metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-methano­lato-κ4O:O-bis­­[bis­­(3-methyl-5-phenyl-1H-pyrazole-κN2)(nitrato-κO)copper(II)]

aFundamental Laboratory of Life Science, Medical School of Tibet University for Nationalities, Xianyang 712082, People's Republic of China, bSchool of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and Chemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 16 March 2012; accepted 22 March 2012; online 31 March 2012)

Copper nitrate in methanol solution cleaves the N—Cmethanol bond when reacted with 3-methyl-5-phenyl­pyrazole-1-methanol to yield the centrosymmetric dinuclear title compound, [Cu2(CH3O)2(NO3)2(C10H10N2)4], in which the CuII atom is linked to a nitrate ion, two methano­late ions and two pyrazole ligands in a distorted square-pyramidal environment. The O atom of the nitrate anion occupies the apical site. The crystal structure features intra­molecular N—H⋯O hydrogen bonds.

Related literature

For a related structure, see: He & Sykes (2007[He, H. & Sykes, A. G. (2007). Acta Cryst. E63, m2448.]). For the synthesis of 3-methyl-5-phenyl­pyrazole-1-methanol, see: Zhu et al. (2004[Zhu, W.-R., Hu, P.-Z. & Li, M.-Y. (2004). Chin. J. Synth. Chem. 12, 28-30.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(CH3O)2(NO3)2(C10H10N2)4]

  • Mr = 945.97

  • Triclinic, [P \overline 1]

  • a = 8.3896 (8) Å

  • b = 11.2569 (11) Å

  • c = 12.7200 (12) Å

  • α = 106.120 (2)°

  • β = 103.025 (2)°

  • γ = 95.853 (2)°

  • V = 1106.85 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 K

  • 0.12 × 0.11 × 0.10 mm

Data collection
  • Bruker SMART-1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.887, Tmax = 0.905

  • 6768 measured reflections

  • 4898 independent reflections

  • 3461 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.02

  • 4898 reflections

  • 290 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.87 (1) 2.26 (2) 3.012 (3) 144 (3)
N4—H4⋯O3 0.87 (1) 2.17 (2) 3.022 (4) 166 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Copper nitrate in methanol solution cleaves the N–Cmethanol bond when reacted with 3-methyl-5-phenylpyrazole-1-methanol to yield the dinuclear title compound (Scheme I, Fig. 1). The molecule lies on a center-of-inversion; the CuII atom is linked to a nitrate ion, two methanolate ions and two of the pyrazole ligands in a square-pyramidal environment. In the perchlorate analog, [Cu(OCH3)(C10H10N2)2]2(ClO4)2,the counterion is not connected to the copper atom, whose geometry is a square pyramid. The compound was synthesized by directly reacting 3-methyl-5-phenylpyrazole with copper perchlorate in methanol medium (He & Sykes, 2007).

Related literature top

For a related structure, see: He & Sykes (2007). For the synthesis of 3-methyl-5-phenylpyrazole-1-methanol, see: Zhu et al. (2004).

Experimental top

3-Methyl-5-phenylpyrazole-1-methanol was synthesized by using a literature procedure (Zhu et al., 2004). The ligand (0.065 g, 0.4 mmol) was dissolved in dichloromethane (10 mol) and this was mixed with a methanol solution (10 ml) of copper nitrate trihydrate (0.024 g, 0.1 mmol). The clear blue solution was filtered and then set aside for the growth of deep blue crystals. CH&N elemental analysis. Calc. for C42H46Cu2N10O8: C 53.33, H 4.90; N 14.81%. Found: C 56.36, H 5.18, N 15.02%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors were freely refined.

Structure description top

Copper nitrate in methanol solution cleaves the N–Cmethanol bond when reacted with 3-methyl-5-phenylpyrazole-1-methanol to yield the dinuclear title compound (Scheme I, Fig. 1). The molecule lies on a center-of-inversion; the CuII atom is linked to a nitrate ion, two methanolate ions and two of the pyrazole ligands in a square-pyramidal environment. In the perchlorate analog, [Cu(OCH3)(C10H10N2)2]2(ClO4)2,the counterion is not connected to the copper atom, whose geometry is a square pyramid. The compound was synthesized by directly reacting 3-methyl-5-phenylpyrazole with copper perchlorate in methanol medium (He & Sykes, 2007).

For a related structure, see: He & Sykes (2007). For the synthesis of 3-methyl-5-phenylpyrazole-1-methanol, see: Zhu et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of centrosymmetric [Cu(OCH3)(NO3)(C10H10N2)2]2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Inversion-related atoms are not labeled.
Di-µ-methanolato-κ4O:O-bis[bis(3-methyl-5-phenyl-1H- pyrazole-κN2)(nitrato-κO)copper(II)] top
Crystal data top
[Cu2(CH3O)2(NO3)2(C10H10N2)4]Z = 1
Mr = 945.97F(000) = 490
Triclinic, P1Dx = 1.419 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3896 (8) ÅCell parameters from 2170 reflections
b = 11.2569 (11) Åθ = 2.5–24.5°
c = 12.7200 (12) ŵ = 1.02 mm1
α = 106.120 (2)°T = 293 K
β = 103.025 (2)°Prism, blue
γ = 95.853 (2)°0.12 × 0.11 × 0.10 mm
V = 1106.85 (18) Å3
Data collection top
Bruker SMART-1000
diffractometer
4898 independent reflections
Radiation source: fine-focus sealed tube3461 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.887, Tmax = 0.905k = 1214
6768 measured reflectionsl = 1610
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.4958P]
where P = (Fo2 + 2Fc2)/3
4898 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.38 e Å3
2 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu2(CH3O)2(NO3)2(C10H10N2)4]γ = 95.853 (2)°
Mr = 945.97V = 1106.85 (18) Å3
Triclinic, P1Z = 1
a = 8.3896 (8) ÅMo Kα radiation
b = 11.2569 (11) ŵ = 1.02 mm1
c = 12.7200 (12) ÅT = 293 K
α = 106.120 (2)°0.12 × 0.11 × 0.10 mm
β = 103.025 (2)°
Data collection top
Bruker SMART-1000
diffractometer
4898 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3461 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.905Rint = 0.015
6768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.38 e Å3
4898 reflectionsΔρmin = 0.30 e Å3
290 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.54841 (4)0.37278 (3)0.47584 (3)0.04912 (14)
O10.7401 (3)0.4733 (3)0.3606 (2)0.0769 (7)
O20.6684 (3)0.6571 (2)0.3847 (2)0.0768 (7)
O30.5511 (3)0.5059 (2)0.23096 (17)0.0703 (6)
O40.3871 (2)0.46286 (18)0.41469 (14)0.0464 (5)
N10.7022 (3)0.3017 (2)0.57615 (18)0.0508 (6)
N20.6938 (3)0.3252 (2)0.68576 (19)0.0507 (6)
N30.4722 (3)0.2251 (2)0.3377 (2)0.0576 (6)
N40.4708 (3)0.2394 (3)0.2345 (2)0.0573 (6)
N50.6566 (3)0.5464 (3)0.3264 (2)0.0535 (6)
C10.9035 (5)0.2356 (4)0.4677 (3)0.0793 (11)
H1A0.81490.23700.40560.119*
H1B0.93300.15350.45250.119*
H1C0.99830.29650.47640.119*
C20.8479 (4)0.2663 (3)0.5748 (2)0.0519 (7)
C30.9314 (4)0.2661 (3)0.6822 (2)0.0545 (7)
H31.03500.24400.70280.065*
C40.8307 (3)0.3052 (3)0.7523 (2)0.0469 (6)
C50.8519 (3)0.3269 (3)0.8744 (2)0.0493 (7)
C60.7739 (4)0.4139 (3)0.9353 (3)0.0603 (8)
H60.70850.46030.89900.072*
C70.7932 (4)0.4319 (4)1.0499 (3)0.0730 (10)
H70.74080.49061.09010.088*
C80.8892 (4)0.3639 (4)1.1049 (3)0.0753 (11)
H80.89930.37481.18150.090*
C90.9694 (4)0.2801 (4)1.0461 (3)0.0717 (10)
H91.03620.23531.08350.086*
C100.9524 (4)0.2610 (3)0.9315 (3)0.0579 (8)
H101.00820.20400.89250.069*
C110.3473 (6)0.0666 (4)0.4104 (3)0.0996 (15)
H11A0.43990.10100.47630.149*
H11B0.33300.02340.38700.149*
H11C0.24840.09250.42810.149*
C120.3794 (5)0.1132 (3)0.3157 (3)0.0659 (9)
C130.3201 (5)0.0571 (3)0.1989 (3)0.0731 (10)
H130.25340.02140.16180.088*
C140.3786 (4)0.1393 (3)0.1488 (3)0.0582 (8)
C150.3536 (4)0.1299 (3)0.0279 (3)0.0616 (8)
C160.4062 (5)0.2286 (4)0.0078 (3)0.0764 (10)
H160.45970.30520.04560.092*
C170.3799 (5)0.2146 (5)0.1229 (3)0.0884 (12)
H170.41660.28150.14610.106*
C180.3000 (6)0.1023 (5)0.2022 (3)0.0935 (14)
H180.28280.09250.27920.112*
C190.2461 (7)0.0050 (5)0.1673 (3)0.1131 (18)
H190.19060.07080.22120.136*
C200.2722 (6)0.0169 (4)0.0533 (3)0.0944 (14)
H200.23530.05070.03100.113*
C210.2225 (4)0.4090 (3)0.3499 (3)0.0620 (8)
H21A0.16670.47270.32900.093*
H21B0.16470.37300.39400.093*
H21C0.22410.34460.28250.093*
H20.602 (2)0.349 (3)0.698 (3)0.061 (10)*
H40.510 (4)0.3130 (18)0.231 (3)0.079 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0482 (2)0.0578 (2)0.03230 (18)0.00578 (16)0.00269 (13)0.01163 (15)
O10.0655 (15)0.0950 (19)0.0817 (17)0.0317 (14)0.0191 (13)0.0398 (15)
O20.0714 (16)0.0622 (15)0.0842 (17)0.0014 (13)0.0201 (13)0.0070 (14)
O30.0657 (14)0.0978 (18)0.0423 (12)0.0083 (13)0.0082 (10)0.0205 (12)
O40.0393 (10)0.0574 (12)0.0334 (9)0.0009 (9)0.0025 (8)0.0123 (9)
N10.0506 (14)0.0663 (16)0.0343 (11)0.0126 (12)0.0056 (10)0.0174 (11)
N20.0439 (14)0.0703 (17)0.0409 (12)0.0157 (13)0.0089 (11)0.0217 (12)
N30.0634 (16)0.0554 (16)0.0418 (13)0.0061 (13)0.0030 (11)0.0109 (12)
N40.0658 (17)0.0528 (16)0.0400 (13)0.0032 (13)0.0029 (12)0.0047 (12)
N50.0435 (14)0.0709 (18)0.0501 (14)0.0076 (13)0.0165 (11)0.0225 (14)
C10.074 (2)0.114 (3)0.0451 (18)0.029 (2)0.0173 (17)0.011 (2)
C20.0500 (17)0.0613 (19)0.0406 (15)0.0102 (14)0.0093 (13)0.0118 (14)
C30.0439 (16)0.068 (2)0.0475 (16)0.0148 (15)0.0051 (13)0.0148 (15)
C40.0457 (15)0.0516 (17)0.0411 (14)0.0053 (13)0.0041 (12)0.0180 (13)
C50.0423 (15)0.0620 (19)0.0402 (14)0.0003 (13)0.0032 (12)0.0199 (14)
C60.0504 (18)0.081 (2)0.0470 (16)0.0099 (16)0.0088 (14)0.0196 (16)
C70.053 (2)0.107 (3)0.0500 (18)0.0045 (19)0.0137 (15)0.0134 (19)
C80.056 (2)0.119 (3)0.0397 (16)0.012 (2)0.0029 (15)0.025 (2)
C90.060 (2)0.095 (3)0.0545 (19)0.0006 (19)0.0066 (16)0.037 (2)
C100.0499 (17)0.073 (2)0.0492 (16)0.0066 (15)0.0039 (13)0.0259 (16)
C110.140 (4)0.077 (3)0.071 (2)0.007 (3)0.002 (3)0.035 (2)
C120.078 (2)0.0510 (19)0.0567 (19)0.0079 (17)0.0037 (17)0.0158 (16)
C130.085 (3)0.0482 (19)0.062 (2)0.0004 (18)0.0088 (18)0.0060 (16)
C140.0610 (19)0.0508 (18)0.0482 (17)0.0117 (15)0.0006 (14)0.0035 (14)
C150.061 (2)0.064 (2)0.0430 (16)0.0170 (16)0.0007 (14)0.0006 (15)
C160.073 (2)0.088 (3)0.0516 (19)0.003 (2)0.0066 (17)0.0086 (19)
C170.078 (3)0.122 (4)0.059 (2)0.008 (3)0.017 (2)0.024 (2)
C180.098 (3)0.125 (4)0.045 (2)0.033 (3)0.015 (2)0.006 (2)
C190.162 (5)0.090 (3)0.048 (2)0.022 (3)0.000 (3)0.017 (2)
C200.138 (4)0.065 (2)0.052 (2)0.007 (2)0.003 (2)0.0041 (18)
C210.0456 (17)0.071 (2)0.0514 (17)0.0038 (15)0.0093 (13)0.0134 (16)
Geometric parameters (Å, º) top
Cu1—O4i1.9185 (19)C7—C81.377 (5)
Cu1—O41.9256 (18)C7—H70.9300
Cu1—N31.979 (2)C8—C91.366 (5)
Cu1—N11.992 (2)C8—H80.9300
Cu1—Cu1i2.9939 (8)C9—C101.385 (4)
O1—N51.239 (3)C9—H90.9300
O2—N51.242 (3)C10—H100.9300
O3—N51.261 (3)C11—C121.505 (5)
O4—C211.412 (3)C11—H11A0.9600
O4—Cu1i1.9185 (19)C11—H11B0.9600
N1—C21.326 (4)C11—H11C0.9600
N1—N21.364 (3)C12—C131.391 (4)
N2—C41.344 (3)C13—C141.370 (5)
N2—H20.873 (10)C13—H130.9300
N3—C121.333 (4)C14—C151.478 (4)
N3—N41.363 (3)C15—C161.380 (5)
N4—C141.348 (4)C15—C201.388 (5)
N4—H40.874 (10)C16—C171.392 (5)
C1—C21.501 (4)C16—H160.9300
C1—H1A0.9600C17—C181.370 (6)
C1—H1B0.9600C17—H170.9300
C1—H1C0.9600C18—C191.365 (6)
C2—C31.388 (4)C18—H180.9300
C3—C41.379 (4)C19—C201.383 (6)
C3—H30.9300C19—H190.9300
C4—C51.469 (4)C20—H200.9300
C5—C61.387 (4)C21—H21A0.9600
C5—C101.393 (4)C21—H21B0.9600
C6—C71.383 (4)C21—H21C0.9600
C6—H60.9300
O4i—Cu1—O477.69 (8)C8—C7—H7119.6
O4i—Cu1—N3166.83 (9)C6—C7—H7119.6
O4—Cu1—N391.96 (9)C9—C8—C7119.4 (3)
O4i—Cu1—N191.67 (9)C9—C8—H8120.3
O4—Cu1—N1165.30 (9)C7—C8—H8120.3
N3—Cu1—N199.88 (10)C8—C9—C10120.8 (3)
O4i—Cu1—Cu1i38.93 (5)C8—C9—H9119.6
O4—Cu1—Cu1i38.76 (5)C10—C9—H9119.6
N3—Cu1—Cu1i130.23 (7)C5—C10—C9120.1 (3)
N1—Cu1—Cu1i129.86 (7)C5—C10—H10119.9
C21—O4—Cu1i124.42 (19)C9—C10—H10119.9
C21—O4—Cu1125.07 (19)C12—C11—H11A109.5
Cu1i—O4—Cu1102.31 (8)C12—C11—H11B109.5
C2—N1—N2105.4 (2)H11A—C11—H11B109.5
C2—N1—Cu1133.5 (2)C12—C11—H11C109.5
N2—N1—Cu1117.77 (18)H11A—C11—H11C109.5
C4—N2—N1111.9 (2)H11B—C11—H11C109.5
C4—N2—H2133 (2)N3—C12—C13109.7 (3)
N1—N2—H2115 (2)N3—C12—C11120.9 (3)
C12—N3—N4105.7 (2)C13—C12—C11129.3 (3)
C12—N3—Cu1132.4 (2)C14—C13—C12107.1 (3)
N4—N3—Cu1119.6 (2)C14—C13—H13126.5
C14—N4—N3111.5 (3)C12—C13—H13126.5
C14—N4—H4128 (2)N4—C14—C13106.0 (3)
N3—N4—H4119 (2)N4—C14—C15123.3 (3)
O1—N5—O2122.3 (3)C13—C14—C15130.7 (3)
O1—N5—O3119.0 (3)C16—C15—C20118.7 (3)
O2—N5—O3118.6 (3)C16—C15—C14123.0 (3)
C2—C1—H1A109.5C20—C15—C14118.3 (3)
C2—C1—H1B109.5C15—C16—C17120.6 (4)
H1A—C1—H1B109.5C15—C16—H16119.7
C2—C1—H1C109.5C17—C16—H16119.7
H1A—C1—H1C109.5C18—C17—C16120.0 (4)
H1B—C1—H1C109.5C18—C17—H17120.0
N1—C2—C3110.3 (3)C16—C17—H17120.0
N1—C2—C1120.8 (3)C19—C18—C17119.5 (4)
C3—C2—C1128.8 (3)C19—C18—H18120.3
C4—C3—C2106.6 (3)C17—C18—H18120.3
C4—C3—H3126.7C18—C19—C20121.3 (4)
C2—C3—H3126.7C18—C19—H19119.4
N2—C4—C3105.7 (2)C20—C19—H19119.4
N2—C4—C5121.9 (3)C19—C20—C15119.8 (4)
C3—C4—C5132.4 (3)C19—C20—H20120.1
C6—C5—C10118.7 (3)C15—C20—H20120.1
C6—C5—C4120.9 (3)O4—C21—H21A109.5
C10—C5—C4120.4 (3)O4—C21—H21B109.5
C7—C6—C5120.2 (3)H21A—C21—H21B109.5
C7—C6—H6119.9O4—C21—H21C109.5
C5—C6—H6119.9H21A—C21—H21C109.5
C8—C7—C6120.7 (4)H21B—C21—H21C109.5
O4i—Cu1—O4—C21149.3 (3)C2—C3—C4—C5178.2 (3)
N3—Cu1—O4—C2138.9 (2)N2—C4—C5—C627.0 (4)
N1—Cu1—O4—C21104.9 (4)C3—C4—C5—C6151.7 (3)
Cu1i—Cu1—O4—C21149.3 (3)N2—C4—C5—C10153.5 (3)
O4i—Cu1—O4—Cu1i0.0C3—C4—C5—C1027.7 (5)
N3—Cu1—O4—Cu1i171.78 (10)C10—C5—C6—C71.5 (5)
N1—Cu1—O4—Cu1i44.5 (4)C4—C5—C6—C7179.0 (3)
O4i—Cu1—N1—C2104.9 (3)C5—C6—C7—C80.2 (5)
O4—Cu1—N1—C2148.1 (3)C6—C7—C8—C91.7 (5)
N3—Cu1—N1—C268.7 (3)C7—C8—C9—C101.4 (5)
Cu1i—Cu1—N1—C2113.3 (3)C6—C5—C10—C91.8 (5)
O4i—Cu1—N1—N250.9 (2)C4—C5—C10—C9178.7 (3)
O4—Cu1—N1—N27.7 (5)C8—C9—C10—C50.4 (5)
N3—Cu1—N1—N2135.5 (2)N4—N3—C12—C130.2 (4)
Cu1i—Cu1—N1—N242.5 (2)Cu1—N3—C12—C13162.2 (3)
C2—N1—N2—C40.1 (3)N4—N3—C12—C11177.8 (3)
Cu1—N1—N2—C4162.1 (2)Cu1—N3—C12—C1115.7 (5)
O4i—Cu1—N3—C12141.7 (4)N3—C12—C13—C140.5 (4)
O4—Cu1—N3—C12103.9 (3)C11—C12—C13—C14177.2 (4)
N1—Cu1—N3—C1267.3 (3)N3—N4—C14—C130.6 (4)
Cu1i—Cu1—N3—C12110.6 (3)N3—N4—C14—C15179.3 (3)
O4i—Cu1—N3—N418.4 (6)C12—C13—C14—N40.7 (4)
O4—Cu1—N3—N456.2 (2)C12—C13—C14—C15179.2 (3)
N1—Cu1—N3—N4132.6 (2)N4—C14—C15—C167.8 (5)
Cu1i—Cu1—N3—N449.4 (3)C13—C14—C15—C16172.1 (4)
C12—N3—N4—C140.3 (4)N4—C14—C15—C20172.8 (3)
Cu1—N3—N4—C14164.5 (2)C13—C14—C15—C207.3 (6)
N2—N1—C2—C30.5 (3)C20—C15—C16—C170.8 (6)
Cu1—N1—C2—C3158.4 (2)C14—C15—C16—C17179.8 (3)
N2—N1—C2—C1178.3 (3)C15—C16—C17—C180.5 (6)
Cu1—N1—C2—C120.5 (5)C16—C17—C18—C190.3 (7)
N1—C2—C3—C40.8 (4)C17—C18—C19—C200.8 (8)
C1—C2—C3—C4178.0 (3)C18—C19—C20—C150.5 (8)
N1—N2—C4—C30.4 (3)C16—C15—C20—C190.3 (7)
N1—N2—C4—C5178.6 (3)C14—C15—C20—C19179.7 (4)
C2—C3—C4—N20.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.87 (1)2.26 (2)3.012 (3)144 (3)
N4—H4···O30.87 (1)2.17 (2)3.022 (4)166 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(CH3O)2(NO3)2(C10H10N2)4]
Mr945.97
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.3896 (8), 11.2569 (11), 12.7200 (12)
α, β, γ (°)106.120 (2), 103.025 (2), 95.853 (2)
V3)1106.85 (18)
Z1
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.12 × 0.11 × 0.10
Data collection
DiffractometerBruker SMART1000
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.887, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
6768, 4898, 3461
Rint0.015
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.02
No. of reflections4898
No. of parameters290
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.30

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.87 (1)2.26 (2)3.012 (3)144 (3)
N4—H4···O30.87 (1)2.17 (2)3.022 (4)166 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge support from the Scientific Research Project of Higher Education of Inner Mongolia (grant No. NJ09204) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, H. & Sykes, A. G. (2007). Acta Cryst. E63, m2448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, W.-R., Hu, P.-Z. & Li, M.-Y. (2004). Chin. J. Synth. Chem. 12, 28–30.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds