metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Di­chloridobis(quinoline-κN)­platinum(II) nitro­methane monosolvate

aSchool of Applied Chemical Engineering, Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 16 March 2012; accepted 22 March 2012; online 28 March 2012)

In the title compound, [PtCl2(C9H7N)2]·CH3NO2, the PtII cation is four-coordinated in an essentially square-planar environment by two N atoms from two quinoline ligands and two Cl anions. One of the nearly planar quinoline ligands [maximum deviations = 0.042 (6) and 0.018 (7) Å] is almost perpendicular to the PtCl2N2 unit [maximum deviation = 0.024 (3) Å], making a dihedral angle of 89.6 (1)°, whereas the other is slightly inclined to the central plane with a dihedral angle of 74.1 (1)°. The dihedral angle between the quinoline ligands is 88.3 (2)°. In the crystal, each solvent mol­ecule is linked to the metal complex by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the crystal structure of cis-[PtCl2(quinoline)2]·0.25DMF (DMF = N,N-dimethyl­formamide), see: Davies et al. (2001[Davies, M. S., Diakos, C. I., Messerle, B. A. & Hambley, T. W. (2001). Inorg. Chem. 40, 3048-3054.]). For the crystal structure of the related PdII complex trans-[PdCl2(quinoline)2], see: Ha (2012[Ha, K. (2012). Acta Cryst. E68, m143.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(C9H7N)2]·CH3NO2

  • Mr = 585.35

  • Triclinic, [P \overline 1]

  • a = 9.6204 (5) Å

  • b = 10.3698 (5) Å

  • c = 11.6946 (6) Å

  • α = 104.244 (1)°

  • β = 101.913 (1)°

  • γ = 113.834 (1)°

  • V = 970.87 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.52 mm−1

  • T = 200 K

  • 0.25 × 0.19 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.754, Tmax = 1.000

  • 6035 measured reflections

  • 3707 independent reflections

  • 3342 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.084

  • S = 1.24

  • 3707 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 2.69 e Å−3

  • Δρmin = −1.38 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—N1 2.045 (6)
Pt1—N2 2.045 (6)
Pt1—Cl1 2.2881 (18)
Pt1—Cl2 2.3019 (19)
N2—Pt1—N1 90.3 (2)
Cl1—Pt1—Cl2 91.99 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O2i 0.95 2.59 3.323 (13) 134
Symmetry code: (i) -x, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title compound, [PtCl2(quinoline)2].CH3NO2, contains a neutral PtII complex and a nitromethane solvent molecule (Fig. 1). In the complex, the PtII ion is four-coordinated in an essentially square-planar environment by two N atoms from two quinoline ligands and two Cl- anions (Table 1). The Cl atoms are in cis conformation with respect to each other, like in the analogous PtII complex [PtCl2(quinoline)2].0.25DMF (DMF = N,N-dimethylformamide) (Davies et al., 2001). By contrast, in the related PdII complex [PdCl2(quinoline)2], the Cl atoms are in trans conformation (Ha, 2012).

One of the nearly planar quinoline ligands [maximum deviations = 0.042 (6) Å and 0.018 (7) Å] is almost perpendicular to the PtCl2N2 unit [maximum deviation = 0.024 (3) Å], making dihedral angle of 89.6 (1)°, whereas the other is slightly inclined to the unit plane with a dihedral angle of 74.1 (1)°. The dihedral angle between the quinoline ligands is 88.3 (2)°. In the crystal, each solvent molecule is linked to the complex by intermolecular C—H···O hydrogen bonds (Fig. 2 and Table 2). Moreover, the complex molecules display numerous intermolecular π-π interactions between adjacent six-membered rings, the shortest ring centroid-centroid distance being 3.617 (5) Å.

Related literature top

For the crystal structure of cis-[PtCl2(quinoline)2].0.25DMF [DMF = N,N-dimethylformamide?], see: Davies et al. (2001). For the crystal structure of the related PdII complex trans-[PdCl2(quinoline)2], see: Ha (2012).

Experimental top

To a solution of K2PtCl4 (0.2074 g, 0.500 mmol) in H2O (20 ml) was added quinoline (0.1304 g, 1.010 mmol), and refluxed for 3 h. The formed precipitate was separated by filtration, washed with H2O and EtOH, and dried at 50°C, to give a yellow powder (0.1761 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3NO2 solution at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.95 Å (CH) or 0.98 Å (CH3) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The highest peak (2.69 e Å-3) and the deepest hole (-1.38 e Å-3) in the difference Fourier map are located 0.86 Å and 0.75 Å, respectively, from the Pt1 atom.

Structure description top

The asymmetric unit of the title compound, [PtCl2(quinoline)2].CH3NO2, contains a neutral PtII complex and a nitromethane solvent molecule (Fig. 1). In the complex, the PtII ion is four-coordinated in an essentially square-planar environment by two N atoms from two quinoline ligands and two Cl- anions (Table 1). The Cl atoms are in cis conformation with respect to each other, like in the analogous PtII complex [PtCl2(quinoline)2].0.25DMF (DMF = N,N-dimethylformamide) (Davies et al., 2001). By contrast, in the related PdII complex [PdCl2(quinoline)2], the Cl atoms are in trans conformation (Ha, 2012).

One of the nearly planar quinoline ligands [maximum deviations = 0.042 (6) Å and 0.018 (7) Å] is almost perpendicular to the PtCl2N2 unit [maximum deviation = 0.024 (3) Å], making dihedral angle of 89.6 (1)°, whereas the other is slightly inclined to the unit plane with a dihedral angle of 74.1 (1)°. The dihedral angle between the quinoline ligands is 88.3 (2)°. In the crystal, each solvent molecule is linked to the complex by intermolecular C—H···O hydrogen bonds (Fig. 2 and Table 2). Moreover, the complex molecules display numerous intermolecular π-π interactions between adjacent six-membered rings, the shortest ring centroid-centroid distance being 3.617 (5) Å.

For the crystal structure of cis-[PtCl2(quinoline)2].0.25DMF [DMF = N,N-dimethylformamide?], see: Davies et al. (2001). For the crystal structure of the related PdII complex trans-[PdCl2(quinoline)2], see: Ha (2012).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structure detail of the title compound, with atom numbering. Displacement ellipsoids are drawn at the 40% probability level for non-H atoms.
[Figure 2] Fig. 2. A view of the unit-cell contents of the title compound. Intermolecular C—H···O hydrogen-bond interactions are drawn with dashed lines.
cis-Dichloridobis(quinoline-κN)platinum(II) nitromethane monosolvate top
Crystal data top
[PtCl2(C9H7N)2]·CH3NO2Z = 2
Mr = 585.35F(000) = 560
Triclinic, P1Dx = 2.002 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6204 (5) ÅCell parameters from 4362 reflections
b = 10.3698 (5) Åθ = 2.4–26.0°
c = 11.6946 (6) ŵ = 7.52 mm1
α = 104.244 (1)°T = 200 K
β = 101.913 (1)°Block, yellow
γ = 113.834 (1)°0.25 × 0.19 × 0.13 mm
V = 970.87 (8) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
3707 independent reflections
Radiation source: fine-focus sealed tube3342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 911
Tmin = 0.754, Tmax = 1.000k = 1212
6035 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + (0.P)2 + 7.8267P]
where P = (Fo2 + 2Fc2)/3
3707 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 2.69 e Å3
0 restraintsΔρmin = 1.38 e Å3
Crystal data top
[PtCl2(C9H7N)2]·CH3NO2γ = 113.834 (1)°
Mr = 585.35V = 970.87 (8) Å3
Triclinic, P1Z = 2
a = 9.6204 (5) ÅMo Kα radiation
b = 10.3698 (5) ŵ = 7.52 mm1
c = 11.6946 (6) ÅT = 200 K
α = 104.244 (1)°0.25 × 0.19 × 0.13 mm
β = 101.913 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3707 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3342 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 1.000Rint = 0.021
6035 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.24Δρmax = 2.69 e Å3
3707 reflectionsΔρmin = 1.38 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.24674 (4)0.27007 (3)0.45574 (3)0.02575 (10)
Cl10.0985 (2)0.3934 (2)0.48336 (18)0.0326 (4)
Cl20.2977 (3)0.2747 (3)0.65828 (18)0.0395 (5)
N10.3854 (7)0.1676 (7)0.4262 (6)0.0245 (13)
N20.2011 (7)0.2682 (7)0.2765 (6)0.0252 (13)
C10.5394 (9)0.2527 (9)0.4458 (7)0.0284 (16)
H10.58400.35950.48290.034*
C20.6416 (10)0.1950 (9)0.4153 (7)0.0327 (18)
H20.75280.26140.43330.039*
C30.5792 (10)0.0430 (9)0.3596 (7)0.0310 (17)
H30.64560.00130.33680.037*
C40.4121 (9)0.0533 (9)0.3356 (7)0.0279 (16)
C50.3400 (10)0.2136 (9)0.2791 (7)0.0345 (18)
H50.40210.25900.25330.041*
C60.1834 (10)0.3010 (9)0.2622 (7)0.0358 (19)
H60.13490.40780.22130.043*
C70.0899 (10)0.2368 (9)0.3042 (7)0.0331 (18)
H70.01890.30130.29440.040*
C80.1541 (9)0.0833 (8)0.3586 (6)0.0274 (16)
H80.09090.04070.38690.033*
C90.3187 (8)0.0128 (8)0.3725 (6)0.0218 (14)
C100.3191 (11)0.3682 (9)0.2522 (8)0.0331 (18)
H100.42280.42910.31600.040*
C110.2975 (11)0.3873 (9)0.1381 (8)0.041 (2)
H110.38540.45920.12430.049*
C120.1504 (12)0.3031 (9)0.0463 (8)0.044 (2)
H120.13380.31730.03160.053*
C130.0218 (10)0.1942 (9)0.0665 (7)0.0333 (18)
C140.1344 (12)0.1003 (11)0.0233 (8)0.044 (2)
H140.15610.11110.10240.052*
C150.2533 (12)0.0033 (11)0.0024 (8)0.049 (2)
H150.35710.06510.06600.059*
C160.2242 (10)0.0207 (10)0.1153 (8)0.040 (2)
H160.30840.09540.13000.048*
C170.0761 (10)0.0692 (9)0.2076 (7)0.0343 (18)
H170.05820.05850.28690.041*
C180.0508 (9)0.1783 (8)0.1850 (7)0.0275 (16)
O10.8350 (9)0.4264 (8)0.0474 (7)0.067 (2)
O20.5859 (11)0.3279 (13)0.0137 (9)0.112 (4)
N30.7193 (10)0.3685 (8)0.0788 (7)0.0438 (18)
C190.7469 (14)0.3484 (11)0.1983 (9)0.061 (3)
H19A0.72370.41600.25660.091*
H19B0.86000.37260.23340.091*
H19C0.67560.24300.18570.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02316 (16)0.02821 (16)0.02450 (16)0.01381 (13)0.00675 (12)0.00619 (12)
Cl10.0309 (10)0.0313 (10)0.0369 (10)0.0193 (9)0.0113 (8)0.0075 (8)
Cl20.0361 (11)0.0639 (14)0.0288 (10)0.0318 (11)0.0133 (9)0.0177 (10)
N10.020 (3)0.033 (3)0.029 (3)0.014 (3)0.016 (3)0.015 (3)
N20.026 (3)0.025 (3)0.028 (3)0.018 (3)0.007 (3)0.008 (3)
C10.017 (4)0.032 (4)0.033 (4)0.010 (3)0.005 (3)0.014 (3)
C20.032 (4)0.038 (5)0.032 (4)0.017 (4)0.008 (4)0.021 (4)
C30.039 (5)0.042 (5)0.030 (4)0.027 (4)0.017 (4)0.022 (4)
C40.032 (4)0.040 (4)0.028 (4)0.027 (4)0.012 (3)0.020 (3)
C50.037 (5)0.038 (5)0.035 (4)0.025 (4)0.011 (4)0.013 (4)
C60.038 (5)0.029 (4)0.031 (4)0.015 (4)0.006 (4)0.003 (3)
C70.028 (4)0.026 (4)0.039 (5)0.012 (3)0.006 (4)0.010 (3)
C80.025 (4)0.031 (4)0.022 (4)0.012 (3)0.003 (3)0.009 (3)
C90.020 (4)0.026 (4)0.018 (3)0.012 (3)0.002 (3)0.007 (3)
C100.044 (5)0.033 (4)0.039 (5)0.023 (4)0.024 (4)0.024 (4)
C110.046 (5)0.028 (4)0.047 (5)0.016 (4)0.017 (4)0.013 (4)
C120.069 (7)0.033 (5)0.029 (4)0.025 (5)0.017 (5)0.008 (4)
C130.040 (5)0.032 (4)0.025 (4)0.022 (4)0.001 (4)0.005 (3)
C140.052 (6)0.053 (6)0.030 (5)0.031 (5)0.010 (4)0.014 (4)
C150.039 (5)0.061 (6)0.031 (5)0.026 (5)0.005 (4)0.002 (4)
C160.026 (4)0.044 (5)0.034 (5)0.011 (4)0.002 (4)0.003 (4)
C170.039 (5)0.040 (5)0.023 (4)0.023 (4)0.009 (4)0.007 (3)
C180.031 (4)0.027 (4)0.026 (4)0.019 (3)0.005 (3)0.007 (3)
O10.062 (5)0.061 (5)0.064 (5)0.013 (4)0.025 (4)0.028 (4)
O20.051 (6)0.168 (10)0.072 (6)0.023 (6)0.001 (5)0.043 (7)
N30.042 (5)0.034 (4)0.027 (4)0.004 (4)0.000 (3)0.001 (3)
C190.071 (8)0.049 (6)0.041 (6)0.013 (6)0.010 (5)0.017 (5)
Geometric parameters (Å, º) top
Pt1—N12.045 (6)C8—H80.9500
Pt1—N22.045 (6)C10—C111.383 (11)
Pt1—Cl12.2881 (18)C10—H100.9500
Pt1—Cl22.3019 (19)C11—C121.353 (13)
N1—C11.315 (9)C11—H110.9500
N1—C91.375 (9)C12—C131.409 (12)
N2—C101.331 (10)C12—H120.9500
N2—C181.373 (9)C13—C141.404 (12)
C1—C21.403 (11)C13—C181.420 (10)
C1—H10.9500C14—C151.332 (13)
C2—C31.355 (11)C14—H140.9500
C2—H20.9500C15—C161.418 (12)
C3—C41.428 (11)C15—H150.9500
C3—H30.9500C16—C171.364 (11)
C4—C91.405 (10)C16—H160.9500
C4—C51.420 (11)C17—C181.416 (11)
C5—C61.348 (12)C17—H170.9500
C5—H50.9500O1—N31.213 (10)
C6—C71.413 (11)O2—N31.185 (11)
C6—H60.9500N3—C191.450 (11)
C7—C81.366 (10)C19—H19A0.9800
C7—H70.9500C19—H19B0.9800
C8—C91.438 (10)C19—H19C0.9800
N2—Pt1—N190.3 (2)C4—C9—C8119.4 (7)
N2—Pt1—Cl187.40 (17)N2—C10—C11122.9 (8)
N1—Pt1—Cl1176.81 (17)N2—C10—H10118.5
N2—Pt1—Cl2179.33 (17)C11—C10—H10118.5
N1—Pt1—Cl290.30 (17)C12—C11—C10119.6 (8)
Cl1—Pt1—Cl291.99 (7)C12—C11—H11120.2
C1—N1—C9118.8 (6)C10—C11—H11120.2
C1—N1—Pt1118.8 (5)C11—C12—C13119.8 (8)
C9—N1—Pt1121.9 (5)C11—C12—H12120.1
C10—N2—C18119.4 (7)C13—C12—H12120.1
C10—N2—Pt1117.8 (5)C14—C13—C12124.0 (8)
C18—N2—Pt1122.5 (5)C14—C13—C18117.6 (8)
N1—C1—C2123.9 (7)C12—C13—C18118.3 (7)
N1—C1—H1118.1C15—C14—C13122.9 (8)
C2—C1—H1118.1C15—C14—H14118.6
C3—C2—C1118.9 (8)C13—C14—H14118.6
C3—C2—H2120.5C14—C15—C16119.6 (8)
C1—C2—H2120.5C14—C15—H15120.2
C2—C3—C4118.9 (7)C16—C15—H15120.2
C2—C3—H3120.5C17—C16—C15120.4 (9)
C4—C3—H3120.5C17—C16—H16119.8
C9—C4—C5119.6 (7)C15—C16—H16119.8
C9—C4—C3118.7 (7)C16—C17—C18120.0 (8)
C5—C4—C3121.7 (7)C16—C17—H17120.0
C6—C5—C4119.9 (7)C18—C17—H17120.0
C6—C5—H5120.0N2—C18—C17120.6 (7)
C4—C5—H5120.0N2—C18—C13119.9 (7)
C5—C6—C7121.2 (7)C17—C18—C13119.4 (7)
C5—C6—H6119.4O2—N3—O1121.4 (9)
C7—C6—H6119.4O2—N3—C19120.1 (9)
C8—C7—C6120.8 (8)O1—N3—C19118.5 (8)
C8—C7—H7119.6N3—C19—H19A109.5
C6—C7—H7119.6N3—C19—H19B109.5
C7—C8—C9119.0 (7)H19A—C19—H19B109.5
C7—C8—H8120.5N3—C19—H19C109.5
C9—C8—H8120.5H19A—C19—H19C109.5
N1—C9—C4120.6 (7)H19B—C19—H19C109.5
N1—C9—C8120.0 (6)
N2—Pt1—N1—C186.5 (6)C5—C4—C9—C83.3 (10)
Cl2—Pt1—N1—C193.2 (5)C3—C4—C9—C8174.8 (6)
N2—Pt1—N1—C985.6 (5)C7—C8—C9—N1179.6 (7)
Cl2—Pt1—N1—C994.7 (5)C7—C8—C9—C43.1 (10)
N1—Pt1—N2—C1075.1 (5)C18—N2—C10—C110.5 (11)
Cl1—Pt1—N2—C10102.7 (5)Pt1—N2—C10—C11173.6 (6)
N1—Pt1—N2—C18111.0 (5)N2—C10—C11—C120.8 (12)
Cl1—Pt1—N2—C1871.3 (5)C10—C11—C12—C131.6 (13)
C9—N1—C1—C20.1 (11)C11—C12—C13—C14179.2 (8)
Pt1—N1—C1—C2172.4 (6)C11—C12—C13—C181.1 (12)
N1—C1—C2—C31.6 (11)C12—C13—C14—C15179.1 (9)
C1—C2—C3—C40.9 (11)C18—C13—C14—C151.2 (13)
C2—C3—C4—C91.0 (10)C13—C14—C15—C160.5 (14)
C2—C3—C4—C5179.1 (7)C14—C15—C16—C170.9 (14)
C9—C4—C5—C60.5 (11)C15—C16—C17—C181.5 (13)
C3—C4—C5—C6177.6 (7)C10—N2—C18—C17178.9 (7)
C4—C5—C6—C72.5 (12)Pt1—N2—C18—C177.2 (9)
C5—C6—C7—C82.7 (12)C10—N2—C18—C131.0 (10)
C6—C7—C8—C90.2 (11)Pt1—N2—C18—C13172.8 (5)
C1—N1—C9—C41.9 (10)C16—C17—C18—N2179.2 (7)
Pt1—N1—C9—C4170.2 (5)C16—C17—C18—C130.7 (11)
C1—N1—C9—C8175.3 (6)C14—C13—C18—N2179.5 (7)
Pt1—N1—C9—C812.6 (9)C12—C13—C18—N20.2 (11)
C5—C4—C9—N1179.4 (7)C14—C13—C18—C170.6 (11)
C3—C4—C9—N12.5 (10)C12—C13—C18—C17179.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.952.593.323 (13)134
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[PtCl2(C9H7N)2]·CH3NO2
Mr585.35
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.6204 (5), 10.3698 (5), 11.6946 (6)
α, β, γ (°)104.244 (1), 101.913 (1), 113.834 (1)
V3)970.87 (8)
Z2
Radiation typeMo Kα
µ (mm1)7.52
Crystal size (mm)0.25 × 0.19 × 0.13
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.754, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6035, 3707, 3342
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.084, 1.24
No. of reflections3707
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.69, 1.38

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pt1—N12.045 (6)Pt1—Cl12.2881 (18)
Pt1—N22.045 (6)Pt1—Cl22.3019 (19)
N2—Pt1—N190.3 (2)Cl1—Pt1—Cl291.99 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.952.593.323 (13)134.1
Symmetry code: (i) x, y, z.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. 2011-0030747).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavies, M. S., Diakos, C. I., Messerle, B. A. & Hambley, T. W. (2001). Inorg. Chem. 40, 3048–3054.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2012). Acta Cryst. E68, m143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds