metal-organic compounds
catena-Poly[[bis(pyridine-3-carboxylic acid-κN)mercury(II)]-di-μ-chlorido]
aDepartment of Chemistry, Omidieh Branch, Islamic Azad University, Omidieh, Iran
*Correspondence e-mail: sadif_shirvan1@yahoo.com
In the title compound, [HgCl2(C6H5NO2)2]n, the HgII cation is located on an inversion center and is six-coordinated in a distorted octahedral geometry by two N atoms from two pyridine-3-carboxylic acid molecules and four bridging Cl− anions. The bridging function of the Cl− anions leads to polymeric chains running along the a axis. One Hg—Cl bond is much longer than the other. In the crystal, O—H⋯O and weak C—H⋯Cl hydrogen bonds are observed.
Related literature
For related structures, see: Lu & Kohler (2002); Liang & Li (2005); Zhang et al. (1996); Ghazzali et al. (2007); Lin et al. (1998); Cotton et al. (1991).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812012986/xu5491sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812012986/xu5491Isup2.hkl
A solution of pyridine-3-carboxylic acid (0.25 g, 2.0 mmol) in methanol (20 ml) was added to a solution of HgCl2 (0.27 g, 1.0 mmol) in methanol (20 ml) and the resulting colorless solution was stirred for 15 min at room temperature. This solution was left to evaporate slowly at room temperature. After one week, colorless needle crystals of the title compound were isolated (yield 0.41 g, 79.2%).
H atoms were positioned geometrically, with C—H = 0.93 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
3-Pyridine carboxylic acid (pyc), is a good ligand, and a few complexes with pyc have been prepared, such as that of cadmium (Lu & Kohler, 2002; Liang & Li, 2005; Zhang et al., 1996) and zinc (Ghazzali et al., 2007; Lin et al., 1998; Cotton et al., 1991). Here, we report the synthesis and structure of the title compound.
The
of the title compound, (Fig. 1), contains one half -molecule. The HgII atom is six-coordinated in a distorted octahedral configuration by two N atoms from two 3-pyridine carboxylic acid and four bridging Cl. The bridging function of the chloro atoms leads to a one-dimensional chain structure. The Hg—Cl and Hg—N bond lengths and angles are collected in Table 1.In the
intermolecular O—H···O and C—H···Cl hydrogen bonds (Table 2, Fig. 2) may stabilize the structure.For related structures, see: Lu & Kohler (2002); Liang & Li (2005); Zhang et al. (1996); Ghazzali et al. (2007); Lin et al. (1998); Cotton et al. (1991).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[HgCl2(C6H5NO2)2] | Z = 1 |
Mr = 517.71 | F(000) = 242 |
Triclinic, P1 | Dx = 2.384 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 3.8298 (5) Å | Cell parameters from 1010 reflections |
b = 6.5626 (9) Å | θ = 2.8–29.2° |
c = 14.5831 (18) Å | µ = 11.06 mm−1 |
α = 98.001 (10)° | T = 298 K |
β = 95.315 (11)° | Needle, colorless |
γ = 92.963 (11)° | 0.20 × 0.10 × 0.05 mm |
V = 360.62 (8) Å3 |
Bruker SMART 1000 CCD area-detector diffractometer | 1917 independent reflections |
Radiation source: fine-focus sealed tube | 1913 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.078 |
φ and ω scans | θmax = 29.2°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2001)' | h = −4→5 |
Tmin = 0.293, Tmax = 0.523 | k = −8→8 |
4417 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 0.83 | w = 1/[σ2(Fo2) + (0.0827P)2] where P = (Fo2 + 2Fc2)/3 |
1917 reflections | (Δ/σ)max = 0.015 |
98 parameters | Δρmax = 1.02 e Å−3 |
0 restraints | Δρmin = −1.22 e Å−3 |
[HgCl2(C6H5NO2)2] | γ = 92.963 (11)° |
Mr = 517.71 | V = 360.62 (8) Å3 |
Triclinic, P1 | Z = 1 |
a = 3.8298 (5) Å | Mo Kα radiation |
b = 6.5626 (9) Å | µ = 11.06 mm−1 |
c = 14.5831 (18) Å | T = 298 K |
α = 98.001 (10)° | 0.20 × 0.10 × 0.05 mm |
β = 95.315 (11)° |
Bruker SMART 1000 CCD area-detector diffractometer | 1917 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001)' | 1913 reflections with I > 2σ(I) |
Tmin = 0.293, Tmax = 0.523 | Rint = 0.078 |
4417 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 0.83 | Δρmax = 1.02 e Å−3 |
1917 reflections | Δρmin = −1.22 e Å−3 |
98 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5737 (16) | 0.5901 (8) | 0.3289 (4) | 0.0441 (10) | |
H1 | 0.6553 | 0.5307 | 0.3805 | 0.053* | |
C2 | 0.5746 (17) | 0.4781 (8) | 0.2408 (4) | 0.0471 (11) | |
H2 | 0.6561 | 0.3463 | 0.2338 | 0.057* | |
C3 | 0.4531 (16) | 0.5643 (8) | 0.1635 (4) | 0.0444 (10) | |
H3 | 0.4528 | 0.4926 | 0.1038 | 0.053* | |
C4 | 0.3308 (14) | 0.7624 (7) | 0.1775 (3) | 0.0376 (8) | |
C5 | 0.1917 (15) | 0.8656 (8) | 0.0996 (3) | 0.0419 (9) | |
C6 | 0.3410 (14) | 0.8644 (7) | 0.2680 (3) | 0.0385 (8) | |
H6 | 0.2618 | 0.9966 | 0.2770 | 0.046* | |
N1 | 0.4590 (13) | 0.7817 (7) | 0.3425 (3) | 0.0410 (8) | |
O1 | 0.0639 (17) | 1.0378 (8) | 0.1165 (3) | 0.0595 (12) | |
O2 | 0.2082 (19) | 0.7727 (9) | 0.0170 (3) | 0.0648 (14) | |
H2A | 0.1115 | 0.8387 | −0.0208 | 0.097* | |
Cl1 | 0.9257 (3) | 0.77277 (19) | 0.56211 (9) | 0.0418 (2) | |
Hg1 | 0.5000 | 1.0000 | 0.5000 | 0.03700 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.047 (3) | 0.041 (2) | 0.047 (2) | 0.0095 (19) | −0.0002 (19) | 0.0179 (18) |
C2 | 0.055 (3) | 0.035 (2) | 0.053 (3) | 0.0128 (19) | 0.002 (2) | 0.0103 (18) |
C3 | 0.051 (3) | 0.039 (2) | 0.044 (2) | 0.0099 (19) | 0.0038 (19) | 0.0065 (16) |
C4 | 0.040 (2) | 0.0376 (19) | 0.0365 (19) | 0.0052 (16) | 0.0025 (15) | 0.0083 (15) |
C5 | 0.048 (3) | 0.042 (2) | 0.037 (2) | 0.0091 (19) | −0.0016 (17) | 0.0081 (16) |
C6 | 0.046 (2) | 0.0380 (19) | 0.0340 (19) | 0.0129 (17) | 0.0010 (16) | 0.0103 (15) |
N1 | 0.047 (2) | 0.0413 (19) | 0.0361 (17) | 0.0116 (17) | −0.0005 (15) | 0.0119 (14) |
O1 | 0.085 (4) | 0.054 (2) | 0.0421 (19) | 0.032 (2) | 0.000 (2) | 0.0115 (16) |
O2 | 0.098 (4) | 0.064 (3) | 0.0336 (18) | 0.033 (3) | −0.001 (2) | 0.0055 (16) |
Cl1 | 0.0408 (5) | 0.0432 (5) | 0.0452 (5) | 0.0145 (4) | 0.0031 (4) | 0.0164 (4) |
Hg1 | 0.03475 (14) | 0.04550 (15) | 0.03275 (13) | 0.01720 (9) | 0.00034 (8) | 0.00937 (8) |
C1—N1 | 1.348 (7) | C5—O1 | 1.257 (7) |
C1—C2 | 1.390 (8) | C5—O2 | 1.281 (7) |
C1—H1 | 0.9300 | C6—N1 | 1.334 (6) |
C2—C3 | 1.384 (8) | C6—H6 | 0.9300 |
C2—H2 | 0.9300 | N1—Hg1 | 2.519 (4) |
C3—C4 | 1.399 (7) | O2—H2A | 0.8200 |
C3—H3 | 0.9300 | Hg1—Cl1 | 2.4608 (13) |
C4—C6 | 1.390 (6) | Hg1—Cl1i | 2.8790 (13) |
C4—C5 | 1.474 (7) | Hg1—N1ii | 2.519 (4) |
N1—C1—C2 | 122.4 (5) | C6—N1—Hg1 | 118.5 (3) |
N1—C1—H1 | 118.8 | C1—N1—Hg1 | 123.2 (3) |
C2—C1—H1 | 118.8 | C5—O2—H2A | 109.5 |
C3—C2—C1 | 119.4 (5) | Hg1—Cl1—Hg1iii | 91.31 (4) |
C3—C2—H2 | 120.3 | Cl1—Hg1—Cl1ii | 180.000 (1) |
C1—C2—H2 | 120.3 | Cl1—Hg1—N1ii | 89.75 (11) |
C2—C3—C4 | 118.2 (5) | Cl1ii—Hg1—N1ii | 90.25 (11) |
C2—C3—H3 | 120.9 | Cl1—Hg1—N1 | 90.25 (11) |
C4—C3—H3 | 120.9 | Cl1ii—Hg1—N1 | 89.75 (11) |
C3—C4—C6 | 118.7 (5) | N1ii—Hg1—N1 | 180.000 (1) |
C3—C4—C5 | 122.1 (4) | Cl1—Hg1—Cl1i | 91.31 (4) |
C6—C4—C5 | 119.2 (5) | Cl1ii—Hg1—Cl1i | 88.69 (4) |
O1—C5—O2 | 123.2 (5) | N1ii—Hg1—Cl1i | 85.85 (11) |
O1—C5—C4 | 119.4 (5) | N1—Hg1—Cl1i | 94.15 (11) |
O2—C5—C4 | 117.4 (5) | Cl1—Hg1—Cl1iv | 88.69 (4) |
N1—C6—C4 | 123.1 (5) | Cl1ii—Hg1—Cl1iv | 91.31 (4) |
N1—C6—H6 | 118.4 | N1ii—Hg1—Cl1iv | 94.15 (11) |
C4—C6—H6 | 118.5 | N1—Hg1—Cl1iv | 85.85 (11) |
C6—N1—C1 | 118.1 (5) | Cl1i—Hg1—Cl1iv | 180.0 |
N1—C1—C2—C3 | −0.2 (9) | Hg1iii—Cl1—Hg1—N1ii | −94.16 (11) |
C1—C2—C3—C4 | −0.5 (9) | Hg1iii—Cl1—Hg1—N1 | 85.84 (11) |
C2—C3—C4—C6 | 0.8 (8) | Hg1iii—Cl1—Hg1—Cl1i | 180.0 |
C2—C3—C4—C5 | −179.1 (5) | Hg1iii—Cl1—Hg1—Cl1iv | 0.0 |
C3—C4—C5—O1 | 175.3 (6) | C6—N1—Hg1—Cl1 | −159.3 (4) |
C6—C4—C5—O1 | −4.6 (8) | C1—N1—Hg1—Cl1 | 15.9 (4) |
C3—C4—C5—O2 | −4.6 (8) | C6—N1—Hg1—Cl1ii | 20.7 (4) |
C6—C4—C5—O2 | 175.4 (6) | C1—N1—Hg1—Cl1ii | −164.1 (4) |
C3—C4—C6—N1 | −0.7 (8) | C6—N1—Hg1—N1ii | −6 (100) |
C5—C4—C6—N1 | 179.3 (5) | C1—N1—Hg1—N1ii | 169 (100) |
C4—C6—N1—C1 | 0.1 (8) | C6—N1—Hg1—Cl1i | 109.4 (4) |
C4—C6—N1—Hg1 | 175.5 (4) | C1—N1—Hg1—Cl1i | −75.4 (4) |
C2—C1—N1—C6 | 0.4 (8) | C6—N1—Hg1—Cl1iv | −70.6 (4) |
C2—C1—N1—Hg1 | −174.8 (4) | C1—N1—Hg1—Cl1iv | 104.6 (4) |
Hg1iii—Cl1—Hg1—Cl1ii | 73 (100) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+2, −z+1; (iii) x+1, y, z; (iv) −x+2, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1v | 0.82 | 1.80 | 2.618 (7) | 171 |
C1—H1···Cl1vi | 0.93 | 2.79 | 3.582 (6) | 144 |
C6—H6···Cl1ii | 0.93 | 2.78 | 3.454 (5) | 130 |
Symmetry codes: (ii) −x+1, −y+2, −z+1; (v) −x, −y+2, −z; (vi) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [HgCl2(C6H5NO2)2] |
Mr | 517.71 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 3.8298 (5), 6.5626 (9), 14.5831 (18) |
α, β, γ (°) | 98.001 (10), 95.315 (11), 92.963 (11) |
V (Å3) | 360.62 (8) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 11.06 |
Crystal size (mm) | 0.20 × 0.10 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2001)' |
Tmin, Tmax | 0.293, 0.523 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4417, 1917, 1913 |
Rint | 0.078 |
(sin θ/λ)max (Å−1) | 0.687 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.082, 0.83 |
No. of reflections | 1917 |
No. of parameters | 98 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.02, −1.22 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Hg1—Cl1 | 2.4608 (13) | Hg1—N1ii | 2.519 (4) |
Hg1—Cl1i | 2.8790 (13) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1iii | 0.82 | 1.80 | 2.618 (7) | 171 |
C1—H1···Cl1iv | 0.93 | 2.79 | 3.582 (6) | 144 |
C6—H6···Cl1ii | 0.93 | 2.78 | 3.454 (5) | 130 |
Symmetry codes: (ii) −x+1, −y+2, −z+1; (iii) −x, −y+2, −z; (iv) −x+2, −y+1, −z+1. |
Acknowledgements
We are grateful to the Islamic Azad University, Omidieh Branch for financial support.
References
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cotton, F. A., Falvello, L. R., Ohlhausen, E. L., Murillo, C. A. & Quesada, J. F. (1991). Z. Anorg. Allg. Chem. 598, 53–70. CSD CrossRef Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ghazzali, M., Abu-Youssef, M. A. M. & Langer, V. (2007). Acta Cryst. E63, m114–m116. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liang, Y. & Li, W. (2005). Acta Cryst. E61, m1135–m1137. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lin, W., Evans, O. R., Xiong, R. G. & Wang, Z. (1998). J. Am. Chem. Soc. 120, 13272–13273. Web of Science CSD CrossRef CAS Google Scholar
Lu, J. Y. & Kohler, E. E. (2002). Inorg. Chem. Commun. 5, 196–198. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, C., Xu, D., Xu, Y. & Huang, X. (1996). Acta Cryst. C52, 591–593. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
3-Pyridine carboxylic acid (pyc), is a good ligand, and a few complexes with pyc have been prepared, such as that of cadmium (Lu & Kohler, 2002; Liang & Li, 2005; Zhang et al., 1996) and zinc (Ghazzali et al., 2007; Lin et al., 1998; Cotton et al., 1991). Here, we report the synthesis and structure of the title compound.
The asymmetric unit of the title compound, (Fig. 1), contains one half -molecule. The HgII atom is six-coordinated in a distorted octahedral configuration by two N atoms from two 3-pyridine carboxylic acid and four bridging Cl. The bridging function of the chloro atoms leads to a one-dimensional chain structure. The Hg—Cl and Hg—N bond lengths and angles are collected in Table 1.
In the crystal structure, intermolecular O—H···O and C—H···Cl hydrogen bonds (Table 2, Fig. 2) may stabilize the structure.