organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(2′-Cyano­bi­phenyl-4-yl)meth­yl]morpholin-4-ium perchlorate

aDepartment of Chemical Engineering, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: ouyanghuay@126.com

(Received 16 March 2012; accepted 23 March 2012; online 31 March 2012)

In the title salt, C18H19N2O+·ClO4, the morpholinium ring adopts a chair conformation, while the two benzene rings make a dihedral angle of 62.65 (17)°. Inter­molecular N—H⋯N hydrogen bonds and weak C—H⋯O inter­actions occur in the crystal structure.

Related literature

The title complound was investigated as part of a search for dielectric ferroelectric materials. For background to ferroelectric materials, see: Haertling (1999[Haertling, G. H. (1999). J. Am. Ceram. Soc. A82, 797-810.]); Homes et al. (2001[Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. (2001). Science, A293, 673-676.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N2O+·ClO4

  • Mr = 378.80

  • Monoclinic, C 2/c

  • a = 22.997 (5) Å

  • b = 10.679 (2) Å

  • c = 14.899 (3) Å

  • β = 92.96 (3)°

  • V = 3654.2 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • 18531 measured reflections

  • 4191 independent reflections

  • 2478 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.202

  • S = 1.04

  • 4191 reflections

  • 235 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.82 2.12 2.921 (4) 166
C2—H2B⋯O4ii 0.97 2.57 3.255 (5) 128
C5—H5B⋯O4iii 0.97 2.59 3.515 (6) 161
C5—H5C⋯O4iv 0.97 2.57 3.474 (7) 154
Symmetry codes: (i) [x, -y+2, z-{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

At present, much attention in ferroelectric material field is focused on developing ferroelectric pure organic or inorganic compounds (Haertling, 1999; Homes et al., 2001). In order to find more dielectric ferroelectric materials, we investigate the physical properties of the title compound. Here we report the synthesis and crystal structure of the title compound, 4-((2'-cyanobiphenyl-4-yl)methyl)morpholin-4-ium perchlorate (Fig. 1).

The bond distances and bond angles in the title compound agree very well with the corresponding distances and angles reported for a closely related compound. In this structure, the intermolecular N–H···N and C–H···O hydrogen bonds link the cations and anions to chains (Table 1). The dihedral angle between the benzene rings in the cation is 62.65 (17).

Related literature top

The title complound was investigated as part of a search for dielectric ferroelectric materials. For background to ferroelectric materials, see: Haertling (1999); Homes et al. (2001).

Experimental top

To a stirred solution of 4'-(morpholinomethyl)biphenyl-2-carbonitrile (5.56 g, 0.02 mol) in 30 mL of methanol, perchloric acid (2.87 g, 0.02 mol) was added at the room temperature. The precipitate was filtered and washed with a small amount of ethanol 95%. Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of a solution of the title compound in water at room temperature.

Refinement top

The H atoms were positioned geometrically and refined using a riding model, with N—H = 0.82 and C—H = 0.93–0.96 Å, Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N).

Structure description top

At present, much attention in ferroelectric material field is focused on developing ferroelectric pure organic or inorganic compounds (Haertling, 1999; Homes et al., 2001). In order to find more dielectric ferroelectric materials, we investigate the physical properties of the title compound. Here we report the synthesis and crystal structure of the title compound, 4-((2'-cyanobiphenyl-4-yl)methyl)morpholin-4-ium perchlorate (Fig. 1).

The bond distances and bond angles in the title compound agree very well with the corresponding distances and angles reported for a closely related compound. In this structure, the intermolecular N–H···N and C–H···O hydrogen bonds link the cations and anions to chains (Table 1). The dihedral angle between the benzene rings in the cation is 62.65 (17).

The title complound was investigated as part of a search for dielectric ferroelectric materials. For background to ferroelectric materials, see: Haertling (1999); Homes et al. (2001).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis showing the hydrogen bondings network.
4-[(2'-Cyanobiphenyl-4-yl)methyl]morpholin-4-ium perchlorate top
Crystal data top
C18H19N2O+·ClO4F(000) = 1584
Mr = 378.80Dx = 1.377 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4191 reflections
a = 22.997 (5) Åθ = 2.6–27.5°
b = 10.679 (2) ŵ = 0.24 mm1
c = 14.899 (3) ÅT = 293 K
β = 92.96 (3)°Prism, colorless
V = 3654.2 (13) Å30.20 × 0.20 × 0.20 mm
Z = 8
Data collection top
Rigaku Mercury2
diffractometer
2478 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.066
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
Detector resolution: 13.6612 pixels mm-1h = 2929
CCD_Profile_fitting scansk = 1313
18531 measured reflectionsl = 1919
4191 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0836P)2 + 4.9367P]
where P = (Fo2 + 2Fc2)/3
4191 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.59 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
C18H19N2O+·ClO4V = 3654.2 (13) Å3
Mr = 378.80Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.997 (5) ŵ = 0.24 mm1
b = 10.679 (2) ÅT = 293 K
c = 14.899 (3) Å0.20 × 0.20 × 0.20 mm
β = 92.96 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2478 reflections with I > 2σ(I)
18531 measured reflectionsRint = 0.066
4191 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0701 restraint
wR(F2) = 0.202H-atom parameters constrained
S = 1.04Δρmax = 0.59 e Å3
4191 reflectionsΔρmin = 0.34 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.14467 (4)0.33074 (8)0.21821 (6)0.0575 (3)
O20.15678 (19)0.4547 (4)0.2333 (4)0.169 (2)
O30.08570 (14)0.3054 (5)0.2221 (3)0.1361 (16)
O40.1785 (2)0.2616 (5)0.2795 (3)0.165 (2)
O50.16055 (18)0.3058 (5)0.1321 (3)0.1407 (16)
N10.18775 (11)0.9619 (2)0.12783 (16)0.0469 (6)
H10.15710.99910.11720.070*
C110.09773 (15)0.9566 (3)0.2946 (2)0.0544 (8)
H11A0.09571.04100.27960.065*
C90.05497 (14)0.7774 (3)0.3637 (2)0.0491 (8)
C120.01047 (14)0.7227 (3)0.4209 (2)0.0484 (8)
C180.04350 (14)0.8644 (3)0.5429 (2)0.0481 (8)
N20.07272 (13)0.9427 (3)0.57063 (19)0.0621 (8)
C60.14489 (14)0.8859 (3)0.27003 (19)0.0511 (8)
C170.00559 (13)0.7666 (3)0.5091 (2)0.0456 (7)
O10.22810 (13)0.9243 (3)0.04846 (17)0.0813 (9)
C10.18162 (17)0.8401 (3)0.0800 (2)0.0637 (10)
H1A0.14650.79810.09740.076*
H1B0.21460.78700.09660.076*
C160.03494 (14)0.7160 (3)0.5651 (2)0.0561 (8)
H16A0.03780.74660.62320.067*
C100.05393 (15)0.9032 (3)0.3408 (2)0.0529 (8)
H10A0.02290.95260.35710.063*
C70.14461 (17)0.7581 (4)0.2892 (2)0.0691 (11)
H7A0.17490.70790.27100.083*
C40.23714 (16)1.0349 (4)0.0925 (2)0.0612 (9)
H4B0.27370.99410.11000.073*
H4C0.23781.11830.11830.073*
C80.10025 (18)0.7053 (4)0.3347 (3)0.0687 (11)
H8A0.10070.61970.34610.082*
C130.02633 (18)0.6260 (4)0.3924 (3)0.0658 (10)
H13A0.02390.59390.33470.079*
C50.19543 (15)0.9467 (4)0.2283 (2)0.0598 (9)
H5B0.23000.89690.24210.072*
H5C0.20171.02860.25530.072*
C20.17854 (19)0.8610 (4)0.0204 (3)0.0775 (12)
H2B0.17530.78080.05080.093*
H2C0.14400.90950.03730.093*
C30.23077 (19)1.0439 (4)0.0083 (3)0.0776 (12)
H3B0.19561.09010.02540.093*
H3C0.26361.08970.03020.093*
C150.07050 (16)0.6209 (4)0.5342 (3)0.0669 (10)
H15A0.09740.58610.57140.080*
C140.06639 (18)0.5771 (4)0.4484 (3)0.0739 (11)
H14A0.09100.51320.42760.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0575 (5)0.0613 (5)0.0536 (5)0.0065 (4)0.0016 (4)0.0024 (4)
O20.138 (4)0.073 (2)0.288 (6)0.009 (2)0.070 (4)0.045 (3)
O30.070 (2)0.234 (5)0.105 (3)0.045 (3)0.0218 (18)0.030 (3)
O40.152 (4)0.166 (4)0.172 (4)0.017 (3)0.058 (3)0.105 (4)
O50.131 (3)0.204 (5)0.093 (3)0.004 (3)0.050 (2)0.013 (3)
N10.0430 (14)0.0590 (16)0.0390 (13)0.0028 (12)0.0041 (11)0.0011 (12)
C110.065 (2)0.057 (2)0.0423 (17)0.0102 (17)0.0091 (15)0.0034 (15)
C90.0586 (19)0.0542 (19)0.0345 (15)0.0071 (16)0.0033 (14)0.0018 (14)
C120.0531 (18)0.0508 (18)0.0410 (17)0.0039 (15)0.0011 (14)0.0037 (14)
C180.0490 (19)0.058 (2)0.0377 (16)0.0062 (16)0.0078 (14)0.0009 (15)
N20.0631 (19)0.070 (2)0.0531 (17)0.0088 (16)0.0029 (14)0.0086 (15)
C60.0535 (19)0.070 (2)0.0296 (15)0.0066 (16)0.0025 (13)0.0023 (15)
C170.0445 (16)0.0491 (18)0.0435 (17)0.0022 (14)0.0039 (13)0.0038 (14)
O10.088 (2)0.102 (2)0.0570 (16)0.0190 (17)0.0321 (14)0.0119 (15)
C10.067 (2)0.068 (2)0.057 (2)0.0121 (19)0.0167 (18)0.0106 (18)
C160.0545 (19)0.061 (2)0.054 (2)0.0009 (17)0.0109 (16)0.0085 (17)
C100.059 (2)0.059 (2)0.0415 (17)0.0151 (16)0.0104 (15)0.0036 (15)
C70.071 (2)0.076 (3)0.062 (2)0.031 (2)0.0225 (19)0.018 (2)
C40.061 (2)0.065 (2)0.058 (2)0.0091 (18)0.0111 (17)0.0017 (18)
C80.087 (3)0.057 (2)0.064 (2)0.021 (2)0.021 (2)0.0148 (18)
C130.079 (3)0.066 (2)0.052 (2)0.010 (2)0.0044 (19)0.0075 (18)
C50.054 (2)0.089 (3)0.0355 (16)0.0001 (18)0.0010 (14)0.0057 (17)
C20.082 (3)0.101 (3)0.051 (2)0.023 (2)0.019 (2)0.020 (2)
C30.084 (3)0.094 (3)0.056 (2)0.013 (2)0.019 (2)0.012 (2)
C150.058 (2)0.068 (2)0.076 (3)0.0089 (19)0.0103 (19)0.015 (2)
C140.073 (3)0.061 (2)0.087 (3)0.018 (2)0.004 (2)0.001 (2)
Geometric parameters (Å, º) top
Cl1—O21.369 (4)C1—C21.511 (5)
Cl1—O51.377 (4)C1—H1A0.9700
Cl1—O41.383 (4)C1—H1B0.9700
Cl1—O31.387 (3)C16—C151.369 (5)
N1—C11.486 (4)C16—H16A0.9300
N1—C41.495 (4)C10—H10A0.9300
N1—C51.507 (4)C7—C81.374 (5)
N1—H10.8180C7—H7A0.9300
C11—C101.373 (5)C4—C31.505 (5)
C11—C61.385 (4)C4—H4B0.9700
C11—H11A0.9300C4—H4C0.9700
C9—C81.382 (5)C8—H8A0.9300
C9—C101.386 (5)C13—C141.378 (5)
C9—C121.485 (4)C13—H13A0.9300
C12—C131.388 (5)C5—H5B0.9700
C12—C171.404 (4)C5—H5C0.9700
C18—N21.136 (4)C2—H2B0.9700
C18—C171.435 (5)C2—H2C0.9700
C6—C71.395 (5)C3—H3B0.9700
C6—C51.494 (5)C3—H3C0.9700
C17—C161.393 (4)C15—C141.369 (5)
O1—C21.407 (5)C15—H15A0.9300
O1—C31.411 (5)C14—H14A0.9300
O2—Cl1—O5106.2 (3)C9—C10—H10A119.3
O2—Cl1—O4107.8 (3)C8—C7—C6120.9 (3)
O5—Cl1—O4110.1 (3)C8—C7—H7A119.5
O2—Cl1—O3111.9 (3)C6—C7—H7A119.5
O5—Cl1—O3107.9 (3)N1—C4—C3110.4 (3)
O4—Cl1—O3112.8 (3)N1—C4—H4B109.6
C1—N1—C4110.0 (3)C3—C4—H4B109.6
C1—N1—C5112.7 (3)N1—C4—H4C109.6
C4—N1—C5110.7 (3)C3—C4—H4C109.6
C1—N1—H1105.8H4B—C4—H4C108.1
C4—N1—H1109.9C7—C8—C9121.1 (3)
C5—N1—H1107.5C7—C8—H8A119.5
C10—C11—C6120.7 (3)C9—C8—H8A119.5
C10—C11—H11A119.6C14—C13—C12120.8 (4)
C6—C11—H11A119.6C14—C13—H13A119.6
C8—C9—C10117.8 (3)C12—C13—H13A119.6
C8—C9—C12120.9 (3)C6—C5—N1114.0 (3)
C10—C9—C12121.3 (3)C6—C5—H5B108.8
C13—C12—C17117.3 (3)N1—C5—H5B108.8
C13—C12—C9122.9 (3)C6—C5—H5C108.8
C17—C12—C9119.8 (3)N1—C5—H5C108.8
N2—C18—C17178.8 (4)H5B—C5—H5C107.7
C11—C6—C7117.8 (3)O1—C2—C1111.5 (3)
C11—C6—C5120.6 (3)O1—C2—H2B109.3
C7—C6—C5121.5 (3)C1—C2—H2B109.3
C16—C17—C12121.3 (3)O1—C2—H2C109.3
C16—C17—C18119.0 (3)C1—C2—H2C109.3
C12—C17—C18119.7 (3)H2B—C2—H2C108.0
C2—O1—C3109.1 (3)O1—C3—C4111.4 (3)
N1—C1—C2110.2 (3)O1—C3—H3B109.3
N1—C1—H1A109.6C4—C3—H3B109.3
C2—C1—H1A109.6O1—C3—H3C109.3
N1—C1—H1B109.6C4—C3—H3C109.3
C2—C1—H1B109.6H3B—C3—H3C108.0
H1A—C1—H1B108.1C14—C15—C16120.0 (4)
C15—C16—C17119.5 (3)C14—C15—H15A120.0
C15—C16—H16A120.3C16—C15—H15A120.0
C17—C16—H16A120.3C15—C14—C13121.1 (4)
C11—C10—C9121.5 (3)C15—C14—H14A119.4
C11—C10—H10A119.3C13—C14—H14A119.4
C8—C9—C12—C1362.6 (5)C5—C6—C7—C8174.2 (3)
C10—C9—C12—C13120.2 (4)C1—N1—C4—C351.9 (4)
C8—C9—C12—C17115.6 (4)C5—N1—C4—C3177.1 (3)
C10—C9—C12—C1761.7 (4)C6—C7—C8—C90.8 (6)
C10—C11—C6—C73.6 (5)C10—C9—C8—C73.8 (6)
C10—C11—C6—C5173.6 (3)C12—C9—C8—C7173.6 (3)
C13—C12—C17—C160.6 (5)C17—C12—C13—C140.9 (5)
C9—C12—C17—C16178.9 (3)C9—C12—C13—C14179.0 (4)
C13—C12—C17—C18178.5 (3)C11—C6—C5—N185.9 (4)
C9—C12—C17—C180.3 (4)C7—C6—C5—N197.0 (4)
N2—C18—C17—C1635 (18)C1—N1—C5—C662.2 (4)
N2—C18—C17—C12146 (18)C4—N1—C5—C6174.2 (3)
C4—N1—C1—C251.8 (4)C3—O1—C2—C162.5 (5)
C5—N1—C1—C2175.8 (3)N1—C1—C2—O158.0 (5)
C12—C17—C16—C150.5 (5)C2—O1—C3—C462.4 (4)
C18—C17—C16—C15178.7 (3)N1—C4—C3—O157.6 (4)
C6—C11—C10—C90.6 (5)C17—C16—C15—C140.6 (6)
C8—C9—C10—C113.1 (5)C16—C15—C14—C130.8 (6)
C12—C9—C10—C11174.2 (3)C12—C13—C14—C151.0 (6)
C11—C6—C7—C82.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.822.122.921 (4)166
C2—H2B···O4ii0.972.573.255 (5)128
C5—H5B···O4iii0.972.593.515 (6)161
C5—H5C···O4iv0.972.573.474 (7)154
Symmetry codes: (i) x, y+2, z1/2; (ii) x, y+1, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H19N2O+·ClO4
Mr378.80
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)22.997 (5), 10.679 (2), 14.899 (3)
β (°) 92.96 (3)
V3)3654.2 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18531, 4191, 2478
Rint0.066
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.202, 1.04
No. of reflections4191
No. of parameters235
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.34

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.822.122.921 (4)166.3
C2—H2B···O4ii0.972.573.255 (5)127.5
C5—H5B···O4iii0.972.593.515 (6)160.7
C5—H5C···O4iv0.972.573.474 (7)154.4
Symmetry codes: (i) x, y+2, z1/2; (ii) x, y+1, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z.
 

References

First citationHaertling, G. H. (1999). J. Am. Ceram. Soc. A82, 797–810.  CrossRef Google Scholar
First citationHomes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. (2001). Science, A293, 673–676.  Web of Science CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds