3i 0.93 2.50 3.387 (6) 159
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

9-(4-cyanophenyl)carbazole, as an important compound with intramolecular charge transfer in electron donor-acceptor molecules has been a topic of extensive investigation in recent years (Samanta et al., 2001; Galievsky et al., 2010). The title compound, displays a single fluorescence band that has been tentatively assigned as an emission from the TICT state (Megerle et al., 2008).

Since the ground-state structure of a system often determines the excited-state conformation of the molecule. The asymmetric unit of the title compound contains two molecule; the torsion angle is similar to that in the previously reported structure (Saha & Samanta, 1999).

Related literature top

For related literature on intramolecular charge transfer in electron donor–acceptor molecules, see: Samanta et al. (2001); Galievsky et al. (2010); Megerle et al.(2008). For a different crystal structure of the title compound, see: Saha & Samanta (1999).

Experimental top

The title compound was synthesized, according to the literature method (Saha & Samanta, 1999). A mixture of carbazole (5 g) and sodium hydride (0.36 g) was stirred in dry dimethylformamide (50 ml) under a nitrogen atmosphere for 2 h. The sodium salt of carbazole formed was then heated at 393 K with 4-fluorobenzonitrile (1.8 g) and sodium iodide (2.3 g) for about 20 h. The product, along with unreacted reactants, was precipitated by adding water to the reaction mixture. Yellow crystals were obtained from absolute chloroform upon slow evaporation of the solvent.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 and with Uiso(H) = 1.2Ueq(C).

Structure description top

9-(4-cyanophenyl)carbazole, as an important compound with intramolecular charge transfer in electron donor-acceptor molecules has been a topic of extensive investigation in recent years (Samanta et al., 2001; Galievsky et al., 2010). The title compound, displays a single fluorescence band that has been tentatively assigned as an emission from the TICT state (Megerle et al., 2008).

Since the ground-state structure of a system often determines the excited-state conformation of the molecule. The asymmetric unit of the title compound contains two molecule; the torsion angle is similar to that in the previously reported structure (Saha & Samanta, 1999).

For related literature on intramolecular charge transfer in electron donor–acceptor molecules, see: Samanta et al. (2001); Galievsky et al. (2010); Megerle et al.(2008). For a different crystal structure of the title compound, see: Saha & Samanta (1999).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level..
4-(carbazol-9-yl)benzonitrile top
Crystal data top
C19H12N2F(000) = 1120
Mr = 268.31Dx = 1.233 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 13972 reflections
a = 15.5780 (17) Åθ = 1.3–25.3°
b = 8.054 (3) ŵ = 0.07 mm1
c = 23.078 (5) ÅT = 293 K
β = 93.088 (3)°Yellow, block
V = 2891.3 (14) Å30.42 × 0.24 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2310 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 25.0°, θmin = 1.3°
φ and ω scansh = 1418
13972 measured reflectionsk = 99
5092 independent reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.0955P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
5092 reflectionsΔρmax = 0.43 e Å3
380 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0065 (11)
Crystal data top
C19H12N2V = 2891.3 (14) Å3
Mr = 268.31Z = 8
Monoclinic, P21/cMo Kα radiation
a = 15.5780 (17) ŵ = 0.07 mm1
b = 8.054 (3) ÅT = 293 K
c = 23.078 (5) Å0.42 × 0.24 × 0.20 mm
β = 93.088 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2310 reflections with I > 2σ(I)
13972 measured reflectionsRint = 0.059
5092 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 0.97Δρmax = 0.43 e Å3
5092 reflectionsΔρmin = 0.18 e Å3
380 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0794 (2)0.5654 (4)0.17499 (15)0.0637 (9)
C20.0258 (2)0.6956 (4)0.18921 (16)0.0673 (9)
C30.0519 (3)0.8042 (5)0.23307 (18)0.0868 (12)
H30.01690.89210.24300.104*
C40.1299 (3)0.7801 (5)0.26158 (18)0.0924 (13)
H40.14760.85230.29130.111*
C50.1838 (3)0.6496 (5)0.24714 (16)0.0849 (12)
H50.23700.63690.26690.102*
C60.1586 (2)0.5398 (4)0.20384 (16)0.0756 (10)
H60.19360.45140.19430.091*
C70.0514 (2)0.6817 (4)0.15240 (16)0.0697 (10)
C80.0415 (2)0.5434 (5)0.11718 (16)0.0703 (10)
C90.1045 (3)0.4963 (5)0.07474 (17)0.0862 (12)
H90.09690.40440.05110.103*
C100.1774 (3)0.5906 (6)0.0694 (2)0.1009 (14)
H100.22020.56170.04160.121*
C110.1896 (3)0.7281 (6)0.1041 (2)0.1031 (15)
H110.24020.78900.09960.124*
C120.1266 (3)0.7750 (5)0.1455 (2)0.0919 (13)
H120.13450.86790.16860.110*
C130.0687 (2)0.3197 (4)0.10821 (14)0.0626 (9)
C140.0166 (3)0.1809 (5)0.10756 (18)0.0881 (12)
H140.03860.18750.12080.106*
C150.0473 (3)0.0313 (5)0.08692 (18)0.0912 (12)
H150.01220.06210.08580.109*
C160.1285 (2)0.0206 (4)0.06828 (15)0.0703 (10)
C170.1788 (3)0.1584 (5)0.06795 (18)0.0899 (13)
H170.23380.15120.05450.108*
C180.1491 (3)0.3089 (5)0.08743 (17)0.0847 (12)
H180.18370.40280.08640.102*
C190.1611 (3)0.1367 (6)0.04958 (19)0.0955 (13)
C200.3968 (2)0.0673 (4)0.18137 (13)0.0583 (9)
C210.3155 (2)0.0319 (4)0.19946 (15)0.0684 (9)
H210.28380.05730.18430.082*
C220.2836 (3)0.1345 (5)0.24091 (16)0.0791 (11)
H220.22900.11420.25370.095*
C230.3305 (3)0.2667 (5)0.26402 (16)0.0812 (11)
H230.30780.33110.29300.097*
C240.4100 (3)0.3044 (4)0.24484 (14)0.0706 (10)
H240.44070.39490.26000.085*
C250.4441 (2)0.2052 (4)0.20239 (13)0.0581 (9)
C260.5215 (2)0.0739 (4)0.13402 (13)0.0564 (8)
C270.5904 (2)0.0393 (4)0.10028 (14)0.0654 (9)
H270.59090.05500.07700.078*
C280.6580 (2)0.1497 (5)0.10251 (16)0.0776 (11)
H280.70490.12970.08020.093*
C290.6576 (3)0.2910 (5)0.13759 (17)0.0818 (11)
H290.70330.36520.13750.098*
C300.5904 (3)0.3214 (5)0.17211 (15)0.0744 (11)
H300.59100.41490.19570.089*
C310.5218 (2)0.2119 (4)0.17159 (13)0.0574 (8)
C320.4241 (2)0.1677 (4)0.11298 (13)0.0557 (8)
C330.3985 (2)0.3007 (4)0.14558 (14)0.0652 (9)
H330.39230.28820.18520.078*
C340.3822 (2)0.4510 (4)0.11962 (15)0.0669 (9)
H340.36430.54000.14160.080*
C350.39242 (19)0.4711 (4)0.06052 (14)0.0566 (8)
C360.4157 (2)0.3374 (4)0.02797 (14)0.0624 (9)
H360.42150.34970.01170.075*
C370.4304 (2)0.1855 (4)0.05374 (13)0.0608 (9)
H370.44460.09460.03130.073*
C380.3810 (2)0.6316 (5)0.03491 (15)0.0669 (10)
N10.1879 (3)0.2599 (5)0.0349 (2)0.1307 (16)
N20.03835 (18)0.4708 (3)0.13070 (12)0.0674 (8)
N30.3724 (2)0.7593 (4)0.01431 (15)0.0902 (10)
N40.44459 (17)0.0136 (3)0.13990 (11)0.0588 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.077 (3)0.051 (2)0.064 (2)0.005 (2)0.0096 (19)0.0006 (18)
C20.079 (3)0.051 (2)0.073 (2)0.000 (2)0.020 (2)0.001 (2)
C30.105 (3)0.069 (3)0.089 (3)0.002 (3)0.025 (2)0.011 (2)
C40.117 (4)0.078 (3)0.084 (3)0.023 (3)0.021 (3)0.022 (2)
C50.092 (3)0.081 (3)0.082 (3)0.012 (2)0.004 (2)0.008 (2)
C60.084 (3)0.061 (2)0.083 (3)0.001 (2)0.008 (2)0.007 (2)
C70.080 (3)0.057 (2)0.075 (2)0.008 (2)0.023 (2)0.009 (2)
C80.069 (2)0.067 (3)0.075 (2)0.005 (2)0.012 (2)0.012 (2)
C90.080 (3)0.092 (3)0.087 (3)0.010 (2)0.001 (2)0.004 (2)
C100.075 (3)0.118 (4)0.110 (4)0.012 (3)0.001 (2)0.015 (3)
C110.086 (3)0.102 (4)0.123 (4)0.024 (3)0.022 (3)0.023 (3)
C120.098 (3)0.077 (3)0.103 (3)0.012 (3)0.033 (3)0.014 (2)
C130.068 (2)0.054 (2)0.067 (2)0.0026 (19)0.0122 (18)0.0004 (18)
C140.083 (3)0.074 (3)0.110 (3)0.005 (2)0.032 (2)0.001 (2)
C150.100 (3)0.061 (3)0.114 (3)0.011 (2)0.021 (3)0.001 (2)
C160.070 (3)0.060 (3)0.082 (2)0.002 (2)0.0149 (19)0.006 (2)
C170.082 (3)0.076 (3)0.115 (3)0.008 (2)0.030 (2)0.013 (3)
C180.095 (3)0.061 (3)0.100 (3)0.015 (2)0.023 (2)0.009 (2)
C190.090 (3)0.082 (3)0.115 (3)0.005 (3)0.011 (3)0.021 (3)
C200.083 (3)0.045 (2)0.0468 (18)0.0096 (18)0.0018 (17)0.0031 (16)
C210.077 (3)0.060 (2)0.068 (2)0.004 (2)0.0014 (19)0.0002 (19)
C220.084 (3)0.078 (3)0.076 (3)0.016 (2)0.010 (2)0.000 (2)
C230.102 (3)0.073 (3)0.068 (2)0.024 (3)0.006 (2)0.007 (2)
C240.098 (3)0.056 (2)0.057 (2)0.010 (2)0.006 (2)0.0056 (18)
C250.080 (2)0.048 (2)0.0455 (18)0.0069 (18)0.0099 (17)0.0005 (16)
C260.070 (2)0.051 (2)0.0469 (18)0.0002 (18)0.0045 (16)0.0065 (16)
C270.077 (3)0.064 (2)0.055 (2)0.002 (2)0.0015 (18)0.0061 (17)
C280.074 (3)0.086 (3)0.072 (2)0.000 (2)0.0035 (19)0.017 (2)
C290.089 (3)0.078 (3)0.076 (3)0.023 (2)0.014 (2)0.011 (2)
C300.095 (3)0.066 (3)0.061 (2)0.009 (2)0.016 (2)0.0013 (19)
C310.075 (2)0.047 (2)0.0487 (18)0.0009 (18)0.0127 (16)0.0020 (16)
C320.071 (2)0.043 (2)0.0527 (19)0.0051 (16)0.0028 (16)0.0017 (16)
C330.090 (3)0.053 (2)0.0526 (19)0.0001 (19)0.0041 (17)0.0024 (18)
C340.085 (3)0.048 (2)0.067 (2)0.0002 (18)0.0015 (18)0.0111 (18)
C350.062 (2)0.045 (2)0.062 (2)0.0046 (16)0.0030 (16)0.0049 (17)
C360.076 (2)0.059 (2)0.0518 (19)0.0027 (18)0.0004 (16)0.0032 (18)
C370.080 (2)0.050 (2)0.053 (2)0.0059 (17)0.0024 (16)0.0046 (17)
C380.070 (2)0.055 (2)0.077 (2)0.0006 (19)0.0055 (18)0.008 (2)
N10.121 (3)0.091 (3)0.180 (4)0.017 (3)0.007 (3)0.047 (3)
N20.071 (2)0.0565 (19)0.0748 (19)0.0104 (16)0.0008 (15)0.0044 (16)
N30.102 (3)0.063 (2)0.107 (3)0.0088 (19)0.012 (2)0.022 (2)
N40.0781 (19)0.0447 (17)0.0534 (16)0.0023 (14)0.0017 (14)0.0030 (13)
Geometric parameters (Å, º) top
C1—C61.386 (5)C20—C211.384 (4)
C1—C21.391 (4)C20—N41.404 (4)
C1—N21.401 (4)C20—C251.405 (4)
C2—C31.382 (5)C21—C221.377 (4)
C2—C71.438 (5)C21—H210.9300
C3—C41.365 (6)C22—C231.382 (5)
C3—H30.9300C22—H220.9300
C4—C51.396 (5)C23—C241.371 (5)
C4—H40.9300C23—H230.9300
C5—C61.376 (5)C24—C251.391 (4)
C5—H50.9300C24—H240.9300
C6—H60.9300C25—C311.437 (5)
C7—C81.392 (5)C26—C271.389 (4)
C7—C121.394 (5)C26—N41.402 (4)
C8—N21.395 (4)C26—C311.409 (4)
C8—C91.401 (5)C27—C281.376 (5)
C9—C101.367 (5)C27—H270.9300
C9—H90.9300C28—C291.397 (5)
C10—C111.386 (6)C28—H280.9300
C10—H100.9300C29—C301.370 (5)
C11—C121.384 (6)C29—H290.9300
C11—H110.9300C30—C311.386 (5)
C12—H120.9300C30—H300.9300
C13—C181.368 (5)C32—C331.381 (4)
C13—C141.380 (5)C32—C371.383 (4)
C13—N21.414 (4)C32—N41.416 (4)
C14—C151.390 (5)C33—C341.368 (4)
C14—H140.9300C33—H330.9300
C15—C161.360 (5)C34—C351.391 (4)
C15—H150.9300C34—H340.9300
C16—C171.358 (5)C35—C361.373 (4)
C16—C191.439 (6)C35—C381.429 (5)
C17—C181.381 (5)C36—C371.374 (4)
C17—H170.9300C36—H360.9300
C18—H180.9300C37—H370.9300
C19—N11.136 (5)C38—N31.138 (4)
C6—C1—C2122.0 (3)C22—C21—C20117.1 (3)
C6—C1—N2129.0 (3)C22—C21—H21121.4
C2—C1—N2109.0 (3)C20—C21—H21121.4
C3—C2—C1119.5 (4)C21—C22—C23121.9 (4)
C3—C2—C7133.3 (4)C21—C22—H22119.1
C1—C2—C7107.2 (3)C23—C22—H22119.1
C4—C3—C2118.9 (4)C24—C23—C22120.9 (4)
C4—C3—H3120.6C24—C23—H23119.6
C2—C3—H3120.6C22—C23—H23119.6
C3—C4—C5121.5 (4)C23—C24—C25119.1 (3)
C3—C4—H4119.2C23—C24—H24120.5
C5—C4—H4119.2C25—C24—H24120.5
C6—C5—C4120.4 (4)C24—C25—C20119.0 (3)
C6—C5—H5119.8C24—C25—C31133.6 (3)
C4—C5—H5119.8C20—C25—C31107.4 (3)
C5—C6—C1117.7 (4)C27—C26—N4130.1 (3)
C5—C6—H6121.1C27—C26—C31121.7 (3)
C1—C6—H6121.1N4—C26—C31108.2 (3)
C8—C7—C12118.9 (4)C28—C27—C26117.5 (3)
C8—C7—C2107.0 (3)C28—C27—H27121.2
C12—C7—C2134.1 (4)C26—C27—H27121.2
C7—C8—N2109.3 (3)C27—C28—C29121.4 (4)
C7—C8—C9122.0 (4)C27—C28—H28119.3
N2—C8—C9128.7 (4)C29—C28—H28119.3
C10—C9—C8117.4 (4)C30—C29—C28120.6 (4)
C10—C9—H9121.3C30—C29—H29119.7
C8—C9—H9121.3C28—C29—H29119.7
C9—C10—C11122.0 (4)C29—C30—C31119.6 (4)
C9—C10—H10119.0C29—C30—H30120.2
C11—C10—H10119.0C31—C30—H30120.2
C12—C11—C10120.3 (4)C30—C31—C26119.0 (3)
C12—C11—H11119.9C30—C31—C25133.6 (3)
C10—C11—H11119.9C26—C31—C25107.4 (3)
C11—C12—C7119.4 (4)C33—C32—C37119.7 (3)
C11—C12—H12120.3C33—C32—N4120.4 (3)
C7—C12—H12120.3C37—C32—N4119.9 (3)
C18—C13—C14119.5 (3)C34—C33—C32120.0 (3)
C18—C13—N2120.9 (3)C34—C33—H33120.0
C14—C13—N2119.6 (3)C32—C33—H33120.0
C13—C14—C15119.5 (4)C33—C34—C35120.3 (3)
C13—C14—H14120.2C33—C34—H34119.9
C15—C14—H14120.2C35—C34—H34119.9
C16—C15—C14120.4 (4)C36—C35—C34119.5 (3)
C16—C15—H15119.8C36—C35—C38120.9 (3)
C14—C15—H15119.8C34—C35—C38119.5 (3)
C17—C16—C15119.7 (4)C35—C36—C37120.3 (3)
C17—C16—C19120.3 (4)C35—C36—H36119.9
C15—C16—C19120.0 (4)C37—C36—H36119.9
C16—C17—C18120.8 (4)C36—C37—C32120.1 (3)
C16—C17—H17119.6C36—C37—H37120.0
C18—C17—H17119.6C32—C37—H37120.0
C13—C18—C17119.9 (4)N3—C38—C35179.5 (4)
C13—C18—H18120.0C8—N2—C1107.5 (3)
C17—C18—H18120.0C8—N2—C13126.2 (3)
N1—C19—C16179.1 (5)C1—N2—C13126.0 (3)
C21—C20—N4129.6 (3)C26—N4—C20108.6 (3)
C21—C20—C25122.0 (3)C26—N4—C32124.9 (3)
N4—C20—C25108.3 (3)C20—N4—C32126.2 (3)
C6—C1—C2—C30.5 (5)C31—C26—C27—C283.2 (5)
N2—C1—C2—C3178.5 (3)C26—C27—C28—C290.3 (5)
C6—C1—C2—C7178.1 (3)C27—C28—C29—C301.7 (5)
N2—C1—C2—C70.1 (4)C28—C29—C30—C310.9 (5)
C1—C2—C3—C40.3 (5)C29—C30—C31—C261.9 (5)
C7—C2—C3—C4177.9 (4)C29—C30—C31—C25178.6 (3)
C2—C3—C4—C50.5 (6)C27—C26—C31—C304.1 (4)
C3—C4—C5—C60.9 (6)N4—C26—C31—C30177.9 (3)
C4—C5—C6—C11.0 (5)C27—C26—C31—C25176.4 (3)
C2—C1—C6—C50.8 (5)N4—C26—C31—C251.7 (3)
N2—C1—C6—C5178.4 (3)C24—C25—C31—C301.5 (6)
C3—C2—C7—C8178.4 (4)C20—C25—C31—C30177.3 (3)
C1—C2—C7—C80.0 (4)C24—C25—C31—C26179.1 (3)
C3—C2—C7—C123.0 (7)C20—C25—C31—C262.2 (3)
C1—C2—C7—C12178.7 (4)C37—C32—C33—C342.2 (5)
C12—C7—C8—N2179.1 (3)N4—C32—C33—C34177.3 (3)
C2—C7—C8—N20.2 (4)C32—C33—C34—C350.8 (5)
C12—C7—C8—C90.6 (5)C33—C34—C35—C362.5 (5)
C2—C7—C8—C9178.3 (3)C33—C34—C35—C38175.7 (3)
C7—C8—C9—C100.8 (5)C34—C35—C36—C371.2 (5)
N2—C8—C9—C10178.9 (4)C38—C35—C36—C37177.0 (3)
C8—C9—C10—C110.1 (6)C35—C36—C37—C321.8 (5)
C9—C10—C11—C120.6 (7)C33—C32—C37—C363.5 (5)
C10—C11—C12—C70.7 (6)N4—C32—C37—C36176.0 (3)
C8—C7—C12—C110.1 (6)C36—C35—C38—N346 (62)
C2—C7—C12—C11178.7 (4)C34—C35—C38—N3132 (62)
C18—C13—C14—C151.3 (6)C7—C8—N2—C10.2 (4)
N2—C13—C14—C15178.2 (3)C9—C8—N2—C1178.1 (3)
C13—C14—C15—C161.0 (6)C7—C8—N2—C13173.8 (3)
C14—C15—C16—C172.3 (6)C9—C8—N2—C137.9 (6)
C14—C15—C16—C19177.0 (4)C6—C1—N2—C8178.0 (3)
C15—C16—C17—C181.3 (6)C2—C1—N2—C80.2 (4)
C19—C16—C17—C18178.1 (4)C6—C1—N2—C134.0 (5)
C14—C13—C18—C172.3 (6)C2—C1—N2—C13173.8 (3)
N2—C13—C18—C17177.2 (3)C18—C13—N2—C8132.5 (4)
C16—C17—C18—C131.0 (6)C14—C13—N2—C848.0 (5)
C17—C16—C19—N117 (32)C18—C13—N2—C154.6 (5)
C15—C16—C19—N1163 (100)C14—C13—N2—C1124.9 (4)
N4—C20—C21—C22179.3 (3)C27—C26—N4—C20177.3 (3)
C25—C20—C21—C222.4 (5)C31—C26—N4—C200.6 (3)
C20—C21—C22—C230.4 (5)C27—C26—N4—C323.6 (5)
C21—C22—C23—C242.3 (6)C31—C26—N4—C32174.2 (3)
C22—C23—C24—C251.4 (5)C21—C20—N4—C26176.4 (3)
C23—C24—C25—C201.4 (5)C25—C20—N4—C260.8 (3)
C23—C24—C25—C31177.3 (3)C21—C20—N4—C3210.0 (5)
C21—C20—C25—C243.3 (4)C25—C20—N4—C32172.7 (3)
N4—C20—C25—C24179.2 (3)C33—C32—N4—C26127.1 (3)
C21—C20—C25—C31175.7 (3)C37—C32—N4—C2652.4 (4)
N4—C20—C25—C311.9 (3)C33—C32—N4—C2045.4 (4)
N4—C26—C27—C28179.2 (3)C37—C32—N4—C20135.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N3i0.932.503.387 (6)159
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H12N2
Mr268.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.5780 (17), 8.054 (3), 23.078 (5)
β (°) 93.088 (3)
V3)2891.3 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.42 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13972, 5092, 2310
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.192, 0.97
No. of reflections5092
No. of parameters380
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.18

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N3i0.932.503.387 (6)159
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the Science Foundation of Yanbian University, China.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGalievsky, V. A., Druzhinin, S. I., Demeter, A., Mayer, P., Kovalenko, S. A., Senyushkina, T. A. & Zachariasse, K. A. (2010). J. Phys. Chem. A, 114, 12622–12638.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMegerle, U., Selmaier, F., Lambert, C., Riedle, E. & Lochbrunner, S. (2008). Phys. Chem. Chem. Phys. 10, 6245–6251.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaha, S. & Samanta, A. (1999). Acta Cryst. C55, 1299–1300.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamanta, A., Saha, S. & Fessenden, R. W. (2001). J. Phys. Chem. A, 105, 5438–5441.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds