metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­aqua­(4,6-dihy­dr­oxy­benzene-1,3-di­sulfonato-κO1)zinc penta­hydrate

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 March 2012; accepted 21 March 2012; online 28 March 2012)

The ZnII atom in the title complex, [Zn(C6H4O8S2)(H2O)5]·5H2O, is coordinated by five water mol­ecules and an O atom of a 4,6-dihy­droxy­benzene-1,3-disulfonate dianion. The coord­ination geometry is distorted octa­hedral, with the Zn—Osulfonate bond relatively long compared to the Zn—Owater bonds. The coordinated and lattice water mol­ecules inter­act with each other and with the hy­droxy groups and sulfonate ligand through O—H⋯O hydrogen bonds, generating a tightly held three-dimensional network.

Related literature

For related structures, see: Xie et al. (2010[Xie, B.-Y., Huang, W., Zhang, Y., Yang, R.-Q. & Xie, Y.-R. (2010). Acta Cryst. E66, m341.]); Bakirci et al. (2006[Bakirci, H., Koner, A. L., Dickman, M. H., Kortz, U. & Nau, W. M. (2006). Angew. Chem. Int. Ed. 45, 7400-7404.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H4O8S2)(H2O)5]·5H2O

  • Mr = 513.74

  • Triclinic, [P \overline 1]

  • a = 7.1479 (3) Å

  • b = 11.8929 (5) Å

  • c = 12.2044 (6) Å

  • α = 109.368 (1)°

  • β = 104.690 (1)°

  • γ = 92.953 (1)°

  • V = 936.27 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 293 K

  • 0.21 × 0.17 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.747, Tmax = 0.820

  • 9270 measured reflections

  • 4257 independent reflections

  • 3883 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.091

  • S = 1.06

  • 4257 reflections

  • 310 parameters

  • 32 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected bond lengths (Å)

Zn—O1 2.5415 (15)
Zn—O1w 1.9950 (15)
Zn—O2w 1.9460 (18)
Zn—O3w 1.9671 (17)
Zn—O4w 1.9588 (17)
Zn—O5w 2.2355 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O9wi 0.83 (1) 1.79 (1) 2.612 (2) 170 (3)
O8—H8⋯O8wii 0.83 (1) 1.84 (1) 2.664 (2) 172 (3)
O1w—H11⋯O2 0.84 (1) 2.09 (2) 2.852 (2) 151 (3)
O1w—H12⋯O7iii 0.83 (1) 2.09 (1) 2.923 (2) 175 (3)
O2w—H21⋯O6iv 0.83 (1) 2.22 (1) 3.021 (3) 162 (3)
O2w—H22⋯O7wiii 0.83 (1) 1.88 (1) 2.710 (3) 171 (4)
O3w—H31⋯O6wiv 0.84 (1) 2.01 (2) 2.765 (2) 149 (3)
O3w—H32⋯O10wv 0.83 (1) 1.79 (1) 2.618 (3) 178 (5)
O4w—H41⋯O6wvi 0.83 (1) 1.98 (1) 2.774 (2) 160 (3)
O4w—H42⋯O7wvii 0.84 (1) 1.99 (1) 2.802 (3) 164 (3)
O5w—H51⋯O4v 0.83 (1) 2.00 (1) 2.833 (3) 176 (4)
O5w—H52⋯O6viii 0.84 (1) 1.97 (1) 2.802 (3) 170 (3)
O6w—H62⋯O1 0.84 (1) 2.08 (1) 2.903 (2) 168 (3)
O6w—H61⋯O4iv 0.83 (1) 1.99 (1) 2.821 (2) 176 (3)
O7w—H71⋯O2 0.84 (1) 2.05 (1) 2.874 (2) 170 (3)
O7w—H72⋯O5ii 0.83 (1) 2.33 (2) 3.034 (2) 143 (3)
O8w—H81⋯O2 0.83 (1) 2.07 (2) 2.854 (2) 157 (3)
O8w—H82⋯O3vi 0.84 (1) 1.96 (1) 2.799 (2) 176 (3)
O9w—H91⋯O5ix 0.83 (1) 1.95 (1) 2.747 (2) 162 (3)
O9w—H92⋯O6 0.83 (1) 1.97 (1) 2.795 (2) 173 (3)
O10w—H101⋯O8w 0.83 (1) 2.07 (2) 2.887 (3) 167 (4)
O10w—H102⋯O9wvi 0.83 (1) 2.03 (1) 2.851 (3) 171 (5)
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) -x, -y, -z+1; (vi) x-1, y, z; (vii) -x, -y+1, -z+1; (viii) x-1, y, z-1; (ix) x+1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC and Rigaku, 2002[Rigaku/MSC and Rigaku (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In earlier studies (Xie et al., 2010), the crystal structure determination of [Zn(CH3CN)(H2O)5](C6H4O8S2).3H2O showed that the Zn atom is octahedrally coordinated by one acetonitrile-N atom and five water molecules. The 4,6-dihydroxybenzene-1,3-disulfonate anion did not interact directly with the metal atom, instead forming hydrogen bonds to the coordinated water molecules (Xie et al., 2010). When the synthesis was repeated in the absence of acetonitrile, the title compound was obtained in which the 4,6-dihydroxybenzene-1,3-disulfonate anion is now bonded to the zinc atom, Fig. 1. The covalent Zn—Osulfonate bond is relatively long compared to the Zn—Owater bonds, Table 1. The observed coordination geometry resembles that seen in a related pentaaquozinc/sulphonate structure (Bakirci et al., 2006).

The coordinated and lattice water molecules interact with each other and with the sulphonate ligand through O—H···O hydrogen bonds to generate a tightly-held three-dimensional network, Fig. 2 and Table 2.

Related literature top

For related structures, see: Xie et al. (2010); Bakirci et al. (2006).

Experimental top

Zinc nitrate (1 mmol) and 2,4-dihydroxyl-1,5-benzenedisulfonic acid (1 mmol) were dissolved in water (10 ml). The solution was filtered and then set aside for the formation of crystals. Colourless crystals were obtained after a week.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) = 1.2Ueq(C). The hydroxyl H and water H atoms were located in a difference Fourier map, and were refined with the distance restraints O—H = 0.84±0.01 Å and H···H = 1.37±0.01 Å; U(H) = 1.5Ueq(O).

Structure description top

In earlier studies (Xie et al., 2010), the crystal structure determination of [Zn(CH3CN)(H2O)5](C6H4O8S2).3H2O showed that the Zn atom is octahedrally coordinated by one acetonitrile-N atom and five water molecules. The 4,6-dihydroxybenzene-1,3-disulfonate anion did not interact directly with the metal atom, instead forming hydrogen bonds to the coordinated water molecules (Xie et al., 2010). When the synthesis was repeated in the absence of acetonitrile, the title compound was obtained in which the 4,6-dihydroxybenzene-1,3-disulfonate anion is now bonded to the zinc atom, Fig. 1. The covalent Zn—Osulfonate bond is relatively long compared to the Zn—Owater bonds, Table 1. The observed coordination geometry resembles that seen in a related pentaaquozinc/sulphonate structure (Bakirci et al., 2006).

The coordinated and lattice water molecules interact with each other and with the sulphonate ligand through O—H···O hydrogen bonds to generate a tightly-held three-dimensional network, Fig. 2 and Table 2.

For related structures, see: Xie et al. (2010); Bakirci et al. (2006).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC and Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents of (I). The O—H···O interactions are shown as orange dashed lines.
Pentaaqua(4,6-dihydroxybenzene-1,3-disulfonato-κO1)zinc pentahydrate top
Crystal data top
[Zn(C6H4O8S2)(H2O)5]·5H2OZ = 2
Mr = 513.74F(000) = 532
Triclinic, P1Dx = 1.822 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1479 (3) ÅCell parameters from 8162 reflections
b = 11.8929 (5) Åθ = 3.0–27.5°
c = 12.2044 (6) ŵ = 1.62 mm1
α = 109.368 (1)°T = 293 K
β = 104.690 (1)°Prism, colourless
γ = 92.953 (1)°0.21 × 0.17 × 0.14 mm
V = 936.27 (7) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4257 independent reflections
Radiation source: fine-focus sealed tube3883 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 89
Tmin = 0.747, Tmax = 0.820k = 1515
9270 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.7681P]
where P = (Fo2 + 2Fc2)/3
4257 reflections(Δ/σ)max < 0.001
310 parametersΔρmax = 0.67 e Å3
32 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Zn(C6H4O8S2)(H2O)5]·5H2Oγ = 92.953 (1)°
Mr = 513.74V = 936.27 (7) Å3
Triclinic, P1Z = 2
a = 7.1479 (3) ÅMo Kα radiation
b = 11.8929 (5) ŵ = 1.62 mm1
c = 12.2044 (6) ÅT = 293 K
α = 109.368 (1)°0.21 × 0.17 × 0.14 mm
β = 104.690 (1)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4257 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3883 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.820Rint = 0.019
9270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03232 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.67 e Å3
4257 reflectionsΔρmin = 0.35 e Å3
310 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.13086 (4)0.18054 (2)0.34895 (2)0.02620 (9)
S10.51381 (7)0.36541 (4)0.60727 (4)0.01787 (11)
S20.58913 (7)0.13241 (4)0.92703 (4)0.01968 (12)
O10.4285 (2)0.24063 (13)0.53364 (13)0.0256 (3)
O20.3656 (2)0.44586 (14)0.60175 (14)0.0260 (3)
O30.6847 (2)0.40513 (15)0.57826 (14)0.0272 (3)
O40.4610 (3)0.04682 (14)0.81323 (15)0.0335 (4)
O50.5033 (2)0.15452 (15)1.02630 (14)0.0277 (3)
O60.7809 (2)0.09405 (16)0.95478 (17)0.0331 (4)
O70.7208 (3)0.57857 (13)0.82673 (14)0.0294 (4)
H70.777 (4)0.637 (2)0.8893 (18)0.044*
O80.7840 (3)0.37304 (15)1.10942 (14)0.0329 (4)
H80.828 (5)0.4422 (15)1.160 (2)0.049*
O1w0.1481 (3)0.34947 (14)0.35174 (15)0.0289 (3)
H110.205 (4)0.401 (2)0.4201 (12)0.043*
H120.178 (4)0.369 (2)0.2982 (17)0.043*
O2w0.3028 (3)0.15031 (17)0.24487 (19)0.0411 (4)
H210.300 (5)0.0797 (13)0.201 (3)0.062*
H220.412 (3)0.191 (2)0.263 (3)0.062*
O3w0.1534 (3)0.03068 (16)0.38332 (19)0.0500 (6)
H310.231 (5)0.030 (3)0.447 (2)0.075*
H320.081 (5)0.0356 (19)0.347 (3)0.075*
O4w0.0565 (2)0.22860 (16)0.44222 (16)0.0313 (4)
H410.117 (4)0.172 (2)0.450 (3)0.047*
H420.136 (3)0.263 (2)0.406 (3)0.047*
O5w0.1099 (3)0.07189 (19)0.18311 (16)0.0389 (4)
H510.214 (3)0.041 (3)0.186 (3)0.058*
H520.130 (4)0.084 (3)0.1172 (19)0.058*
O6w0.6621 (3)0.05893 (17)0.44204 (16)0.0330 (4)
H610.623 (4)0.025 (3)0.3672 (10)0.050*
H620.582 (4)0.103 (3)0.467 (2)0.050*
O7w0.3618 (3)0.70069 (16)0.70377 (16)0.0320 (4)
H710.369 (5)0.6284 (12)0.668 (2)0.048*
H720.365 (5)0.712 (2)0.7754 (12)0.048*
O8w0.0699 (3)0.41514 (16)0.71292 (15)0.0320 (4)
H810.142 (3)0.404 (3)0.668 (2)0.048*
H820.0465 (17)0.409 (3)0.673 (2)0.048*
O9w1.1390 (3)0.22383 (15)0.98465 (17)0.0345 (4)
H911.236 (3)0.190 (2)0.998 (3)0.052*
H921.037 (2)0.180 (2)0.975 (3)0.052*
O10w0.0671 (5)0.1796 (2)0.7321 (2)0.0718 (8)
H1010.066 (8)0.241 (2)0.714 (4)0.108*
H1020.100 (8)0.197 (4)0.8071 (11)0.108*
C10.5924 (3)0.37148 (18)0.75822 (17)0.0186 (4)
C20.6887 (3)0.47868 (18)0.85336 (19)0.0207 (4)
C30.7494 (3)0.48013 (19)0.97151 (18)0.0231 (4)
H30.81040.55171.03460.028*
C40.7200 (3)0.37540 (19)0.99630 (18)0.0218 (4)
C50.6239 (3)0.26820 (18)0.90129 (18)0.0195 (4)
C60.5610 (3)0.26795 (18)0.78383 (18)0.0200 (4)
H60.49650.19690.72100.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.02933 (16)0.02089 (14)0.02952 (15)0.00324 (11)0.00921 (11)0.00995 (11)
S10.0216 (2)0.0159 (2)0.0145 (2)0.00053 (18)0.00261 (17)0.00571 (17)
S20.0248 (3)0.0179 (2)0.0185 (2)0.00282 (19)0.00699 (19)0.00866 (18)
O10.0329 (8)0.0185 (7)0.0188 (7)0.0016 (6)0.0006 (6)0.0041 (6)
O20.0291 (8)0.0240 (7)0.0240 (8)0.0080 (6)0.0039 (6)0.0096 (6)
O30.0283 (8)0.0317 (8)0.0239 (8)0.0009 (7)0.0094 (6)0.0123 (6)
O40.0508 (11)0.0224 (8)0.0213 (8)0.0085 (7)0.0031 (7)0.0076 (6)
O50.0330 (8)0.0307 (8)0.0260 (8)0.0064 (7)0.0148 (7)0.0137 (7)
O60.0310 (9)0.0364 (9)0.0463 (10)0.0153 (7)0.0180 (8)0.0262 (8)
O70.0471 (10)0.0156 (7)0.0209 (8)0.0056 (7)0.0042 (7)0.0064 (6)
O80.0491 (10)0.0268 (8)0.0151 (7)0.0062 (8)0.0021 (7)0.0079 (6)
O1w0.0389 (9)0.0205 (7)0.0278 (8)0.0024 (7)0.0081 (7)0.0106 (6)
O2w0.0415 (10)0.0296 (9)0.0476 (11)0.0019 (8)0.0255 (9)0.0010 (8)
O3w0.0634 (14)0.0237 (9)0.0437 (11)0.0093 (9)0.0222 (10)0.0183 (8)
O4w0.0299 (8)0.0332 (9)0.0338 (9)0.0037 (7)0.0129 (7)0.0133 (7)
O5w0.0309 (9)0.0531 (11)0.0280 (9)0.0082 (8)0.0014 (7)0.0181 (8)
O6w0.0352 (9)0.0363 (9)0.0273 (8)0.0055 (8)0.0054 (7)0.0137 (7)
O7w0.0383 (9)0.0302 (8)0.0309 (9)0.0087 (7)0.0149 (7)0.0109 (7)
O8w0.0312 (9)0.0354 (9)0.0251 (8)0.0032 (7)0.0056 (7)0.0073 (7)
O9w0.0304 (9)0.0253 (8)0.0401 (10)0.0006 (7)0.0062 (8)0.0053 (7)
O10w0.103 (2)0.0377 (12)0.0521 (14)0.0216 (13)0.0148 (14)0.0197 (11)
C10.0211 (9)0.0187 (9)0.0151 (9)0.0011 (8)0.0032 (7)0.0065 (7)
C20.0241 (10)0.0163 (9)0.0209 (10)0.0006 (8)0.0053 (8)0.0070 (8)
C30.0282 (11)0.0184 (9)0.0171 (9)0.0014 (8)0.0024 (8)0.0030 (7)
C40.0248 (10)0.0231 (10)0.0164 (9)0.0014 (8)0.0033 (8)0.0079 (8)
C50.0233 (10)0.0172 (9)0.0178 (9)0.0011 (8)0.0045 (7)0.0073 (7)
C60.0238 (10)0.0153 (9)0.0175 (9)0.0010 (8)0.0025 (7)0.0047 (7)
Geometric parameters (Å, º) top
Zn—O12.5415 (15)O3w—H320.833 (10)
Zn—O1w1.9950 (15)O4w—H410.833 (10)
Zn—O2w1.9460 (18)O4w—H420.838 (10)
Zn—O3w1.9671 (17)O5w—H510.831 (10)
Zn—O4w1.9588 (17)O5w—H520.840 (10)
Zn—O5w2.2355 (17)O6w—H610.831 (10)
S1—O31.4528 (16)O6w—H620.836 (10)
S1—O11.4581 (15)O7w—H710.837 (10)
S1—O21.4675 (16)O7w—H720.834 (10)
S1—C11.760 (2)O8w—H810.832 (10)
S2—O51.4475 (16)O8w—H820.838 (10)
S2—O41.4577 (17)O9w—H910.828 (10)
S2—O61.4607 (17)O9w—H920.834 (10)
S2—C51.761 (2)O10w—H1010.832 (10)
O7—C21.355 (2)O10w—H1020.834 (10)
O7—H70.832 (10)C1—C61.388 (3)
O8—C41.350 (2)C1—C21.404 (3)
O8—H80.834 (10)C2—C31.390 (3)
O1w—H110.836 (10)C3—C41.394 (3)
O1w—H120.832 (10)C3—H30.9300
O2w—H210.830 (10)C4—C51.403 (3)
O2w—H220.834 (10)C5—C61.388 (3)
O3w—H310.836 (10)C6—H60.9300
O2w—Zn—O4w171.28 (8)Zn—O2w—H22124 (2)
O2w—Zn—O3w95.37 (10)H21—O2w—H22110.9 (17)
O4w—Zn—O3w92.91 (10)Zn—O3w—H31121 (2)
O2w—Zn—O1w87.93 (8)Zn—O3w—H32128 (2)
O4w—Zn—O1w84.59 (7)H31—O3w—H32109.9 (17)
O3w—Zn—O1w167.14 (8)Zn—O4w—H41114 (2)
O2w—Zn—O5w86.55 (8)Zn—O4w—H42107 (2)
O4w—Zn—O5w91.25 (7)H41—O4w—H42109.4 (16)
O3w—Zn—O5w86.37 (8)Zn—O5w—H51123 (2)
O1w—Zn—O5w106.26 (7)Zn—O5w—H52123 (2)
O2w—Zn—O189.53 (8)H51—O5w—H52109.2 (16)
O4w—Zn—O195.00 (7)H61—O6w—H62110.4 (16)
O3w—Zn—O177.08 (6)H71—O7w—H72109.6 (16)
O1w—Zn—O190.55 (6)H81—O8w—H82110.1 (16)
O5w—Zn—O1162.56 (7)H91—O9w—H92110.9 (17)
O3—S1—O1113.06 (10)H101—O10w—H102111.0 (18)
O3—S1—O2112.15 (10)C6—C1—C2119.17 (18)
O1—S1—O2110.90 (9)C6—C1—S1119.49 (15)
O3—S1—C1107.07 (9)C2—C1—S1121.33 (15)
O1—S1—C1106.27 (9)O7—C2—C3121.69 (18)
O2—S1—C1106.94 (9)O7—C2—C1118.50 (18)
O5—S2—O4112.66 (10)C3—C2—C1119.81 (18)
O5—S2—O6112.17 (10)C2—C3—C4120.69 (19)
O4—S2—O6110.50 (11)C2—C3—H3119.7
O5—S2—C5108.45 (10)C4—C3—H3119.7
O4—S2—C5105.67 (10)O8—C4—C3121.99 (19)
O6—S2—C5107.00 (10)O8—C4—C5118.46 (18)
S1—O1—Zn123.46 (9)C3—C4—C5119.53 (18)
C2—O7—H7111 (2)C6—C5—C4119.40 (18)
C4—O8—H8111 (2)C6—C5—S2119.21 (15)
Zn—O1w—H11114 (2)C4—C5—S2121.34 (15)
Zn—O1w—H12123 (2)C1—C6—C5121.38 (18)
H11—O1w—H12110.0 (16)C1—C6—H6119.3
Zn—O2w—H21118 (2)C5—C6—H6119.3
O3—S1—O1—Zn99.48 (12)O7—C2—C3—C4178.1 (2)
O2—S1—O1—Zn27.48 (13)C1—C2—C3—C41.6 (3)
C1—S1—O1—Zn143.35 (10)C2—C3—C4—O8177.4 (2)
O2w—Zn—O1—S199.04 (12)C2—C3—C4—C51.5 (3)
O4w—Zn—O1—S173.50 (12)O8—C4—C5—C6178.5 (2)
O3w—Zn—O1—S1165.34 (14)C3—C4—C5—C60.5 (3)
O1w—Zn—O1—S111.11 (12)O8—C4—C5—S20.8 (3)
O5w—Zn—O1—S1175.93 (17)C3—C4—C5—S2178.15 (17)
O3—S1—C1—C6122.53 (17)O5—S2—C5—C6131.59 (17)
O1—S1—C1—C61.4 (2)O4—S2—C5—C610.6 (2)
O2—S1—C1—C6117.08 (18)O6—S2—C5—C6107.21 (18)
O3—S1—C1—C256.62 (19)O5—S2—C5—C450.8 (2)
O1—S1—C1—C2177.71 (17)O4—S2—C5—C4171.81 (18)
O2—S1—C1—C263.77 (19)O6—S2—C5—C470.4 (2)
C6—C1—C2—O7179.0 (2)C2—C1—C6—C50.4 (3)
S1—C1—C2—O70.1 (3)S1—C1—C6—C5178.79 (16)
C6—C1—C2—C30.6 (3)C4—C5—C6—C10.4 (3)
S1—C1—C2—C3179.75 (17)S2—C5—C6—C1177.26 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O9wi0.83 (1)1.79 (1)2.612 (2)170 (3)
O8—H8···O8wii0.83 (1)1.84 (1)2.664 (2)172 (3)
O1w—H11···O20.84 (1)2.09 (2)2.852 (2)151 (3)
O1w—H12···O7iii0.83 (1)2.09 (1)2.923 (2)175 (3)
O2w—H21···O6iv0.83 (1)2.22 (1)3.021 (3)162 (3)
O2w—H22···O7wiii0.83 (1)1.88 (1)2.710 (3)171 (4)
O3w—H31···O6wiv0.84 (1)2.01 (2)2.765 (2)149 (3)
O3w—H32···O10wv0.83 (1)1.79 (1)2.618 (3)178 (5)
O4w—H41···O6wvi0.83 (1)1.98 (1)2.774 (2)160 (3)
O4w—H42···O7wvii0.84 (1)1.99 (1)2.802 (3)164 (3)
O5w—H51···O4v0.83 (1)2.00 (1)2.833 (3)176 (4)
O5w—H52···O6viii0.84 (1)1.97 (1)2.802 (3)170 (3)
O6w—H62···O10.84 (1)2.08 (1)2.903 (2)168 (3)
O6w—H61···O4iv0.83 (1)1.99 (1)2.821 (2)176 (3)
O7w—H71···O20.84 (1)2.05 (1)2.874 (2)170 (3)
O7w—H72···O5ii0.83 (1)2.33 (2)3.034 (2)143 (3)
O8w—H81···O20.83 (1)2.07 (2)2.854 (2)157 (3)
O8w—H82···O3vi0.84 (1)1.96 (1)2.799 (2)176 (3)
O9w—H91···O5ix0.83 (1)1.95 (1)2.747 (2)162 (3)
O9w—H92···O60.83 (1)1.97 (1)2.795 (2)173 (3)
O10w—H101···O8w0.83 (1)2.07 (2)2.887 (3)167 (4)
O10w—H102···O9wvi0.83 (1)2.03 (1)2.851 (3)171 (5)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x1, y, z; (vii) x, y+1, z+1; (viii) x1, y, z1; (ix) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C6H4O8S2)(H2O)5]·5H2O
Mr513.74
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1479 (3), 11.8929 (5), 12.2044 (6)
α, β, γ (°)109.368 (1), 104.690 (1), 92.953 (1)
V3)936.27 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.21 × 0.17 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.747, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
9270, 4257, 3883
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.06
No. of reflections4257
No. of parameters310
No. of restraints32
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.35

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC and Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Zn—O12.5415 (15)Zn—O3w1.9671 (17)
Zn—O1w1.9950 (15)Zn—O4w1.9588 (17)
Zn—O2w1.9460 (18)Zn—O5w2.2355 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O9wi0.832 (10)1.790 (12)2.612 (2)170 (3)
O8—H8···O8wii0.834 (10)1.835 (11)2.664 (2)172 (3)
O1w—H11···O20.836 (10)2.093 (16)2.852 (2)151 (3)
O1w—H12···O7iii0.832 (10)2.094 (11)2.923 (2)175 (3)
O2w—H21···O6iv0.830 (10)2.220 (14)3.021 (3)162 (3)
O2w—H22···O7wiii0.834 (10)1.884 (11)2.710 (3)171 (4)
O3w—H31···O6wiv0.836 (10)2.01 (2)2.765 (2)149 (3)
O3w—H32···O10wv0.833 (10)1.785 (10)2.618 (3)178 (5)
O4w—H41···O6wvi0.833 (10)1.976 (14)2.774 (2)160 (3)
O4w—H42···O7wvii0.838 (10)1.987 (13)2.802 (3)164 (3)
O5w—H51···O4v0.831 (10)2.004 (11)2.833 (3)176 (4)
O5w—H52···O6viii0.840 (10)1.970 (12)2.802 (3)170 (3)
O6w—H62···O10.836 (10)2.079 (12)2.903 (2)168 (3)
O6w—H61···O4iv0.831 (10)1.992 (10)2.821 (2)176 (3)
O7w—H71···O20.837 (10)2.046 (12)2.874 (2)170 (3)
O7w—H72···O5ii0.834 (10)2.33 (2)3.034 (2)143 (3)
O8w—H81···O20.832 (10)2.071 (15)2.854 (2)157 (3)
O8w—H82···O3vi0.838 (10)1.963 (10)2.799 (2)176 (3)
O9w—H91···O5ix0.828 (10)1.948 (12)2.747 (2)162 (3)
O9w—H92···O60.834 (10)1.965 (10)2.795 (2)173 (3)
O10w—H101···O8w0.832 (10)2.072 (15)2.887 (3)167 (4)
O10w—H102···O9wvi0.834 (10)2.025 (12)2.851 (3)171 (5)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x1, y, z; (vii) x, y+1, z+1; (viii) x1, y, z1; (ix) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: shangao67@yahoo.com.

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (grant No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (grant Nos 12511z023 and 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (grant No. 2010 t d03), Heilongjiang University (Hdtd2010–04), and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/3).

References

First citationBakirci, H., Koner, A. L., Dickman, M. H., Kortz, U. & Nau, W. M. (2006). Angew. Chem. Int. Ed. 45, 7400–7404.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC and Rigaku (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, B.-Y., Huang, W., Zhang, Y., Yang, R.-Q. & Xie, Y.-R. (2010). Acta Cryst. E66, m341.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds