organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1244-o1245

7-Chloro-4-[(E)-2-(2,5-dimeth­­oxy­benzyl­­idene)hydrazin-1-yl]quinoline

aInstituto de Tecnologia em Fármacos–Farmanguinhos, FioCruz–Fundação Oswaldo Cruz, R. Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 23 March 2012; accepted 24 March 2012; online 31 March 2012)

In the nearly planar title compound (r.m.s. deviation for the 24 non-H atoms = 0.064 Å), C18H16ClN3O2, the conformation about the N=C bond is E. Supra­molecular chains propagated by glide symmetry along [001] are found in the crystal packing. These are sustained by N—H⋯N hydrogen bonds with the quinoline N atom being the acceptor. The chains are connected into a three-dimensional architecture by ππ inter­actions involving all three aromatic rings [centroid–centroid distances = 3.5650 (9)–3.6264 (9) Å].

Related literature

For the biological activity, including anti-tubercular and anti-tumour activity, of compounds containing the quinolinyl nucleus, see: de Souza et al. (2009[Souza, M. V. N. de, Pais, K. C., Kaiser, C. R., Peralta, M. A., Ferreira, M. de L. & Lourenco, M. C. S. (2009). Bioorg. Med. Chem. 17, 1474-1480.]); Candea et al. (2009[Candea, A. L. P., Ferreira, M. de L., Pais, K. C., Cardoso, L. N. de F., Kaiser, C. R., Henriques, M., das, G. M. de O., Lourenco, M. C. S., Bezerra, F. A. F. M. & de Souza, M. V. N. (2009). Bioorg. Med. Chem. Lett. 19, 6272-6274.]); Montenegro et al. (2011[Montenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C. Do O., Rodriques, F. A. R., Bispo, M. L. F., Cardoso, L. N. F., Kaiser, C. R. & de Souza, M. V. N. (2011). Med. Chem. 7, 599-604.], 2012[Montenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C. do O., Rodriques, F. A. R., Bispo, M. L. F., Freire, B. A., Kaiser, C. R. & de Souza, M. V. N. (2012). Lett. Drug Des. Disc. 9, 251-256.]). For related structures, see: Howie et al. (2010[Howie, R. A., de Souza, M. V. N., Ferreira, M. de L., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 440-447.]); de Souza et al. (2010[Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698-o699.]); de Lima Ferreira et al. (2010[Lima Ferreira, M. de, Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o696-o697.]). For the synthesis, see: Montenegro et al. (2012[Montenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C. do O., Rodriques, F. A. R., Bispo, M. L. F., Freire, B. A., Kaiser, C. R. & de Souza, M. V. N. (2012). Lett. Drug Des. Disc. 9, 251-256.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16ClN3O2

  • Mr = 341.79

  • Monoclinic, P 21 /c

  • a = 10.5183 (2) Å

  • b = 12.9132 (3) Å

  • c = 12.9861 (2) Å

  • β = 112.723 (2)°

  • V = 1626.93 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 120 K

  • 0.32 × 0.20 × 0.15 mm

Data collection
  • Bruker–Nonius Roper CCD camera on a κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.652, Tmax = 0.746

  • 20405 measured reflections

  • 3723 independent reflections

  • 3067 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.03

  • 3723 reflections

  • 222 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯N1i 0.88 (1) 2.19 (1) 3.0572 (17) 167 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The quinoline nucleus is an important moiety found in various synthetic and natural products with a wide range of pharmacological activities (de Souza et al., 2009), including anti-tubercular (Candea et al., 2009) and anti-tumour (Montenegro et al., 2012) activities. Among the derivatives studied have been arylaldehyde 7-chloroquinoline-4-hydrazones (Candea et al., 2009; Montenegro et al., 2011). Some crystal structures of the these hydrazones, including related methoxy-substituted derivatives have been reported (Howie et al., 2010; de Souza et al., 2010; de Lima Ferreira et al., 2010). We now wish to report the crystal structure of the title compound, (I).

In (I), Fig. 1, the entire molecule is planar with the r.m.s. deviation of all 24 non-hydrogen atoms being 0.064 Å. The maximum deviations from the least-squares plane are 0.108 (2) for the C5 atom and -0.165 (1) Å for the Cl1 atom. The conformation about the N3C10 bond [1.2834 (18) Å] is E.

The most prominent feature of the crystal packing is the formation of supramolecular chains via N—H···N hydrogen bonds with the quinolinyl-N atom being the acceptor, Table 1. The chains a propagated by glide symmetry along the c axis, Fig. 2. Molecules are consolidated into a three-dimensional architecture by ππ interactions whereby the dimethoxybenzene ring interacts with both components of the quinolinyl residue along with symmetry related dimethoxybenzene rings [centroid(dimethoxybenzene)···centroid(NC5)i; (C6)i; (dimethoxybenzene)ii = 3.5650 (9), 3.6264 (9) and 3.5872 (9) Å, with angles of inclination = 2.36 (7) 4.20 (7) and 0° for symmetry operations i: 1 - x, -y, 1 - z and ii: 2 - x, -y, 1 - z]. The ππ interactions between the dimethoxybenzene and quinolinyl residues lead to zigzag layers in the bc plane and the π(dimethoxybenzene)···π(dimethoxybenzene) interactions link these layers along the a axis, Fig. 3.

Related literature top

For the biological activity, including anti-tubercular and anti-tumour activity, of compounds containing the quinolinyl nucleus, see: de Souza et al. (2009); Candea et al. (2009); Montenegro et al. (2011, 2012). For related structures, see: Howie et al. (2010); de Souza et al. (2010); de Lima Ferreira et al. (2010). For the synthesis, see: Montenegro et al. (2012).

Experimental top

The compound was prepared from 7-chloro-4-quinolinylhydrazone with 2,5-dimethoxybenzaldehyde (Montenegro et al., 2012). The crystals used in the structure determination were grown from an ethanol solution of the compound.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H-atom was located in a difference Fourier map and refined with a N—H distance = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N). Owing to poor agreement, the (1 0 2) and (2 3 0) reflections were omitted from the final cycles of refinement.

Structure description top

The quinoline nucleus is an important moiety found in various synthetic and natural products with a wide range of pharmacological activities (de Souza et al., 2009), including anti-tubercular (Candea et al., 2009) and anti-tumour (Montenegro et al., 2012) activities. Among the derivatives studied have been arylaldehyde 7-chloroquinoline-4-hydrazones (Candea et al., 2009; Montenegro et al., 2011). Some crystal structures of the these hydrazones, including related methoxy-substituted derivatives have been reported (Howie et al., 2010; de Souza et al., 2010; de Lima Ferreira et al., 2010). We now wish to report the crystal structure of the title compound, (I).

In (I), Fig. 1, the entire molecule is planar with the r.m.s. deviation of all 24 non-hydrogen atoms being 0.064 Å. The maximum deviations from the least-squares plane are 0.108 (2) for the C5 atom and -0.165 (1) Å for the Cl1 atom. The conformation about the N3C10 bond [1.2834 (18) Å] is E.

The most prominent feature of the crystal packing is the formation of supramolecular chains via N—H···N hydrogen bonds with the quinolinyl-N atom being the acceptor, Table 1. The chains a propagated by glide symmetry along the c axis, Fig. 2. Molecules are consolidated into a three-dimensional architecture by ππ interactions whereby the dimethoxybenzene ring interacts with both components of the quinolinyl residue along with symmetry related dimethoxybenzene rings [centroid(dimethoxybenzene)···centroid(NC5)i; (C6)i; (dimethoxybenzene)ii = 3.5650 (9), 3.6264 (9) and 3.5872 (9) Å, with angles of inclination = 2.36 (7) 4.20 (7) and 0° for symmetry operations i: 1 - x, -y, 1 - z and ii: 2 - x, -y, 1 - z]. The ππ interactions between the dimethoxybenzene and quinolinyl residues lead to zigzag layers in the bc plane and the π(dimethoxybenzene)···π(dimethoxybenzene) interactions link these layers along the a axis, Fig. 3.

For the biological activity, including anti-tubercular and anti-tumour activity, of compounds containing the quinolinyl nucleus, see: de Souza et al. (2009); Candea et al. (2009); Montenegro et al. (2011, 2012). For related structures, see: Howie et al. (2010); de Souza et al. (2010); de Lima Ferreira et al. (2010). For the synthesis, see: Montenegro et al. (2012).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain along [001] in (I). The N—H···N hydrogen bonds are shown as blue dashed lines.
[Figure 3] Fig. 3. A view in projection down the c axis of unit-cell contents of (I). The N—H···N and π···π interactions are shown as blue and purple dashed lines, respectively.
7-Chloro-4-[(E)-2-(2,5-dimethoxybenzylidene)hydrazin-1-yl]quinoline top
Crystal data top
C18H16ClN3O2F(000) = 712
Mr = 341.79Dx = 1.395 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8419 reflections
a = 10.5183 (2) Åθ = 2.9–27.5°
b = 12.9132 (3) ŵ = 0.25 mm1
c = 12.9861 (2) ÅT = 120 K
β = 112.723 (2)°Prism, yellow
V = 1626.93 (5) Å30.32 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker–Nonius Roper CCD camera on a κ-goniostat
diffractometer
3723 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode3067 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1516
Tmin = 0.652, Tmax = 0.746l = 1616
20405 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.6611P]
where P = (Fo2 + 2Fc2)/3
3723 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.33 e Å3
Crystal data top
C18H16ClN3O2V = 1626.93 (5) Å3
Mr = 341.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5183 (2) ŵ = 0.25 mm1
b = 12.9132 (3) ÅT = 120 K
c = 12.9861 (2) Å0.32 × 0.20 × 0.15 mm
β = 112.723 (2)°
Data collection top
Bruker–Nonius Roper CCD camera on a κ-goniostat
diffractometer
3723 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3067 reflections with I > 2σ(I)
Tmin = 0.652, Tmax = 0.746Rint = 0.049
20405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
3723 reflectionsΔρmin = 0.33 e Å3
222 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07757 (4)0.46710 (3)0.65860 (3)0.02240 (13)
O10.67832 (11)0.06456 (8)0.25193 (8)0.0200 (2)
O20.98754 (12)0.18234 (9)0.60966 (10)0.0273 (3)
N10.45113 (13)0.19900 (10)0.83352 (10)0.0169 (3)
N20.53424 (13)0.16602 (10)0.54269 (10)0.0169 (3)
H2N0.4970 (16)0.2057 (11)0.4831 (10)0.020*
N30.63038 (13)0.09359 (10)0.54186 (10)0.0174 (3)
C10.54351 (15)0.13277 (12)0.82563 (12)0.0173 (3)
H10.59270.09210.88970.021*
C20.57480 (15)0.11751 (12)0.73189 (12)0.0172 (3)
H20.64070.06690.73270.021*
C30.50855 (15)0.17718 (11)0.63725 (12)0.0143 (3)
C40.40798 (14)0.25126 (11)0.64014 (11)0.0135 (3)
C50.33252 (15)0.31670 (11)0.54965 (12)0.0157 (3)
H50.35020.31430.48330.019*
C60.23425 (15)0.38355 (11)0.55596 (12)0.0168 (3)
H60.18500.42770.49500.020*
C70.20770 (15)0.38559 (11)0.65392 (12)0.0155 (3)
C80.27876 (15)0.32511 (11)0.74402 (12)0.0158 (3)
H80.25890.32870.80940.019*
C90.38202 (14)0.25713 (11)0.73985 (12)0.0142 (3)
C100.64283 (15)0.08142 (11)0.44812 (12)0.0157 (3)
H100.58690.12090.38510.019*
C110.74242 (15)0.00736 (11)0.43720 (12)0.0145 (3)
C120.75975 (15)0.00070 (11)0.33516 (12)0.0156 (3)
C130.85456 (16)0.07004 (12)0.32490 (13)0.0194 (3)
H130.86630.07520.25610.023*
C140.93308 (16)0.13246 (12)0.41476 (13)0.0203 (3)
H140.99770.18000.40700.024*
C150.91658 (15)0.12495 (12)0.51558 (13)0.0195 (3)
C160.82194 (15)0.05485 (11)0.52614 (13)0.0172 (3)
H160.81140.04940.59540.021*
C170.7013 (2)0.06604 (15)0.15086 (14)0.0303 (4)
H17A0.79810.08270.16740.045*
H17B0.64210.11850.10050.045*
H17C0.67960.00210.11510.045*
C181.09064 (17)0.25167 (13)0.60485 (16)0.0306 (4)
H18A1.04790.30350.54660.046*
H18B1.13490.28640.67710.046*
H18C1.15990.21270.58760.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0225 (2)0.0242 (2)0.0220 (2)0.00878 (15)0.01015 (16)0.00116 (15)
O10.0247 (6)0.0234 (6)0.0150 (5)0.0069 (5)0.0111 (5)0.0024 (4)
O20.0263 (6)0.0217 (6)0.0280 (6)0.0076 (5)0.0040 (5)0.0068 (5)
N10.0197 (6)0.0178 (6)0.0140 (6)0.0014 (5)0.0073 (5)0.0000 (5)
N20.0197 (7)0.0191 (7)0.0141 (6)0.0052 (5)0.0091 (5)0.0022 (5)
N30.0185 (6)0.0176 (6)0.0188 (6)0.0031 (5)0.0100 (5)0.0005 (5)
C10.0189 (8)0.0183 (7)0.0143 (7)0.0015 (6)0.0057 (6)0.0024 (6)
C20.0175 (7)0.0184 (7)0.0161 (7)0.0028 (6)0.0067 (6)0.0002 (6)
C30.0148 (7)0.0152 (7)0.0139 (7)0.0041 (5)0.0068 (6)0.0031 (5)
C40.0141 (7)0.0143 (7)0.0127 (7)0.0026 (5)0.0057 (6)0.0017 (5)
C50.0183 (7)0.0174 (7)0.0128 (7)0.0011 (6)0.0076 (6)0.0005 (6)
C60.0188 (7)0.0155 (7)0.0157 (7)0.0000 (6)0.0063 (6)0.0024 (6)
C70.0149 (7)0.0127 (7)0.0190 (7)0.0007 (5)0.0067 (6)0.0029 (6)
C80.0184 (7)0.0171 (7)0.0141 (7)0.0010 (6)0.0085 (6)0.0019 (6)
C90.0157 (7)0.0139 (7)0.0125 (7)0.0025 (6)0.0048 (5)0.0021 (5)
C100.0163 (7)0.0164 (7)0.0150 (7)0.0008 (6)0.0067 (6)0.0006 (6)
C110.0144 (7)0.0139 (7)0.0162 (7)0.0024 (5)0.0072 (6)0.0017 (5)
C120.0166 (7)0.0152 (7)0.0154 (7)0.0007 (6)0.0065 (6)0.0002 (5)
C130.0207 (8)0.0188 (8)0.0218 (8)0.0006 (6)0.0113 (6)0.0039 (6)
C140.0171 (7)0.0152 (7)0.0296 (8)0.0008 (6)0.0101 (7)0.0029 (6)
C150.0165 (7)0.0142 (7)0.0237 (8)0.0015 (6)0.0031 (6)0.0012 (6)
C160.0179 (7)0.0162 (7)0.0176 (7)0.0029 (6)0.0071 (6)0.0014 (6)
C170.0427 (11)0.0363 (10)0.0193 (8)0.0131 (8)0.0202 (8)0.0059 (7)
C180.0236 (9)0.0184 (8)0.0431 (11)0.0048 (7)0.0053 (8)0.0037 (7)
Geometric parameters (Å, º) top
Cl1—C71.7462 (15)C6—H60.9500
O1—C121.3773 (18)C7—C81.365 (2)
O1—C171.4235 (18)C8—C91.414 (2)
O2—C151.3764 (18)C8—H80.9500
O2—C181.426 (2)C10—C111.465 (2)
N1—C11.3277 (19)C10—H100.9500
N1—C91.3742 (18)C11—C161.390 (2)
N2—C31.3631 (18)C11—C121.409 (2)
N2—N31.3805 (17)C12—C131.384 (2)
N2—H2N0.884 (9)C13—C141.396 (2)
N3—C101.2834 (18)C13—H130.9500
C1—C21.392 (2)C14—C151.389 (2)
C1—H10.9500C14—H140.9500
C2—C31.389 (2)C15—C161.391 (2)
C2—H20.9500C16—H160.9500
C3—C41.437 (2)C17—H17A0.9800
C4—C51.416 (2)C17—H17B0.9800
C4—C91.4248 (19)C17—H17C0.9800
C5—C61.373 (2)C18—H18A0.9800
C5—H50.9500C18—H18B0.9800
C6—C71.404 (2)C18—H18C0.9800
C12—O1—C17117.14 (12)N3—C10—C11120.69 (13)
C15—O2—C18117.38 (13)N3—C10—H10119.7
C1—N1—C9115.86 (12)C11—C10—H10119.7
C3—N2—N3118.64 (12)C16—C11—C12118.92 (13)
C3—N2—H2N123.5 (11)C16—C11—C10121.33 (13)
N3—N2—H2N117.7 (11)C12—C11—C10119.74 (13)
C10—N3—N2115.71 (12)O1—C12—C13124.95 (13)
N1—C1—C2125.86 (13)O1—C12—C11115.19 (13)
N1—C1—H1117.1C13—C12—C11119.85 (14)
C2—C1—H1117.1C12—C13—C14120.57 (14)
C3—C2—C1119.21 (13)C12—C13—H13119.7
C3—C2—H2120.4C14—C13—H13119.7
C1—C2—H2120.4C15—C14—C13119.91 (14)
N2—C3—C2122.16 (13)C15—C14—H14120.0
N2—C3—C4119.86 (13)C13—C14—H14120.0
C2—C3—C4117.96 (13)O2—C15—C14125.22 (14)
C5—C4—C9118.67 (13)O2—C15—C16115.23 (14)
C5—C4—C3123.90 (13)C14—C15—C16119.55 (14)
C9—C4—C3117.42 (12)C11—C16—C15121.20 (14)
C6—C5—C4121.28 (13)C11—C16—H16119.4
C6—C5—H5119.4C15—C16—H16119.4
C4—C5—H5119.4O1—C17—H17A109.5
C5—C6—C7118.92 (13)O1—C17—H17B109.5
C5—C6—H6120.5H17A—C17—H17B109.5
C7—C6—H6120.5O1—C17—H17C109.5
C8—C7—C6122.10 (13)H17A—C17—H17C109.5
C8—C7—Cl1119.49 (11)H17B—C17—H17C109.5
C6—C7—Cl1118.41 (11)O2—C18—H18A109.5
C7—C8—C9119.80 (13)O2—C18—H18B109.5
C7—C8—H8120.1H18A—C18—H18B109.5
C9—C8—H8120.1O2—C18—H18C109.5
N1—C9—C8117.18 (12)H18A—C18—H18C109.5
N1—C9—C4123.63 (13)H18B—C18—H18C109.5
C8—C9—C4119.18 (13)
C3—N2—N3—C10175.16 (13)C3—C4—C9—N12.5 (2)
C9—N1—C1—C20.3 (2)C5—C4—C9—C82.2 (2)
N1—C1—C2—C31.8 (2)C3—C4—C9—C8176.72 (13)
N3—N2—C3—C20.6 (2)N2—N3—C10—C11179.47 (12)
N3—N2—C3—C4179.38 (12)N3—C10—C11—C162.7 (2)
C1—C2—C3—N2179.88 (14)N3—C10—C11—C12176.54 (14)
C1—C2—C3—C41.1 (2)C17—O1—C12—C135.0 (2)
N2—C3—C4—C51.0 (2)C17—O1—C12—C11174.34 (14)
C2—C3—C4—C5179.75 (14)C16—C11—C12—O1179.20 (13)
N2—C3—C4—C9177.93 (13)C10—C11—C12—O10.1 (2)
C2—C3—C4—C90.9 (2)C16—C11—C12—C130.2 (2)
C9—C4—C5—C61.1 (2)C10—C11—C12—C13179.50 (13)
C3—C4—C5—C6177.74 (13)O1—C12—C13—C14179.53 (14)
C4—C5—C6—C70.8 (2)C11—C12—C13—C140.2 (2)
C5—C6—C7—C81.6 (2)C12—C13—C14—C150.2 (2)
C5—C6—C7—Cl1177.40 (11)C18—O2—C15—C143.0 (2)
C6—C7—C8—C90.5 (2)C18—O2—C15—C16176.98 (13)
Cl1—C7—C8—C9178.51 (11)C13—C14—C15—O2179.83 (14)
C1—N1—C9—C8177.32 (13)C13—C14—C15—C160.2 (2)
C1—N1—C9—C41.9 (2)C12—C11—C16—C150.6 (2)
C7—C8—C9—N1179.30 (13)C10—C11—C16—C15179.88 (13)
C7—C8—C9—C41.4 (2)O2—C15—C16—C11179.42 (13)
C5—C4—C9—N1178.56 (13)C14—C15—C16—C110.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···N1i0.88 (1)2.19 (1)3.0572 (17)167 (2)
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H16ClN3O2
Mr341.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)10.5183 (2), 12.9132 (3), 12.9861 (2)
β (°) 112.723 (2)
V3)1626.93 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.32 × 0.20 × 0.15
Data collection
DiffractometerBruker–Nonius Roper CCD camera on a κ-goniostat
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.652, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
20405, 3723, 3067
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.03
No. of reflections3723
No. of parameters222
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.33

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···N1i0.884 (13)2.190 (13)3.0572 (17)166.9 (16)
Symmetry code: (i) x, y+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) is gratefully acknowledged.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCandea, A. L. P., Ferreira, M. de L., Pais, K. C., Cardoso, L. N. de F., Kaiser, C. R., Henriques, M., das, G. M. de O., Lourenco, M. C. S., Bezerra, F. A. F. M. & de Souza, M. V. N. (2009). Bioorg. Med. Chem. Lett. 19, 6272–6274.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHowie, R. A., de Souza, M. V. N., Ferreira, M. de L., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 440–447.  Web of Science CSD CrossRef CAS Google Scholar
First citationLima Ferreira, M. de, Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o696–o697.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMontenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C. do O., Rodriques, F. A. R., Bispo, M. L. F., Freire, B. A., Kaiser, C. R. & de Souza, M. V. N. (2012). Lett. Drug Des. Disc. 9, 251–256.  CAS Google Scholar
First citationMontenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C. Do O., Rodriques, F. A. R., Bispo, M. L. F., Cardoso, L. N. F., Kaiser, C. R. & de Souza, M. V. N. (2011). Med. Chem. 7, 599–604.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698–o699.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Pais, K. C., Kaiser, C. R., Peralta, M. A., Ferreira, M. de L. & Lourenco, M. C. S. (2009). Bioorg. Med. Chem. 17, 1474–1480.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1244-o1245
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds