organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­methyl-1-phenyl-1H-pyrazole-4-carbaldehyde

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 March 2012; accepted 8 March 2012; online 14 March 2012)

In the title mol­ecule, C12H12N2O, the five- and six-membered rings form a dihedral angle of 68.41 (16)°. The aldehyde group is nearly coplanar with the pyrazole ring [C—C—C—O torsion angle = −0.4 (5)°]. The three-dimensional architecture is sustained by weak C—H⋯O and C—H⋯π inter­actions.

Related literature

For the anti-bacterial properties of pyrazole derivatives, see: Kane et al. (2003[Kane, J. L. Jr, Hirth, B. H., Laing, D., Gourlie, B. B., Nahill, S. & Barsomian, G. (2003). Bioorg. Med. Chem. Lett. 13, 4463-4466.]). For related structures, see: Asiri et al. (2012a[Asiri, A. M., Al-Youbi, A. O., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o794.],b[Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o764.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O

  • Mr = 200.24

  • Monoclinic, P 21 /c

  • a = 6.6264 (4) Å

  • b = 6.7497 (4) Å

  • c = 22.6203 (12) Å

  • β = 94.785 (5)°

  • V = 1008.19 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.979, Tmax = 0.996

  • 6376 measured reflections

  • 2335 independent reflections

  • 1951 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.194

  • S = 1.23

  • 2335 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.95 2.43 3.315 (4) 155
C11—H11⋯Cg1ii 0.95 2.71 3.509 (4) 142
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of structural studies of pyrazole derivatives (Asiri et al., 2012a; Asiri et al., 2012b), motivated by their putative biological activity (Kane et al., 2003), the title compound, 3,5-dimethyl-1-phenyl-1H-4-pyrazole-3-carboxaldehyde (I), was investigated crystallographically.

In (I), Fig. 1, there is a twist about the single bond linking the five- and six-membered rings with the N2—N1—C7—C8 torsion angle being -112.1 (3) °; the dihedral angle between the rings is 68.41 (16) °. The aldehyde group is co-planar with the pyrazole ring to which it is connected as seen in the value of the C2—C3—C6—O1 torsion angle of -0.4 (5)°.

Molecules are connected into the three-dimensional architecture by C—H···O and C—H···π interactions, Fig. 2 and Table 1.

Related literature top

For the anti-bacterial properties of pyrazole derivatives, see: Kane et al. (2003). For related structures, see: Asiri et al. (2012a,b).

Experimental top

To a cold solution of N,N-dimethylformamide (1.46 g, 20 mmol), freshly distilled phosphorous oxychloride (1.54 g, 10 mmol) was added with stirring over a period of 30 min. A solution of 3,5-dimethyl-1-phenyl-1H-4-pyrazole-3-carboxaldehyde (1.72 g, 10 mmol) in N,N-dimethylformamide (15 ml) was added drop-wise while maintaining the temperature between 273–278 K. The resulting mixture was heated under reflux for 1 h, cooled and poured with continuous stirring into crushed ice. After 15 min, the precipitate was filtered and crystallized from aqueous ethanol to give needles. Yield: 69%. M.pt: 397–399 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. Owing to poor agreement, the (2 1 0) reflection was omitted from the final cycles of refinement.

Structure description top

In continuation of structural studies of pyrazole derivatives (Asiri et al., 2012a; Asiri et al., 2012b), motivated by their putative biological activity (Kane et al., 2003), the title compound, 3,5-dimethyl-1-phenyl-1H-4-pyrazole-3-carboxaldehyde (I), was investigated crystallographically.

In (I), Fig. 1, there is a twist about the single bond linking the five- and six-membered rings with the N2—N1—C7—C8 torsion angle being -112.1 (3) °; the dihedral angle between the rings is 68.41 (16) °. The aldehyde group is co-planar with the pyrazole ring to which it is connected as seen in the value of the C2—C3—C6—O1 torsion angle of -0.4 (5)°.

Molecules are connected into the three-dimensional architecture by C—H···O and C—H···π interactions, Fig. 2 and Table 1.

For the anti-bacterial properties of pyrazole derivatives, see: Kane et al. (2003). For related structures, see: Asiri et al. (2012a,b).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents of (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
3,5-Dimethyl-1-phenyl-1H-pyrazole-4-carbaldehyde top
Crystal data top
C12H12N2OF(000) = 424
Mr = 200.24Dx = 1.319 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2660 reflections
a = 6.6264 (4) Åθ = 2.7–27.5°
b = 6.7497 (4) ŵ = 0.09 mm1
c = 22.6203 (12) ÅT = 100 K
β = 94.785 (5)°Prism, colourless
V = 1008.19 (10) Å30.25 × 0.15 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2335 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1951 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.1°
ω scanh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 86
Tmin = 0.979, Tmax = 0.996l = 2929
6376 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0317P)2 + 2.9806P]
where P = (Fo2 + 2Fc2)/3
2335 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C12H12N2OV = 1008.19 (10) Å3
Mr = 200.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.6264 (4) ŵ = 0.09 mm1
b = 6.7497 (4) ÅT = 100 K
c = 22.6203 (12) Å0.25 × 0.15 × 0.05 mm
β = 94.785 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2335 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1951 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.996Rint = 0.035
6376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.194H-atom parameters constrained
S = 1.23Δρmax = 0.43 e Å3
2335 reflectionsΔρmin = 0.31 e Å3
138 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2480 (3)0.6126 (4)0.58330 (9)0.0215 (5)
N10.2395 (4)0.2683 (4)0.40971 (10)0.0148 (5)
N20.2307 (4)0.1335 (4)0.45524 (11)0.0195 (6)
C10.2332 (6)0.1451 (5)0.56361 (14)0.0276 (8)
H1A0.11900.05260.56260.041*
H1B0.21770.24630.59400.041*
H1C0.36000.07270.57300.041*
C20.2378 (5)0.2431 (5)0.50395 (13)0.0172 (6)
C30.2500 (4)0.4477 (5)0.49014 (13)0.0148 (6)
C40.2499 (4)0.4563 (5)0.42869 (13)0.0153 (6)
C50.2611 (6)0.6283 (5)0.38750 (14)0.0236 (7)
H5A0.15240.61790.35550.035*
H5B0.39250.62800.37060.035*
H5C0.24560.75190.40940.035*
C60.2550 (4)0.6179 (5)0.52932 (13)0.0167 (6)
H60.26440.74480.51160.020*
C70.2304 (4)0.1953 (4)0.34975 (12)0.0143 (6)
C80.4000 (5)0.2103 (5)0.31798 (14)0.0208 (7)
H80.52140.26830.33540.025*
C90.3893 (5)0.1389 (5)0.25999 (14)0.0235 (7)
H90.50330.15020.23740.028*
C100.2120 (5)0.0509 (5)0.23500 (13)0.0203 (7)
H100.20600.00090.19560.024*
C110.0447 (5)0.0363 (5)0.26753 (13)0.0182 (6)
H110.07560.02460.25050.022*
C120.0520 (5)0.1106 (4)0.32508 (13)0.0165 (6)
H120.06360.10340.34720.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0239 (11)0.0255 (12)0.0150 (10)0.0002 (10)0.0007 (8)0.0037 (9)
N10.0210 (12)0.0131 (12)0.0105 (11)0.0012 (10)0.0024 (9)0.0006 (9)
N20.0305 (14)0.0157 (13)0.0126 (12)0.0021 (11)0.0031 (10)0.0009 (10)
C10.048 (2)0.0210 (17)0.0140 (15)0.0048 (16)0.0052 (14)0.0023 (13)
C20.0219 (15)0.0166 (14)0.0134 (14)0.0009 (12)0.0020 (11)0.0008 (11)
C30.0144 (13)0.0171 (14)0.0133 (13)0.0012 (12)0.0031 (10)0.0005 (11)
C40.0157 (13)0.0157 (15)0.0140 (14)0.0013 (12)0.0020 (11)0.0000 (11)
C50.0401 (19)0.0145 (15)0.0160 (15)0.0003 (15)0.0016 (13)0.0004 (12)
C60.0170 (14)0.0173 (15)0.0157 (14)0.0012 (12)0.0012 (11)0.0024 (12)
C70.0218 (14)0.0092 (13)0.0118 (13)0.0006 (11)0.0004 (11)0.0001 (10)
C80.0211 (15)0.0238 (16)0.0175 (15)0.0033 (13)0.0017 (12)0.0043 (13)
C90.0230 (15)0.0280 (18)0.0205 (15)0.0003 (14)0.0075 (12)0.0071 (14)
C100.0298 (17)0.0183 (15)0.0129 (14)0.0024 (13)0.0012 (12)0.0031 (12)
C110.0242 (15)0.0139 (14)0.0155 (14)0.0013 (12)0.0038 (11)0.0001 (12)
C120.0206 (14)0.0140 (14)0.0149 (13)0.0016 (12)0.0024 (11)0.0008 (11)
Geometric parameters (Å, º) top
O1—C61.226 (4)C5—H5B0.9800
N1—C41.339 (4)C5—H5C0.9800
N1—N21.379 (3)C6—H60.9500
N1—C71.439 (4)C7—C121.387 (4)
N2—C21.325 (4)C7—C81.388 (4)
C1—C21.506 (4)C8—C91.394 (4)
C1—H1A0.9800C8—H80.9500
C1—H1B0.9800C9—C101.393 (5)
C1—H1C0.9800C9—H90.9500
C2—C31.419 (4)C10—C111.385 (4)
C3—C41.391 (4)C10—H100.9500
C3—C61.450 (4)C11—C121.392 (4)
C4—C51.494 (4)C11—H110.9500
C5—H5A0.9800C12—H120.9500
C4—N1—N2112.9 (2)H5A—C5—H5C109.5
C4—N1—C7128.6 (2)H5B—C5—H5C109.5
N2—N1—C7118.5 (2)O1—C6—C3125.8 (3)
C2—N2—N1104.6 (2)O1—C6—H6117.1
C2—C1—H1A109.5C3—C6—H6117.1
C2—C1—H1B109.5C12—C7—C8121.4 (3)
H1A—C1—H1B109.5C12—C7—N1119.2 (3)
C2—C1—H1C109.5C8—C7—N1119.4 (3)
H1A—C1—H1C109.5C7—C8—C9118.8 (3)
H1B—C1—H1C109.5C7—C8—H8120.6
N2—C2—C3111.0 (3)C9—C8—H8120.6
N2—C2—C1119.9 (3)C10—C9—C8120.3 (3)
C3—C2—C1129.1 (3)C10—C9—H9119.9
C4—C3—C2105.4 (3)C8—C9—H9119.9
C4—C3—C6125.2 (3)C11—C10—C9120.0 (3)
C2—C3—C6129.4 (3)C11—C10—H10120.0
N1—C4—C3106.1 (3)C9—C10—H10120.0
N1—C4—C5122.7 (3)C10—C11—C12120.3 (3)
C3—C4—C5131.3 (3)C10—C11—H11119.8
C4—C5—H5A109.5C12—C11—H11119.8
C4—C5—H5B109.5C7—C12—C11119.1 (3)
H5A—C5—H5B109.5C7—C12—H12120.4
C4—C5—H5C109.5C11—C12—H12120.4
C4—N1—N2—C20.6 (3)C6—C3—C4—C52.2 (5)
C7—N1—N2—C2178.7 (3)C4—C3—C6—O1177.3 (3)
N1—N2—C2—C30.3 (3)C2—C3—C6—O10.4 (5)
N1—N2—C2—C1179.5 (3)C4—N1—C7—C12110.1 (4)
N2—C2—C3—C40.0 (4)N2—N1—C7—C1267.7 (4)
C1—C2—C3—C4179.8 (3)C4—N1—C7—C870.2 (4)
N2—C2—C3—C6178.1 (3)N2—N1—C7—C8112.1 (3)
C1—C2—C3—C62.2 (6)C12—C7—C8—C90.2 (5)
N2—N1—C4—C30.6 (3)N1—C7—C8—C9179.9 (3)
C7—N1—C4—C3178.5 (3)C7—C8—C9—C101.1 (5)
N2—N1—C4—C5179.9 (3)C8—C9—C10—C110.8 (5)
C7—N1—C4—C52.2 (5)C9—C10—C11—C120.5 (5)
C2—C3—C4—N10.3 (3)C8—C7—C12—C111.1 (5)
C6—C3—C4—N1178.5 (3)N1—C7—C12—C11178.7 (3)
C2—C3—C4—C5179.6 (3)C10—C11—C12—C71.4 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.952.433.315 (4)155
C11—H11···Cg1ii0.952.713.509 (4)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H12N2O
Mr200.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.6264 (4), 6.7497 (4), 22.6203 (12)
β (°) 94.785 (5)
V3)1008.19 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.15 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.979, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
6376, 2335, 1951
Rint0.035
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.194, 1.23
No. of reflections2335
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.31

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.952.433.315 (4)155
C11—H11···Cg1ii0.952.713.509 (4)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o794.  CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o764.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKane, J. L. Jr, Hirth, B. H., Laing, D., Gourlie, B. B., Nahill, S. & Barsomian, G. (2003). Bioorg. Med. Chem. Lett. 13, 4463–4466.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds