metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m494-m495

cis-(Nitrato-κ2O,O′)(2,5,5,7,9,12,12,14-octa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N,N′,N′′,N′′′)cadmium nitrate hemihydrate

aDepartment of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 March 2012; accepted 21 March 2012; online 28 March 2012)

The CdII atom in the title complex, [Cd(NO3)(C18H40N4)]NO3·0.5H2O, is coordinated within a cis-N4O2 donor set provided by the tetra­dentate macrocyclic ligand and two O atoms of a nitrate anion; the coordination geometry is distorted octa­hedral. The lattice water mol­ecule is located on a twofold rotation axis. N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions link the complex cations into a supra­molecular layer in the bc plane. Layers are connected by O—H⋯O hydrogen bonds between the lattice water mol­ecule and the non-coordinating nitrate anion, as well as by weak C—H⋯O contacts.

Related literature

For background to macrocyclic complexes, see: Hazari et al. (2008[Hazari, S. K. S., Roy, T. G., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1-8.]). For the crystal structure of the anhydrous form of the title complex, see: Hazari et al. (2010[Hazari, S. K. S., Roy, T. G., Barua, K. K., Anwar, N., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). Appl. Organomet. Chem. 24, 878-887.]). For the synthesis of the macrocyclic ligand, see: Bembi et al. (1989[Bembi, R., Sondhi, S. M., Singh, A. K., Jhanji, A. K., Roy, T. G., Lown, J. W. & Ball, R. G. (1989). Bull. Chem. Soc. Jpn, 62, 3701-3705.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NO3)(C18H40N4)]NO3·0.5H2O

  • Mr = 557.98

  • Monoclinic, C 2/c

  • a = 18.4312 (4) Å

  • b = 11.3595 (2) Å

  • c = 25.1662 (6) Å

  • β = 111.782 (3)°

  • V = 4892.8 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 7.55 mm−1

  • T = 100 K

  • 0.15 × 0.15 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.738, Tmax = 1.000

  • 8065 measured reflections

  • 4713 independent reflections

  • 4467 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.078

  • S = 1.06

  • 4713 reflections

  • 289 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected bond lengths (Å)

Cd—O1 2.4562 (19)
Cd—O2 2.404 (2)
Cd—N1 2.306 (2)
Cd—N2 2.307 (2)
Cd—N3 2.303 (2)
Cd—N4 2.312 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w⋯O5 0.85 (1) 2.04 (2) 2.836 (3) 156 (5)
N1—H1n⋯O1i 0.88 2.42 3.242 (3) 155
N2—H2n⋯O4 0.88 2.30 3.133 (4) 157
N4—H4n⋯O5 0.88 2.11 2.991 (3) 175
C5—H5B⋯O6ii 0.98 2.58 3.539 (5) 168
C11—H11⋯O4iii 1.00 2.44 3.358 (3) 152
C9—H9B⋯O1wiv 0.98 2.51 3.451 (4) 162
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of on-going studies of the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Hazari et al., 2008), attention was directed to cadmium complexes (Hazari et al., 2010). In that study, the title complex was investigated in its anhydrous form. Recently, it was isolated as a hemihydrate (I). Herein, we describe the crystal structure of (I).

In cation in (I), Fig. 1, the CdII atom exists within a cis-N4O2 donor set defined by the four nitrogen atoms of the macrocyclic ligand and two nitrate-O atoms, Table 1. The coordination geometry is based on an octahedron, but with significant distortions owing in part to the restricted bite angle of the nitrate ligand as manifested in the O1—Cd—O2 angle of 52.80 (7)°. A more regular geometry was found in the anhydrous form of the complex (Hazari et al., 2010). The N—H atoms are orientated oppositely going around the macrocyclic ring. The non-coordinating nitrate anion straddles one side of the cation forming two N—H···O hydrogen bonds and an eight-membered {···ONO···HNCdNH} synthon. The formation of N—H···O hydrogen bonds between a third amine-H and an oxygen atom of the coordinated nitrate ligand leads to four-ion aggregates. These are linked into a supramolecular layer in the bc plane via C—H···O interactions involving the non-coordinating nitrate anion, Fig. 2 and Table 2. The water molecules link layers in the a direction forming O—H···O hydrogen bonds with the O5 atom of the non-coordinating nitrate anion and C—H···O interactions, Fig. 3 and Table 2.

Related literature top

For background to macrocyclic complexes, see: Hazari et al. (2008). For the crystal structure of the anhydrous form of the title complex, see: Hazari et al. (2010). For the synthesis of the macrocyclic ligand, see: Bembi et al. (1989).

Experimental top

The macrocyclic ligand, 3,10-C-meso-2,5,5,7,9,12,12,14-octamethyl-1,4,8,11-tetraazacyclotetradecane (0.312 g, 1.0 mmol), prepared in accord with the literature procedure (Bembi et al., 1989), was dissolved in methanol (20 ml) in a round bottomed flask. Cadmium(II) nitrate hexahydrate (0.344 g, 1.0 mmol) in methanol (20 ml) was added drop wise to the round bottom flask with continuous stirring The mixture was heated for about 30 min. on a steam bath to ensure the completion of the reaction and was then filtered. After 48 h, the white crystalline product that formed from the filtrate was filtered off, washed with methanol followed by diethylether and dried in a desiccator over silica gel. Yield 85%. M.pt: 515–518 K. Anal. Calc. for. C18H41CdN6O6.5 C, 38.75; H, 7.41; N, 15.06; Cd, 20.15%. Found: C, 38.85; H, 7.33; N, 15.75; Cd, 20.35%. FT—IR (KBr, cm-1) 3200 ν(N—H), 2980 ν(C—H), 1371 ν(CH3), 1178 ν(C—C), 520 ν(Cd—N), 1381, 1460, 1275, 730, 820 ν(NO3).

Refinement top

The N– and C-bound H-atoms were placed in calculated positions (N—H = 0.88 Å and C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2-1.5Ueq(N,C). The O—H atom was located from a difference map and refined with O—H = 0.84±0.01 Å, and with Uiso(H)= 1.5Ueq(O).

Structure description top

In continuation of on-going studies of the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Hazari et al., 2008), attention was directed to cadmium complexes (Hazari et al., 2010). In that study, the title complex was investigated in its anhydrous form. Recently, it was isolated as a hemihydrate (I). Herein, we describe the crystal structure of (I).

In cation in (I), Fig. 1, the CdII atom exists within a cis-N4O2 donor set defined by the four nitrogen atoms of the macrocyclic ligand and two nitrate-O atoms, Table 1. The coordination geometry is based on an octahedron, but with significant distortions owing in part to the restricted bite angle of the nitrate ligand as manifested in the O1—Cd—O2 angle of 52.80 (7)°. A more regular geometry was found in the anhydrous form of the complex (Hazari et al., 2010). The N—H atoms are orientated oppositely going around the macrocyclic ring. The non-coordinating nitrate anion straddles one side of the cation forming two N—H···O hydrogen bonds and an eight-membered {···ONO···HNCdNH} synthon. The formation of N—H···O hydrogen bonds between a third amine-H and an oxygen atom of the coordinated nitrate ligand leads to four-ion aggregates. These are linked into a supramolecular layer in the bc plane via C—H···O interactions involving the non-coordinating nitrate anion, Fig. 2 and Table 2. The water molecules link layers in the a direction forming O—H···O hydrogen bonds with the O5 atom of the non-coordinating nitrate anion and C—H···O interactions, Fig. 3 and Table 2.

For background to macrocyclic complexes, see: Hazari et al. (2008). For the crystal structure of the anhydrous form of the title complex, see: Hazari et al. (2010). For the synthesis of the macrocyclic ligand, see: Bembi et al. (1989).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer in the bc plane in (I). The N—H···O hydrogen bonds and C—H···O interactions are shown as blue and brown dashed lines, respectively.
[Figure 3] Fig. 3. A view of the unit-cell contents in projection down the c axis in (I). The O—H···O, N—H···O hydrogen bonds and C—H···O interactions are shown as orange, blue and brown dashed lines, respectively.
cis-(Nitrato-κ2O,O')(2,5,5,7,9,12,12,14-octamethyl- 1,4,8,11-tetraazacyclotetradecane- κ4N,N',N'',N''')cadmium nitrate hemihydrate top
Crystal data top
[Cd(NO3)(C18H40N4)]NO3·0.5H2OF(000) = 2328
Mr = 557.98Dx = 1.515 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 4995 reflections
a = 18.4312 (4) Åθ = 3.8–74.2°
b = 11.3595 (2) ŵ = 7.55 mm1
c = 25.1662 (6) ÅT = 100 K
β = 111.782 (3)°Block, colourless
V = 4892.8 (2) Å30.15 × 0.15 × 0.15 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4713 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4467 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 10.4041 pixels mm-1θmax = 72.5°, θmin = 3.8°
ω scanh = 2222
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1310
Tmin = 0.738, Tmax = 1.000l = 2630
8065 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0464P)2 + 5.776P]
where P = (Fo2 + 2Fc2)/3
4713 reflections(Δ/σ)max = 0.003
289 parametersΔρmax = 0.81 e Å3
1 restraintΔρmin = 0.63 e Å3
Crystal data top
[Cd(NO3)(C18H40N4)]NO3·0.5H2OV = 4892.8 (2) Å3
Mr = 557.98Z = 8
Monoclinic, C2/cCu Kα radiation
a = 18.4312 (4) ŵ = 7.55 mm1
b = 11.3595 (2) ÅT = 100 K
c = 25.1662 (6) Å0.15 × 0.15 × 0.15 mm
β = 111.782 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4713 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4467 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 1.000Rint = 0.019
8065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.81 e Å3
4713 reflectionsΔρmin = 0.63 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.197738 (9)0.571407 (14)0.583635 (7)0.01711 (7)
O10.14876 (11)0.69017 (17)0.49587 (8)0.0267 (4)
O20.09653 (11)0.51918 (19)0.49425 (8)0.0303 (4)
O30.05888 (12)0.6264 (2)0.41718 (8)0.0349 (5)
O40.30600 (16)0.5939 (2)0.78128 (12)0.0541 (7)
O50.36324 (14)0.4804 (2)0.74149 (9)0.0411 (5)
O60.42998 (16)0.5642 (3)0.82134 (12)0.0625 (9)
O1w0.50000.3546 (3)0.75000.0546 (10)
H1w0.468 (2)0.400 (3)0.757 (2)0.071 (15)*
N10.31753 (12)0.59274 (19)0.57539 (9)0.0180 (4)
H1n0.31140.64620.54880.022*
N20.26080 (13)0.69852 (18)0.65796 (9)0.0204 (4)
H2n0.28020.65400.68860.024*
N30.10838 (12)0.5348 (2)0.62575 (9)0.0201 (4)
H3n0.06700.50390.59910.024*
N40.24524 (12)0.39622 (19)0.63040 (9)0.0185 (4)
H4n0.28050.41640.66380.022*
N50.10019 (11)0.6129 (2)0.46812 (9)0.0201 (4)
N60.36913 (15)0.5470 (2)0.78257 (10)0.0305 (5)
C10.37042 (15)0.6450 (2)0.63004 (11)0.0224 (5)
H1A0.41840.67430.62550.027*
H1B0.38580.58410.66030.027*
C20.32955 (15)0.7467 (2)0.64762 (11)0.0240 (5)
H2A0.31010.80320.61490.029*
C30.38695 (18)0.8119 (3)0.69901 (13)0.0349 (7)
H3A0.35990.87670.70960.052*
H3B0.42980.84340.68910.052*
H3C0.40800.75740.73130.052*
C40.20833 (16)0.7847 (2)0.67095 (12)0.0250 (5)
H4A0.24210.82930.70550.030*
C50.17717 (18)0.8748 (3)0.62320 (13)0.0304 (6)
H5A0.22090.91070.61590.046*
H5B0.14830.93590.63450.046*
H5C0.14230.83580.58840.046*
C60.14814 (16)0.7182 (2)0.68874 (12)0.0258 (6)
H6A0.12350.77790.70530.031*
H6B0.17860.66580.72060.031*
C70.08049 (16)0.6424 (2)0.64788 (12)0.0247 (5)
C80.02921 (17)0.7092 (3)0.59449 (13)0.0312 (6)
H8A0.01240.65730.57030.047*
H8B0.06110.73540.57310.047*
H8C0.00600.77780.60580.047*
C90.02975 (18)0.6059 (3)0.68196 (14)0.0318 (6)
H9A0.01400.55740.65770.048*
H9B0.00950.67640.69410.048*
H9C0.06150.56060.71570.048*
C100.14391 (16)0.4404 (2)0.66829 (12)0.0226 (5)
H10A0.10340.40600.68070.027*
H10B0.18510.47480.70230.027*
C110.17965 (15)0.3427 (2)0.64345 (11)0.0215 (5)
H110.20190.28130.67360.026*
C120.11974 (15)0.2840 (2)0.59113 (12)0.0251 (5)
H12A0.14530.22240.57710.038*
H12B0.09700.34290.56110.038*
H12C0.07830.24890.60160.038*
C130.28665 (14)0.3164 (2)0.60372 (11)0.0203 (5)
H130.24930.29370.56480.024*
C140.31561 (16)0.2039 (2)0.63891 (12)0.0263 (6)
H14A0.27130.16280.64310.039*
H14B0.35370.22450.67680.039*
H14C0.34040.15240.61930.039*
C150.35667 (14)0.3792 (2)0.59731 (11)0.0223 (5)
H15A0.38720.31860.58640.027*
H15B0.39010.40770.63580.027*
C160.34558 (14)0.4833 (2)0.55567 (11)0.0211 (5)
C170.28420 (16)0.4545 (2)0.49697 (11)0.0243 (5)
H17A0.27810.52180.47130.037*
H17B0.23420.43780.50080.037*
H17C0.30090.38540.48110.037*
C180.42393 (15)0.5078 (3)0.54909 (13)0.0272 (6)
H18A0.41770.57370.52260.041*
H18B0.44040.43750.53400.041*
H18C0.46360.52770.58650.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01787 (10)0.01742 (11)0.01620 (11)0.00284 (6)0.00652 (7)0.00031 (6)
O10.0250 (9)0.0259 (10)0.0247 (10)0.0008 (8)0.0042 (8)0.0014 (8)
O20.0318 (10)0.0334 (11)0.0253 (10)0.0033 (9)0.0101 (8)0.0040 (8)
O30.0285 (10)0.0479 (13)0.0194 (10)0.0028 (9)0.0014 (8)0.0061 (9)
O40.0538 (16)0.0466 (14)0.0562 (17)0.0203 (12)0.0135 (13)0.0026 (13)
O50.0483 (13)0.0455 (14)0.0239 (11)0.0074 (11)0.0067 (9)0.0056 (10)
O60.0405 (14)0.099 (3)0.0364 (14)0.0271 (14)0.0015 (11)0.0104 (14)
O1w0.063 (2)0.0305 (18)0.089 (3)0.0000.051 (2)0.000
N10.0179 (10)0.0188 (10)0.0172 (10)0.0034 (8)0.0064 (8)0.0007 (8)
N20.0268 (11)0.0164 (10)0.0186 (10)0.0009 (9)0.0092 (8)0.0017 (8)
N30.0202 (10)0.0212 (10)0.0204 (10)0.0033 (9)0.0094 (8)0.0015 (9)
N40.0186 (9)0.0174 (10)0.0194 (10)0.0014 (8)0.0069 (8)0.0012 (8)
N50.0128 (9)0.0288 (12)0.0185 (10)0.0050 (9)0.0055 (8)0.0030 (9)
N60.0420 (14)0.0243 (12)0.0213 (12)0.0032 (11)0.0071 (10)0.0054 (10)
C10.0210 (12)0.0241 (13)0.0205 (12)0.0023 (10)0.0058 (10)0.0018 (10)
C20.0281 (13)0.0222 (13)0.0225 (12)0.0039 (11)0.0102 (10)0.0040 (10)
C30.0395 (16)0.0367 (17)0.0288 (15)0.0147 (13)0.0129 (13)0.0109 (13)
C40.0350 (14)0.0207 (13)0.0240 (13)0.0009 (11)0.0163 (11)0.0045 (10)
C50.0426 (16)0.0229 (14)0.0307 (15)0.0045 (12)0.0194 (13)0.0006 (11)
C60.0351 (14)0.0239 (13)0.0242 (13)0.0026 (11)0.0178 (11)0.0036 (11)
C70.0283 (13)0.0236 (13)0.0270 (13)0.0059 (11)0.0160 (11)0.0023 (11)
C80.0297 (14)0.0266 (14)0.0378 (16)0.0110 (12)0.0133 (12)0.0027 (12)
C90.0355 (15)0.0301 (15)0.0398 (17)0.0049 (13)0.0257 (14)0.0042 (13)
C100.0245 (13)0.0223 (13)0.0236 (13)0.0035 (10)0.0120 (11)0.0016 (10)
C110.0220 (12)0.0186 (12)0.0256 (13)0.0017 (10)0.0109 (10)0.0015 (10)
C120.0234 (12)0.0236 (13)0.0310 (14)0.0008 (10)0.0132 (11)0.0038 (11)
C130.0202 (11)0.0173 (12)0.0238 (12)0.0044 (10)0.0086 (10)0.0011 (10)
C140.0276 (13)0.0204 (13)0.0328 (15)0.0070 (11)0.0133 (11)0.0031 (11)
C150.0182 (11)0.0229 (13)0.0269 (13)0.0046 (10)0.0095 (10)0.0012 (11)
C160.0193 (11)0.0233 (13)0.0221 (12)0.0036 (10)0.0095 (10)0.0008 (10)
C170.0262 (13)0.0264 (13)0.0214 (13)0.0030 (11)0.0101 (11)0.0020 (11)
C180.0218 (12)0.0296 (14)0.0344 (15)0.0043 (11)0.0153 (11)0.0024 (12)
Geometric parameters (Å, º) top
Cd—O12.4562 (19)C5—H5C0.9800
Cd—O22.404 (2)C6—C71.550 (4)
Cd—N12.306 (2)C6—H6A0.9900
Cd—N22.307 (2)C6—H6B0.9900
Cd—N32.303 (2)C7—C81.527 (4)
Cd—N42.312 (2)C7—C91.542 (4)
O1—N51.263 (3)C8—H8A0.9800
O2—N51.266 (3)C8—H8B0.9800
O3—N51.234 (3)C8—H8C0.9800
O4—N61.269 (4)C9—H9A0.9800
O5—N61.253 (3)C9—H9B0.9800
O6—N61.198 (4)C9—H9C0.9800
O1w—H1w0.850 (10)C10—C111.537 (3)
N1—C11.483 (3)C10—H10A0.9900
N1—C161.500 (3)C10—H10B0.9900
N1—H1n0.8800C11—C121.523 (4)
N2—C21.489 (3)C11—H111.0000
N2—C41.495 (3)C12—H12A0.9800
N2—H2n0.8800C12—H12B0.9800
N3—C101.485 (3)C12—H12C0.9800
N3—C71.511 (3)C13—C141.534 (3)
N3—H3n0.8800C13—C151.535 (3)
N4—C111.494 (3)C13—H131.0000
N4—C131.496 (3)C14—H14A0.9800
N4—H4n0.8800C14—H14B0.9800
C1—C21.531 (4)C14—H14C0.9800
C1—H1A0.9900C15—C161.542 (4)
C1—H1B0.9900C15—H15A0.9900
C2—C31.525 (4)C15—H15B0.9900
C2—H2A1.0000C16—C171.526 (4)
C3—H3A0.9800C16—C181.539 (3)
C3—H3B0.9800C17—H17A0.9800
C3—H3C0.9800C17—H17B0.9800
C4—C51.519 (4)C17—H17C0.9800
C4—C61.540 (4)C18—H18A0.9800
C4—H4A1.0000C18—H18B0.9800
C5—H5A0.9800C18—H18C0.9800
C5—H5B0.9800
N3—Cd—N1158.83 (8)C4—C6—H6A106.2
N3—Cd—N288.35 (8)C7—C6—H6A106.2
N1—Cd—N278.23 (7)C4—C6—H6B106.2
N3—Cd—N479.08 (7)C7—C6—H6B106.2
N1—Cd—N486.67 (7)H6A—C6—H6B106.4
N2—Cd—N498.30 (7)N3—C7—C8105.2 (2)
N3—Cd—O286.96 (7)N3—C7—C9110.3 (2)
N1—Cd—O2112.22 (7)C8—C7—C9108.6 (2)
N2—Cd—O2153.62 (7)N3—C7—C6113.2 (2)
N4—Cd—O2106.24 (7)C8—C7—C6113.0 (2)
N3—Cd—O1115.22 (7)C9—C7—C6106.6 (2)
N1—Cd—O184.61 (7)C7—C8—H8A109.5
N2—Cd—O1106.96 (7)C7—C8—H8B109.5
N4—Cd—O1150.90 (7)H8A—C8—H8B109.5
O2—Cd—O152.80 (7)C7—C8—H8C109.5
N5—O1—Cd93.68 (14)H8A—C8—H8C109.5
N5—O2—Cd96.09 (15)H8B—C8—H8C109.5
C1—N1—C16116.76 (19)C7—C9—H9A109.5
C1—N1—Cd106.29 (15)C7—C9—H9B109.5
C16—N1—Cd113.69 (15)H9A—C9—H9B109.5
C1—N1—H1n106.5C7—C9—H9C109.5
C16—N1—H1n106.5H9A—C9—H9C109.5
Cd—N1—H1n106.5H9B—C9—H9C109.5
C2—N2—C4117.3 (2)N3—C10—C11111.7 (2)
C2—N2—Cd107.09 (15)N3—C10—H10A109.3
C4—N2—Cd114.53 (16)C11—C10—H10A109.3
C2—N2—H2n105.6N3—C10—H10B109.3
C4—N2—H2n105.6C11—C10—H10B109.3
Cd—N2—H2n105.6H10A—C10—H10B107.9
C10—N3—C7116.0 (2)N4—C11—C12112.0 (2)
C10—N3—Cd105.24 (15)N4—C11—C10107.4 (2)
C7—N3—Cd115.00 (16)C12—C11—C10112.6 (2)
C10—N3—H3n106.7N4—C11—H11108.2
C7—N3—H3n106.7C12—C11—H11108.2
Cd—N3—H3n106.7C10—C11—H11108.2
C11—N4—C13116.2 (2)C11—C12—H12A109.5
C11—N4—Cd106.12 (14)C11—C12—H12B109.5
C13—N4—Cd116.95 (15)H12A—C12—H12B109.5
C11—N4—H4n105.5C11—C12—H12C109.5
C13—N4—H4n105.5H12A—C12—H12C109.5
Cd—N4—H4n105.5H12B—C12—H12C109.5
O3—N5—O1121.7 (2)N4—C13—C14111.9 (2)
O3—N5—O2120.8 (2)N4—C13—C15110.8 (2)
O1—N5—O2117.4 (2)C14—C13—C15108.8 (2)
O6—N6—O5122.6 (3)N4—C13—H13108.4
O6—N6—O4121.7 (3)C14—C13—H13108.4
O5—N6—O4115.8 (3)C15—C13—H13108.4
N1—C1—C2110.2 (2)C13—C14—H14A109.5
N1—C1—H1A109.6C13—C14—H14B109.5
C2—C1—H1A109.6H14A—C14—H14B109.5
N1—C1—H1B109.6C13—C14—H14C109.5
C2—C1—H1B109.6H14A—C14—H14C109.5
H1A—C1—H1B108.1H14B—C14—H14C109.5
N2—C2—C3113.4 (2)C13—C15—C16121.5 (2)
N2—C2—C1108.3 (2)C13—C15—H15A106.9
C3—C2—C1110.5 (2)C16—C15—H15A106.9
N2—C2—H2A108.1C13—C15—H15B106.9
C3—C2—H2A108.1C16—C15—H15B106.9
C1—C2—H2A108.1H15A—C15—H15B106.7
C2—C3—H3A109.5N1—C16—C17106.0 (2)
C2—C3—H3B109.5N1—C16—C18109.8 (2)
H3A—C3—H3B109.5C17—C16—C18108.8 (2)
C2—C3—H3C109.5N1—C16—C15112.7 (2)
H3A—C3—H3C109.5C17—C16—C15110.9 (2)
H3B—C3—H3C109.5C18—C16—C15108.6 (2)
N2—C4—C5110.7 (2)C16—C17—H17A109.5
N2—C4—C6109.7 (2)C16—C17—H17B109.5
C5—C4—C6117.3 (2)H17A—C17—H17B109.5
N2—C4—H4A106.2C16—C17—H17C109.5
C5—C4—H4A106.2H17A—C17—H17C109.5
C6—C4—H4A106.2H17B—C17—H17C109.5
C4—C5—H5A109.5C16—C18—H18A109.5
C4—C5—H5B109.5C16—C18—H18B109.5
H5A—C5—H5B109.5H18A—C18—H18B109.5
C4—C5—H5C109.5C16—C18—H18C109.5
H5A—C5—H5C109.5H18A—C18—H18C109.5
H5B—C5—H5C109.5H18B—C18—H18C109.5
C4—C6—C7124.7 (2)
N3—Cd—O1—N565.15 (15)Cd—O1—N5—O3177.3 (2)
N1—Cd—O1—N5122.59 (14)Cd—O1—N5—O21.2 (2)
N2—Cd—O1—N5161.48 (13)Cd—O2—N5—O3177.29 (19)
N4—Cd—O1—N549.4 (2)Cd—O2—N5—O11.2 (2)
O2—Cd—O1—N50.68 (12)C16—N1—C1—C2173.3 (2)
N3—Cd—O2—N5125.85 (15)Cd—N1—C1—C245.3 (2)
N1—Cd—O2—N563.37 (16)C4—N2—C2—C361.9 (3)
N2—Cd—O2—N545.8 (2)Cd—N2—C2—C3167.8 (2)
N4—Cd—O2—N5156.45 (14)C4—N2—C2—C1175.0 (2)
O1—Cd—O2—N50.68 (12)Cd—N2—C2—C144.7 (2)
N3—Cd—N1—C136.2 (3)N1—C1—C2—N263.1 (3)
N2—Cd—N1—C115.51 (15)N1—C1—C2—C3172.0 (2)
N4—Cd—N1—C183.68 (16)C2—N2—C4—C557.1 (3)
O2—Cd—N1—C1170.12 (15)Cd—N2—C4—C569.7 (2)
O1—Cd—N1—C1124.11 (16)C2—N2—C4—C6171.9 (2)
N3—Cd—N1—C1693.6 (2)Cd—N2—C4—C661.3 (2)
N2—Cd—N1—C16145.33 (17)N2—C4—C6—C769.3 (3)
N4—Cd—N1—C1646.13 (16)C5—C4—C6—C758.0 (4)
O2—Cd—N1—C1660.06 (17)C10—N3—C7—C8166.0 (2)
O1—Cd—N1—C16106.07 (16)Cd—N3—C7—C870.6 (2)
N3—Cd—N2—C2179.50 (17)C10—N3—C7—C949.2 (3)
N1—Cd—N2—C215.96 (16)Cd—N3—C7—C9172.55 (18)
N4—Cd—N2—C2100.78 (16)C10—N3—C7—C670.1 (3)
O2—Cd—N2—C2100.7 (2)Cd—N3—C7—C653.3 (3)
O1—Cd—N2—C264.60 (17)C4—C6—C7—N365.4 (3)
N3—Cd—N2—C448.61 (17)C4—C6—C7—C854.0 (3)
N1—Cd—N2—C4147.85 (18)C4—C6—C7—C9173.2 (2)
N4—Cd—N2—C4127.33 (17)C7—N3—C10—C11172.6 (2)
O2—Cd—N2—C431.1 (3)Cd—N3—C10—C1144.3 (2)
O1—Cd—N2—C467.29 (17)C13—N4—C11—C1253.8 (3)
N1—Cd—N3—C1035.0 (3)Cd—N4—C11—C1278.1 (2)
N2—Cd—N3—C1085.27 (16)C13—N4—C11—C10178.0 (2)
N4—Cd—N3—C1013.51 (16)Cd—N4—C11—C1046.1 (2)
O2—Cd—N3—C10120.70 (16)N3—C10—C11—N464.2 (3)
O1—Cd—N3—C10166.73 (15)N3—C10—C11—C1259.6 (3)
N1—Cd—N3—C793.9 (3)C11—N4—C13—C1453.7 (3)
N2—Cd—N3—C743.65 (17)Cd—N4—C13—C14179.69 (16)
N4—Cd—N3—C7142.43 (18)C11—N4—C13—C15175.2 (2)
O2—Cd—N3—C7110.38 (17)Cd—N4—C13—C1558.1 (2)
O1—Cd—N3—C764.35 (18)N4—C13—C15—C1667.4 (3)
N3—Cd—N4—C1118.04 (15)C14—C13—C15—C16169.3 (2)
N1—Cd—N4—C11177.69 (16)C1—N1—C16—C17175.4 (2)
N2—Cd—N4—C11104.73 (16)Cd—N1—C16—C1760.3 (2)
O2—Cd—N4—C1165.50 (16)C1—N1—C16—C1858.0 (3)
O1—Cd—N4—C11105.02 (18)Cd—N1—C16—C18177.63 (16)
N3—Cd—N4—C13149.51 (18)C1—N1—C16—C1563.1 (3)
N1—Cd—N4—C1346.22 (17)Cd—N1—C16—C1561.2 (2)
N2—Cd—N4—C13123.81 (17)C13—C15—C16—N170.9 (3)
O2—Cd—N4—C1365.97 (18)C13—C15—C16—C1747.8 (3)
O1—Cd—N4—C1326.4 (3)C13—C15—C16—C18167.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O50.85 (1)2.04 (2)2.836 (3)156 (5)
N1—H1n···O1i0.882.423.242 (3)155
N2—H2n···O40.882.303.133 (4)157
N4—H4n···O50.882.112.991 (3)175
C5—H5B···O6ii0.982.583.539 (5)168
C11—H11···O4iii1.002.443.358 (3)152
C9—H9B···O1wiv0.982.513.451 (4)162
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2; (iv) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cd(NO3)(C18H40N4)]NO3·0.5H2O
Mr557.98
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)18.4312 (4), 11.3595 (2), 25.1662 (6)
β (°) 111.782 (3)
V3)4892.8 (2)
Z8
Radiation typeCu Kα
µ (mm1)7.55
Crystal size (mm)0.15 × 0.15 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.738, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8065, 4713, 4467
Rint0.019
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.078, 1.06
No. of reflections4713
No. of parameters289
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 0.63

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cd—O12.4562 (19)Cd—N22.307 (2)
Cd—O22.404 (2)Cd—N32.303 (2)
Cd—N12.306 (2)Cd—N42.312 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O50.850 (10)2.04 (2)2.836 (3)156 (5)
N1—H1n···O1i0.882.423.242 (3)155
N2—H2n···O40.882.303.133 (4)157
N4—H4n···O50.882.112.991 (3)175
C5—H5B···O6ii0.982.583.539 (5)168
C11—H11···O4iii1.002.443.358 (3)152
C9—H9B···O1wiv0.982.513.451 (4)162
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2; (iv) x1/2, y+1/2, z.
 

Footnotes

Additional correspondence author, e-mail: tapashir@yahoo.com.

Acknowledgements

The authors are grateful to the Ministry of National Science, Information and Communication Technology (NSICT), Bangladesh, for a research fellowship to BCN. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBembi, R., Sondhi, S. M., Singh, A. K., Jhanji, A. K., Roy, T. G., Lown, J. W. & Ball, R. G. (1989). Bull. Chem. Soc. Jpn, 62, 3701–3705.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHazari, S. K. S., Roy, T. G., Barua, K. K., Anwar, N., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). Appl. Organomet. Chem. 24, 878–887.  Google Scholar
First citationHazari, S. K. S., Roy, T. G., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1–8.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m494-m495
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds