organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4a-Methyl-2,3,4,4a-tetra­hydro-1H-carbazole-6-sulfonamide

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 March 2012; accepted 8 March 2012; online 14 March 2012)

In the title mol­ecule, C13H16N2O2S, the nine non-H atoms comprising the indole residue are approximately coplanar (r.m.s. deviation = 0.031 Å). The partially saturated ring adopts a chair conformation. One amine H forms an inter­molecular N—H⋯O hydrogen bond to a sulfonamide O atom, while the other amine H form is connected to the indole N atom of an adjacent mol­ecule via an N—H⋯N hydrogen bond, resulting in a three-dimensional architecture.

Related literature

For background to the biological applications of related sulfonamides, see: Al-Saadi et al. (2008[Al-Saadi, M. S., Rostom, S. A. F. & Faidallah, H. M. (2008). Arch. Pharm. Chem. Life Sci. 341, 181-190.]). For related structures, see: Asiri et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2424.], 2012[Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o762-o763.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N2O2S

  • Mr = 264.34

  • Monoclinic, P 21 /n

  • a = 9.3694 (5) Å

  • b = 10.4051 (5) Å

  • c = 13.5937 (8) Å

  • β = 103.516 (6)°

  • V = 1288.54 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.941, Tmax = 0.976

  • 5426 measured reflections

  • 2959 independent reflections

  • 2364 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.121

  • S = 1.05

  • 2959 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯N1i 0.86 (3) 2.13 (3) 2.986 (3) 170 (2)
N2—H2⋯O1ii 0.86 (3) 2.20 (3) 3.039 (2) 164 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulphonamides related to the title compound, 4b-methyl-5,6,7,8-tetrahydro-4H-carbazole-3-sulfonic acid amide (I), are known to possess biological activity (Al-Saadi et al., 2008). In continuation of structural studies of these systems (Asiri et al., 2011; Asiri et al., 2012), the crystal and molecular structure of (I) is reported herein.

In (I), Fig. 1, the partially saturated ring adopts the conformation of a chair. The nine non-carbon atoms of the indole residue are co-planar, having a r.m.s. deviation of 0.031 Å. With reference to this plane, the C1—C6 ring and the amino group lie to one side, with the methyl group and one sulphonamide-O atom being orientated to the other.

Strong hydrogen bonding interactions dominate the crystal packing. Thus, one amino-H forms a hydrogen bond to the sulphonamide-O1 atom while the others forms a hydrogen bond to the indole-N atom, Table 1. The result is a three-dimensional architecture, Fig. 2.

Related literature top

For background to the biological applications of related sulfonamides, see: Al-Saadi et al. (2008). For related structures, see: Asiri et al. (2011, 2012).

Experimental top

1-Methylcyclohexanone (1.1 g, 10 mmol) in ethanol was refluxed with p-sulfamylphenylhydrazine (2.2 g, 10 mmol) for 1 h. The reaction mixture was cooled and the precipitated solid product was collected by filtration, washed with ethanol, dried and recrystallized from ethanol. Yield: 78%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88±0.01 Å; their Uiso values were refined.

Structure description top

Sulphonamides related to the title compound, 4b-methyl-5,6,7,8-tetrahydro-4H-carbazole-3-sulfonic acid amide (I), are known to possess biological activity (Al-Saadi et al., 2008). In continuation of structural studies of these systems (Asiri et al., 2011; Asiri et al., 2012), the crystal and molecular structure of (I) is reported herein.

In (I), Fig. 1, the partially saturated ring adopts the conformation of a chair. The nine non-carbon atoms of the indole residue are co-planar, having a r.m.s. deviation of 0.031 Å. With reference to this plane, the C1—C6 ring and the amino group lie to one side, with the methyl group and one sulphonamide-O atom being orientated to the other.

Strong hydrogen bonding interactions dominate the crystal packing. Thus, one amino-H forms a hydrogen bond to the sulphonamide-O1 atom while the others forms a hydrogen bond to the indole-N atom, Table 1. The result is a three-dimensional architecture, Fig. 2.

For background to the biological applications of related sulfonamides, see: Al-Saadi et al. (2008). For related structures, see: Asiri et al. (2011, 2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents of (I). The N—H···O and N—H···N interactions are shown as orange and blue dashed lines, respectively.
4a-Methyl-2,3,4,4a-tetrahydro-1H-carbazole-6-sulfonamide top
Crystal data top
C13H16N2O2SF(000) = 560
Mr = 264.34Dx = 1.363 Mg m3
Monoclinic, P21/nMelting point = 513–514 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.3694 (5) ÅCell parameters from 2450 reflections
b = 10.4051 (5) Åθ = 2.4–27.5°
c = 13.5937 (8) ŵ = 0.25 mm1
β = 103.516 (6)°T = 100 K
V = 1288.54 (12) Å3Prism, light-brown
Z = 40.25 × 0.20 × 0.10 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2959 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2364 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 812
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1013
Tmin = 0.941, Tmax = 0.976l = 1717
5426 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.7098P]
where P = (Fo2 + 2Fc2)/3
2959 reflections(Δ/σ)max = 0.001
171 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C13H16N2O2SV = 1288.54 (12) Å3
Mr = 264.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3694 (5) ŵ = 0.25 mm1
b = 10.4051 (5) ÅT = 100 K
c = 13.5937 (8) Å0.25 × 0.20 × 0.10 mm
β = 103.516 (6)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2959 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2364 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.976Rint = 0.030
5426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.79 e Å3
2959 reflectionsΔρmin = 0.48 e Å3
171 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72173 (5)0.36862 (5)0.76427 (4)0.01546 (15)
O10.76980 (15)0.24573 (13)0.73458 (11)0.0199 (3)
N20.8396 (2)0.47419 (18)0.74549 (15)0.0183 (4)
N10.17508 (18)0.53036 (16)0.47626 (13)0.0174 (4)
O20.70440 (16)0.38463 (14)0.86604 (11)0.0226 (4)
C10.1424 (2)0.63100 (19)0.52284 (16)0.0170 (4)
C20.0292 (2)0.7272 (2)0.47752 (16)0.0228 (5)
H2A0.04520.73410.51840.027*
H2B0.02090.70110.40800.027*
C30.1071 (3)0.8567 (2)0.47558 (17)0.0230 (5)
H3A0.17170.85160.42760.028*
H3B0.03290.92440.45130.028*
C40.1988 (2)0.8935 (2)0.58062 (16)0.0223 (5)
H4A0.24840.97660.57620.027*
H4B0.13320.90450.62750.027*
C50.3141 (2)0.79111 (19)0.62255 (16)0.0186 (4)
H5A0.36760.81580.69170.022*
H5B0.38590.78670.57960.022*
C60.2435 (2)0.65700 (19)0.62602 (15)0.0164 (4)
C70.1608 (2)0.6485 (2)0.71120 (17)0.0235 (5)
H7A0.11740.56280.71120.035*
H7B0.08280.71340.70010.035*
H7C0.22930.66400.77650.035*
C80.3498 (2)0.54740 (18)0.62982 (15)0.0143 (4)
C90.4757 (2)0.51408 (18)0.70010 (15)0.0147 (4)
H90.50940.56330.75990.018*
C100.5525 (2)0.40494 (18)0.68035 (15)0.0143 (4)
C110.5027 (2)0.32996 (19)0.59393 (15)0.0176 (4)
H110.55540.25520.58340.021*
C120.3755 (2)0.36502 (18)0.52309 (16)0.0168 (4)
H120.34020.31510.46390.020*
C130.3022 (2)0.47451 (19)0.54154 (15)0.0157 (4)
H10.847 (3)0.474 (2)0.683 (2)0.032 (7)*
H20.816 (3)0.549 (3)0.764 (2)0.030 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0175 (3)0.0139 (3)0.0143 (3)0.00338 (19)0.00238 (19)0.00179 (18)
O10.0226 (8)0.0133 (7)0.0235 (8)0.0049 (6)0.0049 (6)0.0014 (6)
N20.0192 (9)0.0167 (9)0.0180 (10)0.0003 (7)0.0025 (7)0.0014 (7)
N10.0159 (8)0.0189 (8)0.0160 (9)0.0011 (7)0.0009 (7)0.0010 (7)
O20.0280 (8)0.0262 (8)0.0137 (8)0.0064 (7)0.0048 (6)0.0038 (6)
C10.0135 (9)0.0201 (10)0.0175 (10)0.0014 (8)0.0037 (8)0.0002 (8)
C20.0194 (10)0.0282 (11)0.0179 (11)0.0073 (9)0.0014 (8)0.0030 (9)
C30.0285 (12)0.0216 (11)0.0185 (11)0.0103 (9)0.0043 (9)0.0015 (8)
C40.0269 (11)0.0200 (10)0.0196 (11)0.0057 (9)0.0050 (9)0.0009 (9)
C50.0226 (11)0.0159 (10)0.0172 (10)0.0030 (9)0.0046 (8)0.0006 (8)
C60.0176 (10)0.0180 (10)0.0136 (10)0.0039 (8)0.0038 (8)0.0016 (8)
C70.0232 (11)0.0281 (11)0.0208 (11)0.0069 (9)0.0084 (9)0.0025 (9)
C80.0160 (9)0.0138 (9)0.0145 (10)0.0001 (8)0.0061 (8)0.0006 (7)
C90.0178 (10)0.0148 (9)0.0120 (9)0.0006 (8)0.0043 (8)0.0007 (7)
C100.0142 (9)0.0146 (9)0.0144 (10)0.0012 (8)0.0040 (7)0.0035 (8)
C110.0208 (10)0.0143 (9)0.0191 (11)0.0007 (8)0.0078 (8)0.0011 (8)
C120.0198 (10)0.0153 (10)0.0155 (10)0.0036 (8)0.0043 (8)0.0032 (8)
C130.0150 (9)0.0179 (10)0.0145 (10)0.0024 (8)0.0038 (8)0.0005 (8)
Geometric parameters (Å, º) top
S1—O21.4398 (15)C4—H4B0.9900
S1—O11.4442 (14)C5—C61.549 (3)
S1—N21.6197 (19)C5—H5A0.9900
S1—C101.764 (2)C5—H5B0.9900
N2—H10.86 (3)C6—C81.507 (3)
N2—H20.86 (3)C6—C71.539 (3)
N1—C11.297 (3)C7—H7A0.9800
N1—C131.432 (3)C7—H7B0.9800
C1—C21.484 (3)C7—H7C0.9800
C1—C61.522 (3)C8—C91.377 (3)
C2—C31.536 (3)C8—C131.401 (3)
C2—H2A0.9900C9—C101.403 (3)
C2—H2B0.9900C9—H90.9500
C3—C41.533 (3)C10—C111.396 (3)
C3—H3A0.9900C11—C121.395 (3)
C3—H3B0.9900C11—H110.9500
C4—C51.529 (3)C12—C131.383 (3)
C4—H4A0.9900C12—H120.9500
O2—S1—O1118.92 (9)C4—C5—H5B109.3
O2—S1—N2107.89 (10)C6—C5—H5B109.3
O1—S1—N2106.72 (10)H5A—C5—H5B107.9
O2—S1—C10108.08 (9)C8—C6—C199.28 (16)
O1—S1—C10107.50 (9)C8—C6—C7112.08 (16)
N2—S1—C10107.21 (9)C1—C6—C7111.62 (17)
S1—N2—H1111.6 (17)C8—C6—C5113.55 (16)
S1—N2—H2109.5 (17)C1—C6—C5108.06 (16)
H1—N2—H2112 (2)C7—C6—C5111.58 (17)
C1—N1—C13106.40 (17)C6—C7—H7A109.5
N1—C1—C2124.71 (19)C6—C7—H7B109.5
N1—C1—C6115.23 (18)H7A—C7—H7B109.5
C2—C1—C6119.57 (18)C6—C7—H7C109.5
C1—C2—C3107.61 (17)H7A—C7—H7C109.5
C1—C2—H2A110.2H7B—C7—H7C109.5
C3—C2—H2A110.2C9—C8—C13120.48 (18)
C1—C2—H2B110.2C9—C8—C6131.77 (18)
C3—C2—H2B110.2C13—C8—C6107.74 (17)
H2A—C2—H2B108.5C8—C9—C10117.72 (18)
C4—C3—C2111.61 (18)C8—C9—H9121.1
C4—C3—H3A109.3C10—C9—H9121.1
C2—C3—H3A109.3C11—C10—C9121.85 (18)
C4—C3—H3B109.3C11—C10—S1119.82 (15)
C2—C3—H3B109.3C9—C10—S1118.23 (15)
H3A—C3—H3B108.0C12—C11—C10119.89 (18)
C5—C4—C3111.52 (17)C12—C11—H11120.1
C5—C4—H4A109.3C10—C11—H11120.1
C3—C4—H4A109.3C13—C12—C11118.07 (19)
C5—C4—H4B109.3C13—C12—H12121.0
C3—C4—H4B109.3C11—C12—H12121.0
H4A—C4—H4B108.0C12—C13—C8121.94 (18)
C4—C5—C6111.71 (17)C12—C13—N1126.75 (18)
C4—C5—H5A109.3C8—C13—N1111.29 (17)
C6—C5—H5A109.3
C13—N1—C1—C2172.04 (19)C13—C8—C9—C100.6 (3)
C13—N1—C1—C60.1 (2)C6—C8—C9—C10179.19 (19)
N1—C1—C2—C3117.4 (2)C8—C9—C10—C111.4 (3)
C6—C1—C2—C354.2 (2)C8—C9—C10—S1174.85 (15)
C1—C2—C3—C454.0 (2)O2—S1—C10—C11139.60 (16)
C2—C3—C4—C558.2 (2)O1—S1—C10—C1110.09 (19)
C3—C4—C5—C656.1 (2)N2—S1—C10—C11104.33 (17)
N1—C1—C6—C81.3 (2)O2—S1—C10—C944.03 (18)
C2—C1—C6—C8171.03 (18)O1—S1—C10—C9173.54 (15)
N1—C1—C6—C7117.0 (2)N2—S1—C10—C972.03 (17)
C2—C1—C6—C770.6 (2)C9—C10—C11—C121.8 (3)
N1—C1—C6—C5119.95 (19)S1—C10—C11—C12174.46 (15)
C2—C1—C6—C552.4 (2)C10—C11—C12—C130.0 (3)
C4—C5—C6—C8159.10 (17)C11—C12—C13—C82.0 (3)
C4—C5—C6—C150.0 (2)C11—C12—C13—N1176.45 (19)
C4—C5—C6—C773.1 (2)C9—C8—C13—C122.3 (3)
C1—C6—C8—C9176.5 (2)C6—C8—C13—C12178.76 (18)
C7—C6—C8—C965.5 (3)C9—C8—C13—N1176.32 (18)
C5—C6—C8—C962.1 (3)C6—C8—C13—N12.6 (2)
C1—C6—C8—C132.2 (2)C1—N1—C13—C12179.7 (2)
C7—C6—C8—C13115.73 (19)C1—N1—C13—C81.7 (2)
C5—C6—C8—C13116.70 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.86 (3)2.13 (3)2.986 (3)170 (2)
N2—H2···O1ii0.86 (3)2.20 (3)3.039 (2)164 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H16N2O2S
Mr264.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.3694 (5), 10.4051 (5), 13.5937 (8)
β (°) 103.516 (6)
V3)1288.54 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.941, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
5426, 2959, 2364
Rint0.030
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 1.05
No. of reflections2959
No. of parameters171
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.79, 0.48

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.86 (3)2.13 (3)2.986 (3)170 (2)
N2—H2···O1ii0.86 (3)2.20 (3)3.039 (2)164 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Saadi, M. S., Rostom, S. A. F. & Faidallah, H. M. (2008). Arch. Pharm. Chem. Life Sci. 341, 181–190.  CAS Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o762–o763.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds