metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(pyridine-3-carb­­oxy­lic acid-κN)mercury(II)]-di-μ-chlorido]

aDepartment of Chemistry, Omidieh Branch, Islamic Azad University, Omidieh, Iran
*Correspondence e-mail: sadif_shirvan1@yahoo.com

(Received 19 March 2012; accepted 24 March 2012; online 31 March 2012)

In the title compound, [HgCl2(C6H5NO2)2]n, the HgII cation is located on an inversion center and is six-coordinated in a distorted octa­hedral geometry by two N atoms from two pyridine-3-carb­oxy­lic acid mol­ecules and four bridging Cl anions. The bridging function of the Cl anions leads to polymeric chains running along the a axis. One Hg—Cl bond is much longer than the other. In the crystal, O—H⋯O and weak C—H⋯Cl hydrogen bonds are observed.

Related literature

For related structures, see: Lu & Kohler (2002[Lu, J. Y. & Kohler, E. E. (2002). Inorg. Chem. Commun. 5, 196-198.]); Liang & Li (2005[Liang, Y. & Li, W. (2005). Acta Cryst. E61, m1135-m1137.]); Zhang et al. (1996[Zhang, C., Xu, D., Xu, Y. & Huang, X. (1996). Acta Cryst. C52, 591-593.]); Ghazzali et al. (2007[Ghazzali, M., Abu-Youssef, M. A. M. & Langer, V. (2007). Acta Cryst. E63, m114-m116.]); Lin et al. (1998[Lin, W., Evans, O. R., Xiong, R. G. & Wang, Z. (1998). J. Am. Chem. Soc. 120, 13272-13273.]); Cotton et al. (1991[Cotton, F. A., Falvello, L. R., Ohlhausen, E. L., Murillo, C. A. & Quesada, J. F. (1991). Z. Anorg. Allg. Chem. 598, 53-70.]).

[Scheme 1]

Experimental

Crystal data
  • [HgCl2(C6H5NO2)2]

  • Mr = 517.71

  • Triclinic, [P \overline 1]

  • a = 3.8298 (5) Å

  • b = 6.5626 (9) Å

  • c = 14.5831 (18) Å

  • α = 98.001 (10)°

  • β = 95.315 (11)°

  • γ = 92.963 (11)°

  • V = 360.62 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 11.06 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.293, Tmax = 0.523

  • 4417 measured reflections

  • 1917 independent reflections

  • 1913 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.082

  • S = 0.83

  • 1917 reflections

  • 98 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −1.22 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—Cl1 2.4608 (13)
Hg1—Cl1i 2.8790 (13)
Hg1—N1ii 2.519 (4)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1iii 0.82 1.80 2.618 (7) 171
C1—H1⋯Cl1iv 0.93 2.79 3.582 (6) 144
C6—H6⋯Cl1ii 0.93 2.78 3.454 (5) 130
Symmetry codes: (ii) -x+1, -y+2, -z+1; (iii) -x, -y+2, -z; (iv) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

3-Pyridine carboxylic acid (pyc), is a good ligand, and a few complexes with pyc have been prepared, such as that of cadmium (Lu & Kohler, 2002; Liang & Li, 2005; Zhang et al., 1996) and zinc (Ghazzali et al., 2007; Lin et al., 1998; Cotton et al., 1991). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains one half -molecule. The HgII atom is six-coordinated in a distorted octahedral configuration by two N atoms from two 3-pyridine carboxylic acid and four bridging Cl. The bridging function of the chloro atoms leads to a one-dimensional chain structure. The Hg—Cl and Hg—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular O—H···O and C—H···Cl hydrogen bonds (Table 2, Fig. 2) may stabilize the structure.

Related literature top

For related structures, see: Lu & Kohler (2002); Liang & Li (2005); Zhang et al. (1996); Ghazzali et al. (2007); Lin et al. (1998); Cotton et al. (1991).

Experimental top

A solution of pyridine-3-carboxylic acid (0.25 g, 2.0 mmol) in methanol (20 ml) was added to a solution of HgCl2 (0.27 g, 1.0 mmol) in methanol (20 ml) and the resulting colorless solution was stirred for 15 min at room temperature. This solution was left to evaporate slowly at room temperature. After one week, colorless needle crystals of the title compound were isolated (yield 0.41 g, 79.2%).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

3-Pyridine carboxylic acid (pyc), is a good ligand, and a few complexes with pyc have been prepared, such as that of cadmium (Lu & Kohler, 2002; Liang & Li, 2005; Zhang et al., 1996) and zinc (Ghazzali et al., 2007; Lin et al., 1998; Cotton et al., 1991). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains one half -molecule. The HgII atom is six-coordinated in a distorted octahedral configuration by two N atoms from two 3-pyridine carboxylic acid and four bridging Cl. The bridging function of the chloro atoms leads to a one-dimensional chain structure. The Hg—Cl and Hg—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular O—H···O and C—H···Cl hydrogen bonds (Table 2, Fig. 2) may stabilize the structure.

For related structures, see: Lu & Kohler (2002); Liang & Li (2005); Zhang et al. (1996); Ghazzali et al. (2007); Lin et al. (1998); Cotton et al. (1991).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a) -1 + x,y,z; (c) 1 - x,2 - y,1 - z; (d) 2 - x,2 - y,1 - z].
[Figure 2] Fig. 2. A packing diagram of the title complex. Hydrogen bonds are shown as dashed lines.
catena-Poly[[bis(pyridine-3-carboxylic acid-κN)mercury(II)]-di-µ-chlorido] top
Crystal data top
[HgCl2(C6H5NO2)2]Z = 1
Mr = 517.71F(000) = 242
Triclinic, P1Dx = 2.384 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8298 (5) ÅCell parameters from 1010 reflections
b = 6.5626 (9) Åθ = 2.8–29.2°
c = 14.5831 (18) ŵ = 11.06 mm1
α = 98.001 (10)°T = 298 K
β = 95.315 (11)°Needle, colorless
γ = 92.963 (11)°0.20 × 0.10 × 0.05 mm
V = 360.62 (8) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1917 independent reflections
Radiation source: fine-focus sealed tube1913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
φ and ω scansθmax = 29.2°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)'
h = 45
Tmin = 0.293, Tmax = 0.523k = 88
4417 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.0827P)2]
where P = (Fo2 + 2Fc2)/3
1917 reflections(Δ/σ)max = 0.015
98 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 1.22 e Å3
Crystal data top
[HgCl2(C6H5NO2)2]γ = 92.963 (11)°
Mr = 517.71V = 360.62 (8) Å3
Triclinic, P1Z = 1
a = 3.8298 (5) ÅMo Kα radiation
b = 6.5626 (9) ŵ = 11.06 mm1
c = 14.5831 (18) ÅT = 298 K
α = 98.001 (10)°0.20 × 0.10 × 0.05 mm
β = 95.315 (11)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1917 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)'
1913 reflections with I > 2σ(I)
Tmin = 0.293, Tmax = 0.523Rint = 0.078
4417 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 0.83Δρmax = 1.02 e Å3
1917 reflectionsΔρmin = 1.22 e Å3
98 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5737 (16)0.5901 (8)0.3289 (4)0.0441 (10)
H10.65530.53070.38050.053*
C20.5746 (17)0.4781 (8)0.2408 (4)0.0471 (11)
H20.65610.34630.23380.057*
C30.4531 (16)0.5643 (8)0.1635 (4)0.0444 (10)
H30.45280.49260.10380.053*
C40.3308 (14)0.7624 (7)0.1775 (3)0.0376 (8)
C50.1917 (15)0.8656 (8)0.0996 (3)0.0419 (9)
C60.3410 (14)0.8644 (7)0.2680 (3)0.0385 (8)
H60.26180.99660.27700.046*
N10.4590 (13)0.7817 (7)0.3425 (3)0.0410 (8)
O10.0639 (17)1.0378 (8)0.1165 (3)0.0595 (12)
O20.2082 (19)0.7727 (9)0.0170 (3)0.0648 (14)
H2A0.11150.83870.02080.097*
Cl10.9257 (3)0.77277 (19)0.56211 (9)0.0418 (2)
Hg10.50001.00000.50000.03700 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.047 (3)0.041 (2)0.047 (2)0.0095 (19)0.0002 (19)0.0179 (18)
C20.055 (3)0.035 (2)0.053 (3)0.0128 (19)0.002 (2)0.0103 (18)
C30.051 (3)0.039 (2)0.044 (2)0.0099 (19)0.0038 (19)0.0065 (16)
C40.040 (2)0.0376 (19)0.0365 (19)0.0052 (16)0.0025 (15)0.0083 (15)
C50.048 (3)0.042 (2)0.037 (2)0.0091 (19)0.0016 (17)0.0081 (16)
C60.046 (2)0.0380 (19)0.0340 (19)0.0129 (17)0.0010 (16)0.0103 (15)
N10.047 (2)0.0413 (19)0.0361 (17)0.0116 (17)0.0005 (15)0.0119 (14)
O10.085 (4)0.054 (2)0.0421 (19)0.032 (2)0.000 (2)0.0115 (16)
O20.098 (4)0.064 (3)0.0336 (18)0.033 (3)0.001 (2)0.0055 (16)
Cl10.0408 (5)0.0432 (5)0.0452 (5)0.0145 (4)0.0031 (4)0.0164 (4)
Hg10.03475 (14)0.04550 (15)0.03275 (13)0.01720 (9)0.00034 (8)0.00937 (8)
Geometric parameters (Å, º) top
C1—N11.348 (7)C5—O11.257 (7)
C1—C21.390 (8)C5—O21.281 (7)
C1—H10.9300C6—N11.334 (6)
C2—C31.384 (8)C6—H60.9300
C2—H20.9300N1—Hg12.519 (4)
C3—C41.399 (7)O2—H2A0.8200
C3—H30.9300Hg1—Cl12.4608 (13)
C4—C61.390 (6)Hg1—Cl1i2.8790 (13)
C4—C51.474 (7)Hg1—N1ii2.519 (4)
N1—C1—C2122.4 (5)C6—N1—Hg1118.5 (3)
N1—C1—H1118.8C1—N1—Hg1123.2 (3)
C2—C1—H1118.8C5—O2—H2A109.5
C3—C2—C1119.4 (5)Hg1—Cl1—Hg1iii91.31 (4)
C3—C2—H2120.3Cl1—Hg1—Cl1ii180.000 (1)
C1—C2—H2120.3Cl1—Hg1—N1ii89.75 (11)
C2—C3—C4118.2 (5)Cl1ii—Hg1—N1ii90.25 (11)
C2—C3—H3120.9Cl1—Hg1—N190.25 (11)
C4—C3—H3120.9Cl1ii—Hg1—N189.75 (11)
C3—C4—C6118.7 (5)N1ii—Hg1—N1180.000 (1)
C3—C4—C5122.1 (4)Cl1—Hg1—Cl1i91.31 (4)
C6—C4—C5119.2 (5)Cl1ii—Hg1—Cl1i88.69 (4)
O1—C5—O2123.2 (5)N1ii—Hg1—Cl1i85.85 (11)
O1—C5—C4119.4 (5)N1—Hg1—Cl1i94.15 (11)
O2—C5—C4117.4 (5)Cl1—Hg1—Cl1iv88.69 (4)
N1—C6—C4123.1 (5)Cl1ii—Hg1—Cl1iv91.31 (4)
N1—C6—H6118.4N1ii—Hg1—Cl1iv94.15 (11)
C4—C6—H6118.5N1—Hg1—Cl1iv85.85 (11)
C6—N1—C1118.1 (5)Cl1i—Hg1—Cl1iv180.0
N1—C1—C2—C30.2 (9)Hg1iii—Cl1—Hg1—N1ii94.16 (11)
C1—C2—C3—C40.5 (9)Hg1iii—Cl1—Hg1—N185.84 (11)
C2—C3—C4—C60.8 (8)Hg1iii—Cl1—Hg1—Cl1i180.0
C2—C3—C4—C5179.1 (5)Hg1iii—Cl1—Hg1—Cl1iv0.0
C3—C4—C5—O1175.3 (6)C6—N1—Hg1—Cl1159.3 (4)
C6—C4—C5—O14.6 (8)C1—N1—Hg1—Cl115.9 (4)
C3—C4—C5—O24.6 (8)C6—N1—Hg1—Cl1ii20.7 (4)
C6—C4—C5—O2175.4 (6)C1—N1—Hg1—Cl1ii164.1 (4)
C3—C4—C6—N10.7 (8)C6—N1—Hg1—N1ii6 (100)
C5—C4—C6—N1179.3 (5)C1—N1—Hg1—N1ii169 (100)
C4—C6—N1—C10.1 (8)C6—N1—Hg1—Cl1i109.4 (4)
C4—C6—N1—Hg1175.5 (4)C1—N1—Hg1—Cl1i75.4 (4)
C2—C1—N1—C60.4 (8)C6—N1—Hg1—Cl1iv70.6 (4)
C2—C1—N1—Hg1174.8 (4)C1—N1—Hg1—Cl1iv104.6 (4)
Hg1iii—Cl1—Hg1—Cl1ii73 (100)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1; (iii) x+1, y, z; (iv) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1v0.821.802.618 (7)171
C1—H1···Cl1vi0.932.793.582 (6)144
C6—H6···Cl1ii0.932.783.454 (5)130
Symmetry codes: (ii) x+1, y+2, z+1; (v) x, y+2, z; (vi) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[HgCl2(C6H5NO2)2]
Mr517.71
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)3.8298 (5), 6.5626 (9), 14.5831 (18)
α, β, γ (°)98.001 (10), 95.315 (11), 92.963 (11)
V3)360.62 (8)
Z1
Radiation typeMo Kα
µ (mm1)11.06
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)'
Tmin, Tmax0.293, 0.523
No. of measured, independent and
observed [I > 2σ(I)] reflections
4417, 1917, 1913
Rint0.078
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 0.83
No. of reflections1917
No. of parameters98
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 1.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Hg1—Cl12.4608 (13)Hg1—N1ii2.519 (4)
Hg1—Cl1i2.8790 (13)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1iii0.821.802.618 (7)171
C1—H1···Cl1iv0.932.793.582 (6)144
C6—H6···Cl1ii0.932.783.454 (5)130
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x, y+2, z; (iv) x+2, y+1, z+1.
 

Acknowledgements

We are grateful to the Islamic Azad University, Omidieh Branch for financial support.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A., Falvello, L. R., Ohlhausen, E. L., Murillo, C. A. & Quesada, J. F. (1991). Z. Anorg. Allg. Chem. 598, 53–70.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGhazzali, M., Abu-Youssef, M. A. M. & Langer, V. (2007). Acta Cryst. E63, m114–m116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, Y. & Li, W. (2005). Acta Cryst. E61, m1135–m1137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, W., Evans, O. R., Xiong, R. G. & Wang, Z. (1998). J. Am. Chem. Soc. 120, 13272–13273.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, J. Y. & Kohler, E. E. (2002). Inorg. Chem. Commun. 5, 196–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, C., Xu, D., Xu, Y. & Huang, X. (1996). Acta Cryst. C52, 591–593.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds