metal-organic compounds
cis-(Nitrato-κ2O,O′)(2,5,5,7,9,12,12,14-octamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)cadmium nitrate hemihydrate
aDepartment of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com
The CdII atom in the title complex, [Cd(NO3)(C18H40N4)]NO3·0.5H2O, is coordinated within a cis-N4O2 donor set provided by the tetradentate macrocyclic ligand and two O atoms of a nitrate anion; the coordination geometry is distorted octahedral. The lattice water molecule is located on a twofold rotation axis. N—H⋯O hydrogen bonds and weak C—H⋯O interactions link the complex cations into a supramolecular layer in the bc plane. Layers are connected by O—H⋯O hydrogen bonds between the lattice water molecule and the non-coordinating nitrate anion, as well as by weak C—H⋯O contacts.
Related literature
For background to macrocyclic complexes, see: Hazari et al. (2008). For the of the anhydrous form of the title complex, see: Hazari et al. (2010). For the synthesis of the macrocyclic ligand, see: Bembi et al. (1989).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S160053681201238X/xu5483sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681201238X/xu5483Isup2.hkl
The macrocyclic ligand, 3,10-C-meso-2,5,5,7,9,12,12,14-octamethyl-1,4,8,11-tetraazacyclotetradecane (0.312 g, 1.0 mmol), prepared in accord with the literature procedure (Bembi et al., 1989), was dissolved in methanol (20 ml) in a round bottomed flask. Cadmium(II) nitrate hexahydrate (0.344 g, 1.0 mmol) in methanol (20 ml) was added drop wise to the round bottom flask with continuous stirring The mixture was heated for about 30 min. on a steam bath to ensure the completion of the reaction and was then filtered. After 48 h, the white crystalline product that formed from the filtrate was filtered off, washed with methanol followed by diethylether and dried in a desiccator over silica gel. Yield 85%. M.pt: 515–518 K. Anal. Calc. for. C18H41CdN6O6.5 C, 38.75; H, 7.41; N, 15.06; Cd, 20.15%. Found: C, 38.85; H, 7.33; N, 15.75; Cd, 20.35%. FT—IR (KBr, cm-1) 3200 ν(N—H), 2980 ν(C—H), 1371 ν(CH3), 1178 ν(C—C), 520 ν(Cd—N), 1381, 1460, 1275, 730, 820 ν(NO3).
The N– and C-bound H-atoms were placed in calculated positions (N—H = 0.88 Å and C—H = 0.95–0.99 Å) and were included in the
in the riding model approximation, with Uiso(H) = 1.2-1.5Ueq(N,C). The O—H atom was located from a difference map and refined with O—H = 0.84±0.01 Å, and with Uiso(H)= 1.5Ueq(O).In continuation of on-going studies of the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Hazari et al., 2008), attention was directed to cadmium complexes (Hazari et al., 2010). In that study, the title complex was investigated in its anhydrous form. Recently, it was isolated as a hemihydrate (I). Herein, we describe the
of (I).In cation in (I), Fig. 1, the CdII atom exists within a cis-N4O2 donor set defined by the four nitrogen atoms of the macrocyclic ligand and two nitrate-O atoms, Table 1. The coordination geometry is based on an octahedron, but with significant distortions owing in part to the restricted bite angle of the nitrate ligand as manifested in the O1—Cd—O2 angle of 52.80 (7)°. A more regular geometry was found in the anhydrous form of the complex (Hazari et al., 2010). The N—H atoms are orientated oppositely going around the macrocyclic ring. The non-coordinating nitrate anion straddles one side of the cation forming two N—H···O hydrogen bonds and an eight-membered {···ONO···HNCdNH} synthon. The formation of N—H···O hydrogen bonds between a third amine-H and an oxygen atom of the coordinated nitrate ligand leads to four-ion aggregates. These are linked into a supramolecular layer in the bc plane via C—H···O interactions involving the non-coordinating nitrate anion, Fig. 2 and Table 2. The water molecules link layers in the a direction forming O—H···O hydrogen bonds with the O5 atom of the non-coordinating nitrate anion and C—H···O interactions, Fig. 3 and Table 2.
For background to macrocyclic complexes, see: Hazari et al. (2008). For the
of the anhydrous form of the title complex, see: Hazari et al. (2010). For the synthesis of the macrocyclic ligand, see: Bembi et al. (1989).Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the cation in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. | |
Fig. 2. A view of the supramolecular layer in the bc plane in (I). The N—H···O hydrogen bonds and C—H···O interactions are shown as blue and brown dashed lines, respectively. | |
Fig. 3. A view of the unit-cell contents in projection down the c axis in (I). The O—H···O, N—H···O hydrogen bonds and C—H···O interactions are shown as orange, blue and brown dashed lines, respectively. |
[Cd(NO3)(C18H40N4)]NO3·0.5H2O | F(000) = 2328 |
Mr = 557.98 | Dx = 1.515 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -C 2yc | Cell parameters from 4995 reflections |
a = 18.4312 (4) Å | θ = 3.8–74.2° |
b = 11.3595 (2) Å | µ = 7.55 mm−1 |
c = 25.1662 (6) Å | T = 100 K |
β = 111.782 (3)° | Block, colourless |
V = 4892.8 (2) Å3 | 0.15 × 0.15 × 0.15 mm |
Z = 8 |
Agilent SuperNova Dual diffractometer with an Atlas detector | 4713 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 4467 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.019 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 72.5°, θmin = 3.8° |
ω scan | h = −22→22 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −13→10 |
Tmin = 0.738, Tmax = 1.000 | l = −26→30 |
8065 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0464P)2 + 5.776P] where P = (Fo2 + 2Fc2)/3 |
4713 reflections | (Δ/σ)max = 0.003 |
289 parameters | Δρmax = 0.81 e Å−3 |
1 restraint | Δρmin = −0.63 e Å−3 |
[Cd(NO3)(C18H40N4)]NO3·0.5H2O | V = 4892.8 (2) Å3 |
Mr = 557.98 | Z = 8 |
Monoclinic, C2/c | Cu Kα radiation |
a = 18.4312 (4) Å | µ = 7.55 mm−1 |
b = 11.3595 (2) Å | T = 100 K |
c = 25.1662 (6) Å | 0.15 × 0.15 × 0.15 mm |
β = 111.782 (3)° |
Agilent SuperNova Dual diffractometer with an Atlas detector | 4713 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 4467 reflections with I > 2σ(I) |
Tmin = 0.738, Tmax = 1.000 | Rint = 0.019 |
8065 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 1 restraint |
wR(F2) = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.81 e Å−3 |
4713 reflections | Δρmin = −0.63 e Å−3 |
289 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd | 0.197738 (9) | 0.571407 (14) | 0.583635 (7) | 0.01711 (7) | |
O1 | 0.14876 (11) | 0.69017 (17) | 0.49587 (8) | 0.0267 (4) | |
O2 | 0.09653 (11) | 0.51918 (19) | 0.49425 (8) | 0.0303 (4) | |
O3 | 0.05888 (12) | 0.6264 (2) | 0.41718 (8) | 0.0349 (5) | |
O4 | 0.30600 (16) | 0.5939 (2) | 0.78128 (12) | 0.0541 (7) | |
O5 | 0.36324 (14) | 0.4804 (2) | 0.74149 (9) | 0.0411 (5) | |
O6 | 0.42998 (16) | 0.5642 (3) | 0.82134 (12) | 0.0625 (9) | |
O1w | 0.5000 | 0.3546 (3) | 0.7500 | 0.0546 (10) | |
H1w | 0.468 (2) | 0.400 (3) | 0.757 (2) | 0.071 (15)* | |
N1 | 0.31753 (12) | 0.59274 (19) | 0.57539 (9) | 0.0180 (4) | |
H1n | 0.3114 | 0.6462 | 0.5488 | 0.022* | |
N2 | 0.26080 (13) | 0.69852 (18) | 0.65796 (9) | 0.0204 (4) | |
H2n | 0.2802 | 0.6540 | 0.6886 | 0.024* | |
N3 | 0.10838 (12) | 0.5348 (2) | 0.62575 (9) | 0.0201 (4) | |
H3n | 0.0670 | 0.5039 | 0.5991 | 0.024* | |
N4 | 0.24524 (12) | 0.39622 (19) | 0.63040 (9) | 0.0185 (4) | |
H4n | 0.2805 | 0.4164 | 0.6638 | 0.022* | |
N5 | 0.10019 (11) | 0.6129 (2) | 0.46812 (9) | 0.0201 (4) | |
N6 | 0.36913 (15) | 0.5470 (2) | 0.78257 (10) | 0.0305 (5) | |
C1 | 0.37042 (15) | 0.6450 (2) | 0.63004 (11) | 0.0224 (5) | |
H1A | 0.4184 | 0.6743 | 0.6255 | 0.027* | |
H1B | 0.3858 | 0.5841 | 0.6603 | 0.027* | |
C2 | 0.32955 (15) | 0.7467 (2) | 0.64762 (11) | 0.0240 (5) | |
H2A | 0.3101 | 0.8032 | 0.6149 | 0.029* | |
C3 | 0.38695 (18) | 0.8119 (3) | 0.69901 (13) | 0.0349 (7) | |
H3A | 0.3599 | 0.8767 | 0.7096 | 0.052* | |
H3B | 0.4298 | 0.8434 | 0.6891 | 0.052* | |
H3C | 0.4080 | 0.7574 | 0.7313 | 0.052* | |
C4 | 0.20833 (16) | 0.7847 (2) | 0.67095 (12) | 0.0250 (5) | |
H4A | 0.2421 | 0.8293 | 0.7055 | 0.030* | |
C5 | 0.17717 (18) | 0.8748 (3) | 0.62320 (13) | 0.0304 (6) | |
H5A | 0.2209 | 0.9107 | 0.6159 | 0.046* | |
H5B | 0.1483 | 0.9359 | 0.6345 | 0.046* | |
H5C | 0.1423 | 0.8358 | 0.5884 | 0.046* | |
C6 | 0.14814 (16) | 0.7182 (2) | 0.68874 (12) | 0.0258 (6) | |
H6A | 0.1235 | 0.7779 | 0.7053 | 0.031* | |
H6B | 0.1786 | 0.6658 | 0.7206 | 0.031* | |
C7 | 0.08049 (16) | 0.6424 (2) | 0.64788 (12) | 0.0247 (5) | |
C8 | 0.02921 (17) | 0.7092 (3) | 0.59449 (13) | 0.0312 (6) | |
H8A | −0.0124 | 0.6573 | 0.5703 | 0.047* | |
H8B | 0.0611 | 0.7354 | 0.5731 | 0.047* | |
H8C | 0.0060 | 0.7778 | 0.6058 | 0.047* | |
C9 | 0.02975 (18) | 0.6059 (3) | 0.68196 (14) | 0.0318 (6) | |
H9A | −0.0140 | 0.5574 | 0.6577 | 0.048* | |
H9B | 0.0095 | 0.6764 | 0.6941 | 0.048* | |
H9C | 0.0615 | 0.5606 | 0.7157 | 0.048* | |
C10 | 0.14391 (16) | 0.4404 (2) | 0.66829 (12) | 0.0226 (5) | |
H10A | 0.1034 | 0.4060 | 0.6807 | 0.027* | |
H10B | 0.1851 | 0.4748 | 0.7023 | 0.027* | |
C11 | 0.17965 (15) | 0.3427 (2) | 0.64345 (11) | 0.0215 (5) | |
H11 | 0.2019 | 0.2813 | 0.6736 | 0.026* | |
C12 | 0.11974 (15) | 0.2840 (2) | 0.59113 (12) | 0.0251 (5) | |
H12A | 0.1453 | 0.2224 | 0.5771 | 0.038* | |
H12B | 0.0970 | 0.3429 | 0.5611 | 0.038* | |
H12C | 0.0783 | 0.2489 | 0.6016 | 0.038* | |
C13 | 0.28665 (14) | 0.3164 (2) | 0.60372 (11) | 0.0203 (5) | |
H13 | 0.2493 | 0.2937 | 0.5648 | 0.024* | |
C14 | 0.31561 (16) | 0.2039 (2) | 0.63891 (12) | 0.0263 (6) | |
H14A | 0.2713 | 0.1628 | 0.6431 | 0.039* | |
H14B | 0.3537 | 0.2245 | 0.6768 | 0.039* | |
H14C | 0.3404 | 0.1524 | 0.6193 | 0.039* | |
C15 | 0.35667 (14) | 0.3792 (2) | 0.59731 (11) | 0.0223 (5) | |
H15A | 0.3872 | 0.3186 | 0.5864 | 0.027* | |
H15B | 0.3901 | 0.4077 | 0.6358 | 0.027* | |
C16 | 0.34558 (14) | 0.4833 (2) | 0.55567 (11) | 0.0211 (5) | |
C17 | 0.28420 (16) | 0.4545 (2) | 0.49697 (11) | 0.0243 (5) | |
H17A | 0.2781 | 0.5218 | 0.4713 | 0.037* | |
H17B | 0.2342 | 0.4378 | 0.5008 | 0.037* | |
H17C | 0.3009 | 0.3854 | 0.4811 | 0.037* | |
C18 | 0.42393 (15) | 0.5078 (3) | 0.54909 (13) | 0.0272 (6) | |
H18A | 0.4177 | 0.5737 | 0.5226 | 0.041* | |
H18B | 0.4404 | 0.4375 | 0.5340 | 0.041* | |
H18C | 0.4636 | 0.5277 | 0.5865 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd | 0.01787 (10) | 0.01742 (11) | 0.01620 (11) | 0.00284 (6) | 0.00652 (7) | −0.00031 (6) |
O1 | 0.0250 (9) | 0.0259 (10) | 0.0247 (10) | 0.0008 (8) | 0.0042 (8) | 0.0014 (8) |
O2 | 0.0318 (10) | 0.0334 (11) | 0.0253 (10) | −0.0033 (9) | 0.0101 (8) | 0.0040 (8) |
O3 | 0.0285 (10) | 0.0479 (13) | 0.0194 (10) | 0.0028 (9) | −0.0014 (8) | 0.0061 (9) |
O4 | 0.0538 (16) | 0.0466 (14) | 0.0562 (17) | 0.0203 (12) | 0.0135 (13) | −0.0026 (13) |
O5 | 0.0483 (13) | 0.0455 (14) | 0.0239 (11) | −0.0074 (11) | 0.0067 (9) | −0.0056 (10) |
O6 | 0.0405 (14) | 0.099 (3) | 0.0364 (14) | −0.0271 (14) | 0.0015 (11) | −0.0104 (14) |
O1w | 0.063 (2) | 0.0305 (18) | 0.089 (3) | 0.000 | 0.051 (2) | 0.000 |
N1 | 0.0179 (10) | 0.0188 (10) | 0.0172 (10) | 0.0034 (8) | 0.0064 (8) | 0.0007 (8) |
N2 | 0.0268 (11) | 0.0164 (10) | 0.0186 (10) | 0.0009 (9) | 0.0092 (8) | −0.0017 (8) |
N3 | 0.0202 (10) | 0.0212 (10) | 0.0204 (10) | 0.0033 (9) | 0.0094 (8) | −0.0015 (9) |
N4 | 0.0186 (9) | 0.0174 (10) | 0.0194 (10) | 0.0014 (8) | 0.0069 (8) | −0.0012 (8) |
N5 | 0.0128 (9) | 0.0288 (12) | 0.0185 (10) | 0.0050 (9) | 0.0055 (8) | 0.0030 (9) |
N6 | 0.0420 (14) | 0.0243 (12) | 0.0213 (12) | −0.0032 (11) | 0.0071 (10) | 0.0054 (10) |
C1 | 0.0210 (12) | 0.0241 (13) | 0.0205 (12) | −0.0023 (10) | 0.0058 (10) | −0.0018 (10) |
C2 | 0.0281 (13) | 0.0222 (13) | 0.0225 (12) | −0.0039 (11) | 0.0102 (10) | −0.0040 (10) |
C3 | 0.0395 (16) | 0.0367 (17) | 0.0288 (15) | −0.0147 (13) | 0.0129 (13) | −0.0109 (13) |
C4 | 0.0350 (14) | 0.0207 (13) | 0.0240 (13) | 0.0009 (11) | 0.0163 (11) | −0.0045 (10) |
C5 | 0.0426 (16) | 0.0229 (14) | 0.0307 (15) | 0.0045 (12) | 0.0194 (13) | 0.0006 (11) |
C6 | 0.0351 (14) | 0.0239 (13) | 0.0242 (13) | 0.0026 (11) | 0.0178 (11) | −0.0036 (11) |
C7 | 0.0283 (13) | 0.0236 (13) | 0.0270 (13) | 0.0059 (11) | 0.0160 (11) | −0.0023 (11) |
C8 | 0.0297 (14) | 0.0266 (14) | 0.0378 (16) | 0.0110 (12) | 0.0133 (12) | 0.0027 (12) |
C9 | 0.0355 (15) | 0.0301 (15) | 0.0398 (17) | 0.0049 (13) | 0.0257 (14) | −0.0042 (13) |
C10 | 0.0245 (13) | 0.0223 (13) | 0.0236 (13) | 0.0035 (10) | 0.0120 (11) | 0.0016 (10) |
C11 | 0.0220 (12) | 0.0186 (12) | 0.0256 (13) | 0.0017 (10) | 0.0109 (10) | 0.0015 (10) |
C12 | 0.0234 (12) | 0.0236 (13) | 0.0310 (14) | −0.0008 (10) | 0.0132 (11) | −0.0038 (11) |
C13 | 0.0202 (11) | 0.0173 (12) | 0.0238 (12) | 0.0044 (10) | 0.0086 (10) | −0.0011 (10) |
C14 | 0.0276 (13) | 0.0204 (13) | 0.0328 (15) | 0.0070 (11) | 0.0133 (11) | 0.0031 (11) |
C15 | 0.0182 (11) | 0.0229 (13) | 0.0269 (13) | 0.0046 (10) | 0.0095 (10) | 0.0012 (11) |
C16 | 0.0193 (11) | 0.0233 (13) | 0.0221 (12) | 0.0036 (10) | 0.0095 (10) | −0.0008 (10) |
C17 | 0.0262 (13) | 0.0264 (13) | 0.0214 (13) | 0.0030 (11) | 0.0101 (11) | −0.0020 (11) |
C18 | 0.0218 (12) | 0.0296 (14) | 0.0344 (15) | 0.0043 (11) | 0.0153 (11) | 0.0024 (12) |
Cd—O1 | 2.4562 (19) | C5—H5C | 0.9800 |
Cd—O2 | 2.404 (2) | C6—C7 | 1.550 (4) |
Cd—N1 | 2.306 (2) | C6—H6A | 0.9900 |
Cd—N2 | 2.307 (2) | C6—H6B | 0.9900 |
Cd—N3 | 2.303 (2) | C7—C8 | 1.527 (4) |
Cd—N4 | 2.312 (2) | C7—C9 | 1.542 (4) |
O1—N5 | 1.263 (3) | C8—H8A | 0.9800 |
O2—N5 | 1.266 (3) | C8—H8B | 0.9800 |
O3—N5 | 1.234 (3) | C8—H8C | 0.9800 |
O4—N6 | 1.269 (4) | C9—H9A | 0.9800 |
O5—N6 | 1.253 (3) | C9—H9B | 0.9800 |
O6—N6 | 1.198 (4) | C9—H9C | 0.9800 |
O1w—H1w | 0.850 (10) | C10—C11 | 1.537 (3) |
N1—C1 | 1.483 (3) | C10—H10A | 0.9900 |
N1—C16 | 1.500 (3) | C10—H10B | 0.9900 |
N1—H1n | 0.8800 | C11—C12 | 1.523 (4) |
N2—C2 | 1.489 (3) | C11—H11 | 1.0000 |
N2—C4 | 1.495 (3) | C12—H12A | 0.9800 |
N2—H2n | 0.8800 | C12—H12B | 0.9800 |
N3—C10 | 1.485 (3) | C12—H12C | 0.9800 |
N3—C7 | 1.511 (3) | C13—C14 | 1.534 (3) |
N3—H3n | 0.8800 | C13—C15 | 1.535 (3) |
N4—C11 | 1.494 (3) | C13—H13 | 1.0000 |
N4—C13 | 1.496 (3) | C14—H14A | 0.9800 |
N4—H4n | 0.8800 | C14—H14B | 0.9800 |
C1—C2 | 1.531 (4) | C14—H14C | 0.9800 |
C1—H1A | 0.9900 | C15—C16 | 1.542 (4) |
C1—H1B | 0.9900 | C15—H15A | 0.9900 |
C2—C3 | 1.525 (4) | C15—H15B | 0.9900 |
C2—H2A | 1.0000 | C16—C17 | 1.526 (4) |
C3—H3A | 0.9800 | C16—C18 | 1.539 (3) |
C3—H3B | 0.9800 | C17—H17A | 0.9800 |
C3—H3C | 0.9800 | C17—H17B | 0.9800 |
C4—C5 | 1.519 (4) | C17—H17C | 0.9800 |
C4—C6 | 1.540 (4) | C18—H18A | 0.9800 |
C4—H4A | 1.0000 | C18—H18B | 0.9800 |
C5—H5A | 0.9800 | C18—H18C | 0.9800 |
C5—H5B | 0.9800 | ||
N3—Cd—N1 | 158.83 (8) | C4—C6—H6A | 106.2 |
N3—Cd—N2 | 88.35 (8) | C7—C6—H6A | 106.2 |
N1—Cd—N2 | 78.23 (7) | C4—C6—H6B | 106.2 |
N3—Cd—N4 | 79.08 (7) | C7—C6—H6B | 106.2 |
N1—Cd—N4 | 86.67 (7) | H6A—C6—H6B | 106.4 |
N2—Cd—N4 | 98.30 (7) | N3—C7—C8 | 105.2 (2) |
N3—Cd—O2 | 86.96 (7) | N3—C7—C9 | 110.3 (2) |
N1—Cd—O2 | 112.22 (7) | C8—C7—C9 | 108.6 (2) |
N2—Cd—O2 | 153.62 (7) | N3—C7—C6 | 113.2 (2) |
N4—Cd—O2 | 106.24 (7) | C8—C7—C6 | 113.0 (2) |
N3—Cd—O1 | 115.22 (7) | C9—C7—C6 | 106.6 (2) |
N1—Cd—O1 | 84.61 (7) | C7—C8—H8A | 109.5 |
N2—Cd—O1 | 106.96 (7) | C7—C8—H8B | 109.5 |
N4—Cd—O1 | 150.90 (7) | H8A—C8—H8B | 109.5 |
O2—Cd—O1 | 52.80 (7) | C7—C8—H8C | 109.5 |
N5—O1—Cd | 93.68 (14) | H8A—C8—H8C | 109.5 |
N5—O2—Cd | 96.09 (15) | H8B—C8—H8C | 109.5 |
C1—N1—C16 | 116.76 (19) | C7—C9—H9A | 109.5 |
C1—N1—Cd | 106.29 (15) | C7—C9—H9B | 109.5 |
C16—N1—Cd | 113.69 (15) | H9A—C9—H9B | 109.5 |
C1—N1—H1n | 106.5 | C7—C9—H9C | 109.5 |
C16—N1—H1n | 106.5 | H9A—C9—H9C | 109.5 |
Cd—N1—H1n | 106.5 | H9B—C9—H9C | 109.5 |
C2—N2—C4 | 117.3 (2) | N3—C10—C11 | 111.7 (2) |
C2—N2—Cd | 107.09 (15) | N3—C10—H10A | 109.3 |
C4—N2—Cd | 114.53 (16) | C11—C10—H10A | 109.3 |
C2—N2—H2n | 105.6 | N3—C10—H10B | 109.3 |
C4—N2—H2n | 105.6 | C11—C10—H10B | 109.3 |
Cd—N2—H2n | 105.6 | H10A—C10—H10B | 107.9 |
C10—N3—C7 | 116.0 (2) | N4—C11—C12 | 112.0 (2) |
C10—N3—Cd | 105.24 (15) | N4—C11—C10 | 107.4 (2) |
C7—N3—Cd | 115.00 (16) | C12—C11—C10 | 112.6 (2) |
C10—N3—H3n | 106.7 | N4—C11—H11 | 108.2 |
C7—N3—H3n | 106.7 | C12—C11—H11 | 108.2 |
Cd—N3—H3n | 106.7 | C10—C11—H11 | 108.2 |
C11—N4—C13 | 116.2 (2) | C11—C12—H12A | 109.5 |
C11—N4—Cd | 106.12 (14) | C11—C12—H12B | 109.5 |
C13—N4—Cd | 116.95 (15) | H12A—C12—H12B | 109.5 |
C11—N4—H4n | 105.5 | C11—C12—H12C | 109.5 |
C13—N4—H4n | 105.5 | H12A—C12—H12C | 109.5 |
Cd—N4—H4n | 105.5 | H12B—C12—H12C | 109.5 |
O3—N5—O1 | 121.7 (2) | N4—C13—C14 | 111.9 (2) |
O3—N5—O2 | 120.8 (2) | N4—C13—C15 | 110.8 (2) |
O1—N5—O2 | 117.4 (2) | C14—C13—C15 | 108.8 (2) |
O6—N6—O5 | 122.6 (3) | N4—C13—H13 | 108.4 |
O6—N6—O4 | 121.7 (3) | C14—C13—H13 | 108.4 |
O5—N6—O4 | 115.8 (3) | C15—C13—H13 | 108.4 |
N1—C1—C2 | 110.2 (2) | C13—C14—H14A | 109.5 |
N1—C1—H1A | 109.6 | C13—C14—H14B | 109.5 |
C2—C1—H1A | 109.6 | H14A—C14—H14B | 109.5 |
N1—C1—H1B | 109.6 | C13—C14—H14C | 109.5 |
C2—C1—H1B | 109.6 | H14A—C14—H14C | 109.5 |
H1A—C1—H1B | 108.1 | H14B—C14—H14C | 109.5 |
N2—C2—C3 | 113.4 (2) | C13—C15—C16 | 121.5 (2) |
N2—C2—C1 | 108.3 (2) | C13—C15—H15A | 106.9 |
C3—C2—C1 | 110.5 (2) | C16—C15—H15A | 106.9 |
N2—C2—H2A | 108.1 | C13—C15—H15B | 106.9 |
C3—C2—H2A | 108.1 | C16—C15—H15B | 106.9 |
C1—C2—H2A | 108.1 | H15A—C15—H15B | 106.7 |
C2—C3—H3A | 109.5 | N1—C16—C17 | 106.0 (2) |
C2—C3—H3B | 109.5 | N1—C16—C18 | 109.8 (2) |
H3A—C3—H3B | 109.5 | C17—C16—C18 | 108.8 (2) |
C2—C3—H3C | 109.5 | N1—C16—C15 | 112.7 (2) |
H3A—C3—H3C | 109.5 | C17—C16—C15 | 110.9 (2) |
H3B—C3—H3C | 109.5 | C18—C16—C15 | 108.6 (2) |
N2—C4—C5 | 110.7 (2) | C16—C17—H17A | 109.5 |
N2—C4—C6 | 109.7 (2) | C16—C17—H17B | 109.5 |
C5—C4—C6 | 117.3 (2) | H17A—C17—H17B | 109.5 |
N2—C4—H4A | 106.2 | C16—C17—H17C | 109.5 |
C5—C4—H4A | 106.2 | H17A—C17—H17C | 109.5 |
C6—C4—H4A | 106.2 | H17B—C17—H17C | 109.5 |
C4—C5—H5A | 109.5 | C16—C18—H18A | 109.5 |
C4—C5—H5B | 109.5 | C16—C18—H18B | 109.5 |
H5A—C5—H5B | 109.5 | H18A—C18—H18B | 109.5 |
C4—C5—H5C | 109.5 | C16—C18—H18C | 109.5 |
H5A—C5—H5C | 109.5 | H18A—C18—H18C | 109.5 |
H5B—C5—H5C | 109.5 | H18B—C18—H18C | 109.5 |
C4—C6—C7 | 124.7 (2) | ||
N3—Cd—O1—N5 | −65.15 (15) | Cd—O1—N5—O3 | −177.3 (2) |
N1—Cd—O1—N5 | 122.59 (14) | Cd—O1—N5—O2 | 1.2 (2) |
N2—Cd—O1—N5 | −161.48 (13) | Cd—O2—N5—O3 | 177.29 (19) |
N4—Cd—O1—N5 | 49.4 (2) | Cd—O2—N5—O1 | −1.2 (2) |
O2—Cd—O1—N5 | −0.68 (12) | C16—N1—C1—C2 | −173.3 (2) |
N3—Cd—O2—N5 | 125.85 (15) | Cd—N1—C1—C2 | −45.3 (2) |
N1—Cd—O2—N5 | −63.37 (16) | C4—N2—C2—C3 | 61.9 (3) |
N2—Cd—O2—N5 | 45.8 (2) | Cd—N2—C2—C3 | −167.8 (2) |
N4—Cd—O2—N5 | −156.45 (14) | C4—N2—C2—C1 | −175.0 (2) |
O1—Cd—O2—N5 | 0.68 (12) | Cd—N2—C2—C1 | −44.7 (2) |
N3—Cd—N1—C1 | −36.2 (3) | N1—C1—C2—N2 | 63.1 (3) |
N2—Cd—N1—C1 | 15.51 (15) | N1—C1—C2—C3 | −172.0 (2) |
N4—Cd—N1—C1 | −83.68 (16) | C2—N2—C4—C5 | 57.1 (3) |
O2—Cd—N1—C1 | 170.12 (15) | Cd—N2—C4—C5 | −69.7 (2) |
O1—Cd—N1—C1 | 124.11 (16) | C2—N2—C4—C6 | −171.9 (2) |
N3—Cd—N1—C16 | 93.6 (2) | Cd—N2—C4—C6 | 61.3 (2) |
N2—Cd—N1—C16 | 145.33 (17) | N2—C4—C6—C7 | −69.3 (3) |
N4—Cd—N1—C16 | 46.13 (16) | C5—C4—C6—C7 | 58.0 (4) |
O2—Cd—N1—C16 | −60.06 (17) | C10—N3—C7—C8 | −166.0 (2) |
O1—Cd—N1—C16 | −106.07 (16) | Cd—N3—C7—C8 | 70.6 (2) |
N3—Cd—N2—C2 | 179.50 (17) | C10—N3—C7—C9 | −49.2 (3) |
N1—Cd—N2—C2 | 15.96 (16) | Cd—N3—C7—C9 | −172.55 (18) |
N4—Cd—N2—C2 | 100.78 (16) | C10—N3—C7—C6 | 70.1 (3) |
O2—Cd—N2—C2 | −100.7 (2) | Cd—N3—C7—C6 | −53.3 (3) |
O1—Cd—N2—C2 | −64.60 (17) | C4—C6—C7—N3 | 65.4 (3) |
N3—Cd—N2—C4 | −48.61 (17) | C4—C6—C7—C8 | −54.0 (3) |
N1—Cd—N2—C4 | 147.85 (18) | C4—C6—C7—C9 | −173.2 (2) |
N4—Cd—N2—C4 | −127.33 (17) | C7—N3—C10—C11 | −172.6 (2) |
O2—Cd—N2—C4 | 31.1 (3) | Cd—N3—C10—C11 | −44.3 (2) |
O1—Cd—N2—C4 | 67.29 (17) | C13—N4—C11—C12 | −53.8 (3) |
N1—Cd—N3—C10 | −35.0 (3) | Cd—N4—C11—C12 | 78.1 (2) |
N2—Cd—N3—C10 | −85.27 (16) | C13—N4—C11—C10 | −178.0 (2) |
N4—Cd—N3—C10 | 13.51 (16) | Cd—N4—C11—C10 | −46.1 (2) |
O2—Cd—N3—C10 | 120.70 (16) | N3—C10—C11—N4 | 64.2 (3) |
O1—Cd—N3—C10 | 166.73 (15) | N3—C10—C11—C12 | −59.6 (3) |
N1—Cd—N3—C7 | 93.9 (3) | C11—N4—C13—C14 | −53.7 (3) |
N2—Cd—N3—C7 | 43.65 (17) | Cd—N4—C13—C14 | 179.69 (16) |
N4—Cd—N3—C7 | 142.43 (18) | C11—N4—C13—C15 | −175.2 (2) |
O2—Cd—N3—C7 | −110.38 (17) | Cd—N4—C13—C15 | 58.1 (2) |
O1—Cd—N3—C7 | −64.35 (18) | N4—C13—C15—C16 | −67.4 (3) |
N3—Cd—N4—C11 | 18.04 (15) | C14—C13—C15—C16 | 169.3 (2) |
N1—Cd—N4—C11 | −177.69 (16) | C1—N1—C16—C17 | −175.4 (2) |
N2—Cd—N4—C11 | 104.73 (16) | Cd—N1—C16—C17 | 60.3 (2) |
O2—Cd—N4—C11 | −65.50 (16) | C1—N1—C16—C18 | −58.0 (3) |
O1—Cd—N4—C11 | −105.02 (18) | Cd—N1—C16—C18 | 177.63 (16) |
N3—Cd—N4—C13 | 149.51 (18) | C1—N1—C16—C15 | 63.1 (3) |
N1—Cd—N4—C13 | −46.22 (17) | Cd—N1—C16—C15 | −61.2 (2) |
N2—Cd—N4—C13 | −123.81 (17) | C13—C15—C16—N1 | 70.9 (3) |
O2—Cd—N4—C13 | 65.97 (18) | C13—C15—C16—C17 | −47.8 (3) |
O1—Cd—N4—C13 | 26.4 (3) | C13—C15—C16—C18 | −167.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1w···O5 | 0.85 (1) | 2.04 (2) | 2.836 (3) | 156 (5) |
N1—H1n···O1i | 0.88 | 2.42 | 3.242 (3) | 155 |
N2—H2n···O4 | 0.88 | 2.30 | 3.133 (4) | 157 |
N4—H4n···O5 | 0.88 | 2.11 | 2.991 (3) | 175 |
C5—H5B···O6ii | 0.98 | 2.58 | 3.539 (5) | 168 |
C11—H11···O4iii | 1.00 | 2.44 | 3.358 (3) | 152 |
C9—H9B···O1wiv | 0.98 | 2.51 | 3.451 (4) | 162 |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x+1/2, y−1/2, −z+3/2; (iv) x−1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Cd(NO3)(C18H40N4)]NO3·0.5H2O |
Mr | 557.98 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 18.4312 (4), 11.3595 (2), 25.1662 (6) |
β (°) | 111.782 (3) |
V (Å3) | 4892.8 (2) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 7.55 |
Crystal size (mm) | 0.15 × 0.15 × 0.15 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with an Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.738, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8065, 4713, 4467 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.078, 1.06 |
No. of reflections | 4713 |
No. of parameters | 289 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.81, −0.63 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Cd—O1 | 2.4562 (19) | Cd—N2 | 2.307 (2) |
Cd—O2 | 2.404 (2) | Cd—N3 | 2.303 (2) |
Cd—N1 | 2.306 (2) | Cd—N4 | 2.312 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1w···O5 | 0.850 (10) | 2.04 (2) | 2.836 (3) | 156 (5) |
N1—H1n···O1i | 0.88 | 2.42 | 3.242 (3) | 155 |
N2—H2n···O4 | 0.88 | 2.30 | 3.133 (4) | 157 |
N4—H4n···O5 | 0.88 | 2.11 | 2.991 (3) | 175 |
C5—H5B···O6ii | 0.98 | 2.58 | 3.539 (5) | 168 |
C11—H11···O4iii | 1.00 | 2.44 | 3.358 (3) | 152 |
C9—H9B···O1wiv | 0.98 | 2.51 | 3.451 (4) | 162 |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x+1/2, y−1/2, −z+3/2; (iv) x−1/2, y+1/2, z. |
Footnotes
‡Additional correspondence author, e-mail: tapashir@yahoo.com.
Acknowledgements
The authors are grateful to the Ministry of National Science, Information and Communication Technology (NSICT), Bangladesh, for a research fellowship to BCN. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/MOHE/SC/12).
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Bembi, R., Sondhi, S. M., Singh, A. K., Jhanji, A. K., Roy, T. G., Lown, J. W. & Ball, R. G. (1989). Bull. Chem. Soc. Jpn, 62, 3701–3705. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hazari, S. K. S., Roy, T. G., Barua, K. K., Anwar, N., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). Appl. Organomet. Chem. 24, 878–887. Google Scholar
Hazari, S. K. S., Roy, T. G., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1–8. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In continuation of on-going studies of the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Hazari et al., 2008), attention was directed to cadmium complexes (Hazari et al., 2010). In that study, the title complex was investigated in its anhydrous form. Recently, it was isolated as a hemihydrate (I). Herein, we describe the crystal structure of (I).
In cation in (I), Fig. 1, the CdII atom exists within a cis-N4O2 donor set defined by the four nitrogen atoms of the macrocyclic ligand and two nitrate-O atoms, Table 1. The coordination geometry is based on an octahedron, but with significant distortions owing in part to the restricted bite angle of the nitrate ligand as manifested in the O1—Cd—O2 angle of 52.80 (7)°. A more regular geometry was found in the anhydrous form of the complex (Hazari et al., 2010). The N—H atoms are orientated oppositely going around the macrocyclic ring. The non-coordinating nitrate anion straddles one side of the cation forming two N—H···O hydrogen bonds and an eight-membered {···ONO···HNCdNH} synthon. The formation of N—H···O hydrogen bonds between a third amine-H and an oxygen atom of the coordinated nitrate ligand leads to four-ion aggregates. These are linked into a supramolecular layer in the bc plane via C—H···O interactions involving the non-coordinating nitrate anion, Fig. 2 and Table 2. The water molecules link layers in the a direction forming O—H···O hydrogen bonds with the O5 atom of the non-coordinating nitrate anion and C—H···O interactions, Fig. 3 and Table 2.