organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1232-o1233

4-[(E)-2-(2,4-Di­chloro­benzyl­­idene)hydrazin-1-yl]quinolin-1-ium chloride monohydrate

aCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and dInstituto de Tecnologia em Fármacos–Farmanguinhos, FioCruz–Fundação Oswaldo Cruz, R. Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 23 March 2012; accepted 24 March 2012; online 31 March 2012)

In the title hydrated salt, C16H12Cl2N3+·Cl·H2O, there is a small twist in the cation as seen in the torsion angle linking the benzene ring to the rest of the mol­ecule [171.96 (17)°]. In the crystal, the quinolinium H atom forms a hydrogen bond to the lattice water mol­ecule, which also forms hydrogen bonds to two Cl anions. Each Cl ion also accepts a hydrogen bond from the hydrazine H atom. The three-dimensional architecture is also stabilized by ππ inter­actions between centrosymmetrically related quinoline residues [centroid–centroid distance = 3.5574 (11) Å].

Related literature

For the biological activity, including anti-tubercular and anti-tumour activity, of compounds containing the quinolinyl nucleus, see: de Souza et al. (2009[Souza, M. V. N. de, Pais, K. C., Kaiser, C. R., Peralta, M. A., Ferreira, M. de L. & Lourenco, M. C. S. (2009). Bioorg. Med. Chem. 17, 1474-1480.]), Candea et al. (2009[Candea, A. L. P., Ferreira, M. de L., Pais, K. C., Cardoso, L. N. de F., Kaiser, C. R., Henriques, M., das, G. M. de O., Lourenco, M. C. S., Bezerra, F. A. F. M. & de Souza, M. V. N. (2009). Bioorg. Med. Chem. Lett. 19, 6272-6274.]); Montenegro et al. (2011[Montenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C. Do O., Rodriques, F. A. R., Bispo, M. L. F., Cardoso, L. N. F., Kaiser, C. R. & de Souza, M. V. N. (2011). Med. Chem. 7, 599-604.], 2012[Montenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C., do, O., Rodriques, F. A. R., Bispo, M. L. F., Freire, B. A., Kaiser, C. R. & de Souza, M. V. N. (2012). Lett. Drug Des. Disc, 9, 251-256.]). For related structures, see: Howie et al. (2010[Howie, R. A., de Souza, M. V. N., Ferreira, M. de L., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 440-447.]); de Souza et al. (2010[Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698-o699.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12Cl2N3+·Cl·H2O

  • Mr = 370.65

  • Triclinic, [P \overline 1]

  • a = 7.6815 (2) Å

  • b = 9.7491 (3) Å

  • c = 10.8418 (3) Å

  • α = 87.831 (2)°

  • β = 87.171 (2)°

  • γ = 87.146 (2)°

  • V = 809.41 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 120 K

  • 0.10 × 0.09 × 0.08 mm

Data collection
  • Bruker–Nonius Roper CCD camera on a κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.666, Tmax = 0.746

  • 16815 measured reflections

  • 3701 independent reflections

  • 3016 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.06

  • 3701 reflections

  • 220 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O1w 0.88 (2) 1.80 (2) 2.673 (2) 170 (2)
O1w—H1w⋯Cl3i 0.84 (2) 2.32 (2) 3.1451 (18) 169 (3)
N2—H2n⋯Cl3 0.88 (1) 2.36 (1) 3.2175 (16) 166 (2)
O1w—H2w⋯Cl3ii 0.84 (2) 2.30 (2) 3.1295 (19) 173 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y-1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A wide range of pharmacological activities have been noted for compounds containing the quinoline nucleus (de Souza et al., 2009), including anti-tubercular (Candea et al., 2009) and anti-tumour (Montenegro et al., 2012) activities. Recently, we have focused attention on arylaldehyde 7-chloroquinoline-4-hydrazone derivatives (Candea et al., 2009; Montenegro et al., 2011). Complementing synthetic studies are crystallographic investigations of the these hydrazones (Howie et al., 2010; de Souza et al., 2010). In this connection, we now wish to report the crystal structure of the title hydrated salt, (I).

The asymmetric unit of (I), Fig. 1, comprises a 4-[(E)-2-[(2,4-dichlorophenyl)methylidene]hydrazin-1-yl]quinolin-1-ium cation, a chloride anion and a solvent water molecule. There is a small twist about the C10—C11 bond as seen in the value of the N3—C10—C11—C12 torsion angle, i.e. 171.96 (17)°. Nevertheless, the entire molecule is approximately planar with the r.m.s. deviation of all 24 non-hydrogen atoms being 0.072 Å. The maximum deviations from the least-squares plane are 0.148 (2) for the C14 atom and -0.130 (1) Å for the Cl1 atom. The conformation about the N3C10 bond [1.286 (2) Å] is E.

There are a number of hydrogen-bonding interactions operating in the crystal structure of (I), Table 1. The pyridinium-H forms a hydrogen bond to the water molecule which links two chloride anions via O—H···Cl interactions. Through a centre of inversion, an eight-membered {···HOH···Cl}2 synthon is formed. Finally, the hydrazine-H atom forms a hydrogen bond to the chloride atom. The three-dimensional architecture is also stabilized by ππ interactions between centrosymmetrically related quinolinyl residues [centroid···centroid distance = 3.5574 (11) Å for symmetry operation: 1 - x, 1 - y, 1 - z], Fig. 2.

Related literature top

For the biological activity, including anti-tubercular and anti-tumour activity, of compounds containing the quinolinyl nucleus, see: de Souza et al. (2009), Candea et al. (2009); Montenegro et al. (2011, 2012). For related structures, see: Howie et al. (2010); de Souza et al. (2010).

Experimental top

The compound was prepared from 7-chloro-4-quinolinylhydrazone with 2,5-dimethoxybenzaldehyde (Montenegro et al., 2012). The crystals used in the structure determination were grown from an ethanol solution of the compound.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound and O-bound H-atoms were located in a difference Fourier map and refined with a O—H = 0.84±0.01 Å [Uiso(H) = 1.5Ueq(O)] and N—H = 0.88±0.01 Å [Uiso(H) = 1.2Ueq(N)]. Owing to poor agreement, the (1 1 3) reflection was omitted from the final cycles of refinement.

Structure description top

A wide range of pharmacological activities have been noted for compounds containing the quinoline nucleus (de Souza et al., 2009), including anti-tubercular (Candea et al., 2009) and anti-tumour (Montenegro et al., 2012) activities. Recently, we have focused attention on arylaldehyde 7-chloroquinoline-4-hydrazone derivatives (Candea et al., 2009; Montenegro et al., 2011). Complementing synthetic studies are crystallographic investigations of the these hydrazones (Howie et al., 2010; de Souza et al., 2010). In this connection, we now wish to report the crystal structure of the title hydrated salt, (I).

The asymmetric unit of (I), Fig. 1, comprises a 4-[(E)-2-[(2,4-dichlorophenyl)methylidene]hydrazin-1-yl]quinolin-1-ium cation, a chloride anion and a solvent water molecule. There is a small twist about the C10—C11 bond as seen in the value of the N3—C10—C11—C12 torsion angle, i.e. 171.96 (17)°. Nevertheless, the entire molecule is approximately planar with the r.m.s. deviation of all 24 non-hydrogen atoms being 0.072 Å. The maximum deviations from the least-squares plane are 0.148 (2) for the C14 atom and -0.130 (1) Å for the Cl1 atom. The conformation about the N3C10 bond [1.286 (2) Å] is E.

There are a number of hydrogen-bonding interactions operating in the crystal structure of (I), Table 1. The pyridinium-H forms a hydrogen bond to the water molecule which links two chloride anions via O—H···Cl interactions. Through a centre of inversion, an eight-membered {···HOH···Cl}2 synthon is formed. Finally, the hydrazine-H atom forms a hydrogen bond to the chloride atom. The three-dimensional architecture is also stabilized by ππ interactions between centrosymmetrically related quinolinyl residues [centroid···centroid distance = 3.5574 (11) Å for symmetry operation: 1 - x, 1 - y, 1 - z], Fig. 2.

For the biological activity, including anti-tubercular and anti-tumour activity, of compounds containing the quinolinyl nucleus, see: de Souza et al. (2009), Candea et al. (2009); Montenegro et al. (2011, 2012). For related structures, see: Howie et al. (2010); de Souza et al. (2010).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents of (I). The O—H···Cl, N—H···O, N—H···Cl and π···π interactions are shown as orange, blue, brown and purple dashed lines, respectively.
4-[(E)-2-(2,4-Dichlorobenzylidene)hydrazin-1-yl]quinolin-1-ium chloride monohydrate top
Crystal data top
C16H12Cl2N3+·Cl·H2OZ = 2
Mr = 370.65F(000) = 380
Triclinic, P1Dx = 1.521 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6815 (2) ÅCell parameters from 10943 reflections
b = 9.7491 (3) Åθ = 2.9–27.5°
c = 10.8418 (3) ŵ = 0.57 mm1
α = 87.831 (2)°T = 120 K
β = 87.171 (2)°Block, colourless
γ = 87.146 (2)°0.10 × 0.09 × 0.08 mm
V = 809.41 (4) Å3
Data collection top
Bruker–Nonius Roper CCD camera on a κ-goniostat
diffractometer
3701 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode3016 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1212
Tmin = 0.666, Tmax = 0.746l = 1414
16815 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2111P]
where P = (Fo2 + 2Fc2)/3
3701 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.36 e Å3
5 restraintsΔρmin = 0.34 e Å3
Crystal data top
C16H12Cl2N3+·Cl·H2Oγ = 87.146 (2)°
Mr = 370.65V = 809.41 (4) Å3
Triclinic, P1Z = 2
a = 7.6815 (2) ÅMo Kα radiation
b = 9.7491 (3) ŵ = 0.57 mm1
c = 10.8418 (3) ÅT = 120 K
α = 87.831 (2)°0.10 × 0.09 × 0.08 mm
β = 87.171 (2)°
Data collection top
Bruker–Nonius Roper CCD camera on a κ-goniostat
diffractometer
3701 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3016 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 0.746Rint = 0.056
16815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0415 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.36 e Å3
3701 reflectionsΔρmin = 0.34 e Å3
220 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23598 (6)1.20701 (5)0.14241 (5)0.02343 (14)
Cl20.81838 (6)1.41676 (5)0.06262 (5)0.02564 (14)
N10.7250 (2)0.35248 (17)0.32132 (15)0.0184 (3)
H1n0.785 (2)0.2747 (14)0.337 (2)0.022*
N20.4580 (2)0.72610 (16)0.26643 (15)0.0176 (3)
H2n0.3464 (14)0.740 (2)0.2871 (19)0.021*
N30.5488 (2)0.83194 (16)0.21124 (14)0.0177 (3)
C10.8043 (3)0.4576 (2)0.26455 (18)0.0207 (4)
H10.92350.44530.23780.025*
C20.7194 (2)0.5834 (2)0.24339 (17)0.0196 (4)
H20.77940.65660.20290.024*
C30.5435 (2)0.60214 (19)0.28223 (16)0.0161 (4)
C40.4548 (2)0.48914 (19)0.34195 (16)0.0157 (4)
C50.2776 (2)0.4957 (2)0.38498 (17)0.0186 (4)
H50.20800.57780.37190.022*
C60.2056 (3)0.3845 (2)0.44529 (18)0.0207 (4)
H60.08680.39070.47420.025*
C70.3057 (3)0.2609 (2)0.46494 (18)0.0218 (4)
H70.25440.18490.50740.026*
C80.4769 (3)0.2506 (2)0.42284 (18)0.0202 (4)
H80.54410.16720.43530.024*
C90.5527 (2)0.36373 (19)0.36120 (16)0.0167 (4)
C100.4620 (2)0.94746 (19)0.19875 (17)0.0176 (4)
H100.34400.95760.22880.021*
C110.5500 (2)1.06322 (19)0.13685 (17)0.0171 (4)
C120.4584 (2)1.18619 (19)0.10639 (17)0.0174 (4)
C130.5395 (2)1.2951 (2)0.04510 (17)0.0190 (4)
H130.47541.37830.02580.023*
C140.7152 (3)1.27973 (19)0.01280 (17)0.0193 (4)
C150.8113 (2)1.1589 (2)0.04001 (18)0.0210 (4)
H150.93171.14910.01570.025*
C160.7286 (3)1.0533 (2)0.10297 (18)0.0207 (4)
H160.79450.97150.12410.025*
Cl30.05983 (6)0.83146 (5)0.32453 (5)0.02497 (14)
O1w0.8874 (3)0.11709 (18)0.39542 (16)0.0445 (5)
H1w0.908 (4)0.119 (3)0.4704 (12)0.067*
H2w0.933 (4)0.0432 (19)0.370 (3)0.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0168 (2)0.0208 (3)0.0321 (3)0.00144 (18)0.00122 (19)0.0017 (2)
Cl20.0283 (3)0.0229 (3)0.0258 (3)0.0093 (2)0.0037 (2)0.0014 (2)
N10.0188 (8)0.0192 (8)0.0164 (8)0.0052 (7)0.0006 (6)0.0008 (7)
N20.0171 (8)0.0150 (8)0.0206 (8)0.0000 (6)0.0001 (6)0.0007 (6)
N30.0196 (8)0.0164 (8)0.0173 (8)0.0033 (6)0.0013 (6)0.0015 (6)
C10.0190 (9)0.0238 (10)0.0187 (10)0.0020 (8)0.0007 (8)0.0009 (8)
C20.0209 (9)0.0189 (10)0.0187 (10)0.0016 (8)0.0001 (8)0.0026 (8)
C30.0198 (9)0.0174 (9)0.0112 (8)0.0004 (7)0.0021 (7)0.0019 (7)
C40.0186 (9)0.0162 (9)0.0125 (9)0.0005 (7)0.0026 (7)0.0007 (7)
C50.0201 (9)0.0176 (10)0.0177 (9)0.0032 (8)0.0018 (8)0.0009 (7)
C60.0208 (10)0.0207 (10)0.0205 (10)0.0015 (8)0.0008 (8)0.0019 (8)
C70.0257 (10)0.0189 (10)0.0204 (10)0.0030 (8)0.0020 (8)0.0022 (8)
C80.0270 (10)0.0154 (9)0.0180 (10)0.0022 (8)0.0031 (8)0.0011 (7)
C90.0190 (9)0.0179 (10)0.0131 (9)0.0020 (8)0.0017 (7)0.0022 (7)
C100.0176 (9)0.0182 (10)0.0169 (9)0.0005 (8)0.0001 (7)0.0003 (7)
C110.0187 (9)0.0180 (10)0.0150 (9)0.0025 (7)0.0009 (7)0.0021 (7)
C120.0163 (9)0.0187 (10)0.0175 (9)0.0004 (7)0.0019 (7)0.0034 (7)
C130.0229 (10)0.0162 (9)0.0179 (10)0.0009 (8)0.0013 (8)0.0010 (7)
C140.0247 (10)0.0169 (10)0.0172 (9)0.0078 (8)0.0023 (8)0.0005 (7)
C150.0173 (9)0.0230 (10)0.0229 (10)0.0020 (8)0.0008 (8)0.0031 (8)
C160.0210 (10)0.0186 (10)0.0225 (10)0.0020 (8)0.0024 (8)0.0016 (8)
Cl30.0219 (3)0.0205 (3)0.0312 (3)0.00329 (19)0.0060 (2)0.0001 (2)
O1w0.0646 (12)0.0317 (9)0.0356 (10)0.0289 (9)0.0141 (9)0.0066 (8)
Geometric parameters (Å, º) top
Cl1—C121.7374 (19)C6—H60.9500
Cl2—C141.7435 (19)C7—C81.371 (3)
N1—C11.334 (3)C7—H70.9500
N1—C91.372 (2)C8—C91.404 (3)
N1—H1n0.884 (9)C8—H80.9500
N2—C31.355 (2)C10—C111.468 (3)
N2—N31.376 (2)C10—H100.9500
N2—H2n0.881 (9)C11—C121.396 (3)
N3—C101.286 (2)C11—C161.402 (3)
C1—C21.377 (3)C12—C131.388 (3)
C1—H10.9500C13—C141.380 (3)
C2—C31.401 (3)C13—H130.9500
C2—H20.9500C14—C151.389 (3)
C3—C41.440 (3)C15—C161.377 (3)
C4—C91.418 (2)C15—H150.9500
C4—C51.416 (3)C16—H160.9500
C5—C61.371 (3)O1w—H1w0.836 (10)
C5—H50.9500O1w—H2w0.834 (10)
C6—C71.412 (3)
C1—N1—C9121.52 (16)C7—C8—C9119.77 (17)
C1—N1—H1n119.8 (14)C7—C8—H8120.1
C9—N1—H1n118.6 (14)C9—C8—H8120.1
C3—N2—N3118.12 (16)N1—C9—C8119.09 (16)
C3—N2—H2n122.5 (14)N1—C9—C4119.98 (17)
N3—N2—H2n119.3 (14)C8—C9—C4120.93 (17)
C10—N3—N2115.69 (16)N3—C10—C11118.31 (17)
N1—C1—C2122.28 (18)N3—C10—H10120.8
N1—C1—H1118.9C11—C10—H10120.8
C2—C1—H1118.9C12—C11—C16117.33 (17)
C1—C2—C3119.17 (18)C12—C11—C10121.41 (17)
C1—C2—H2120.4C16—C11—C10121.24 (17)
C3—C2—H2120.4C13—C12—C11121.87 (17)
N2—C3—C2120.53 (17)C13—C12—Cl1117.49 (14)
N2—C3—C4120.06 (17)C11—C12—Cl1120.64 (15)
C2—C3—C4119.39 (17)C14—C13—C12118.55 (18)
C9—C4—C5117.85 (17)C14—C13—H13120.7
C9—C4—C3117.65 (17)C12—C13—H13120.7
C5—C4—C3124.49 (17)C13—C14—C15121.63 (18)
C6—C5—C4120.52 (17)C13—C14—Cl2118.79 (15)
C6—C5—H5119.7C15—C14—Cl2119.58 (15)
C4—C5—H5119.7C16—C15—C14118.69 (18)
C5—C6—C7120.85 (18)C16—C15—H15120.7
C5—C6—H6119.6C14—C15—H15120.7
C7—C6—H6119.6C15—C16—C11121.90 (18)
C8—C7—C6120.07 (18)C15—C16—H16119.0
C8—C7—H7120.0C11—C16—H16119.0
C6—C7—H7120.0H1w—O1w—H2w107 (3)
C3—N2—N3—C10179.79 (16)C5—C4—C9—N1179.89 (16)
C9—N1—C1—C20.5 (3)C3—C4—C9—N11.2 (3)
N1—C1—C2—C30.2 (3)C5—C4—C9—C81.1 (3)
N3—N2—C3—C20.1 (3)C3—C4—C9—C8177.65 (16)
N3—N2—C3—C4178.67 (15)N2—N3—C10—C11178.02 (15)
C1—C2—C3—N2177.78 (17)N3—C10—C11—C12171.96 (17)
C1—C2—C3—C40.8 (3)N3—C10—C11—C166.3 (3)
N2—C3—C4—C9177.12 (16)C16—C11—C12—C130.0 (3)
C2—C3—C4—C91.5 (3)C10—C11—C12—C13178.37 (17)
N2—C3—C4—C51.5 (3)C16—C11—C12—Cl1178.98 (14)
C2—C3—C4—C5179.93 (17)C10—C11—C12—Cl10.6 (3)
C9—C4—C5—C61.2 (3)C11—C12—C13—C140.6 (3)
C3—C4—C5—C6177.37 (17)Cl1—C12—C13—C14178.43 (14)
C4—C5—C6—C70.5 (3)C12—C13—C14—C150.1 (3)
C5—C6—C7—C80.4 (3)C12—C13—C14—Cl2179.28 (14)
C6—C7—C8—C90.6 (3)C13—C14—C15—C161.3 (3)
C1—N1—C9—C8178.63 (17)Cl2—C14—C15—C16178.04 (15)
C1—N1—C9—C40.2 (3)C14—C15—C16—C111.9 (3)
C7—C8—C9—N1178.98 (17)C12—C11—C16—C151.3 (3)
C7—C8—C9—C40.1 (3)C10—C11—C16—C15177.08 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1w0.88 (2)1.80 (2)2.673 (2)170 (2)
O1w—H1w···Cl3i0.84 (2)2.32 (2)3.1451 (18)169 (3)
N2—H2n···Cl30.88 (1)2.36 (1)3.2175 (16)166 (2)
O1w—H2w···Cl3ii0.84 (2)2.30 (2)3.1295 (19)173 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC16H12Cl2N3+·Cl·H2O
Mr370.65
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.6815 (2), 9.7491 (3), 10.8418 (3)
α, β, γ (°)87.831 (2), 87.171 (2), 87.146 (2)
V3)809.41 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.10 × 0.09 × 0.08
Data collection
DiffractometerBruker–Nonius Roper CCD camera on a κ-goniostat
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.666, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
16815, 3701, 3016
Rint0.056
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.06
No. of reflections3701
No. of parameters220
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.34

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1w0.883 (15)1.799 (15)2.673 (2)170 (2)
O1w—H1w···Cl3i0.837 (15)2.321 (15)3.1451 (18)169 (3)
N2—H2n···Cl30.881 (12)2.356 (13)3.2175 (16)166.2 (18)
O1w—H2w···Cl3ii0.84 (2)2.30 (2)3.1295 (19)173 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) is gratefully acknowledged.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCandea, A. L. P., Ferreira, M. de L., Pais, K. C., Cardoso, L. N. de F., Kaiser, C. R., Henriques, M., das, G. M. de O., Lourenco, M. C. S., Bezerra, F. A. F. M. & de Souza, M. V. N. (2009). Bioorg. Med. Chem. Lett. 19, 6272–6274.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHowie, R. A., de Souza, M. V. N., Ferreira, M. de L., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 440–447.  Web of Science CSD CrossRef CAS Google Scholar
First citationMontenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C., do, O., Rodriques, F. A. R., Bispo, M. L. F., Freire, B. A., Kaiser, C. R. & de Souza, M. V. N. (2012). Lett. Drug Des. Disc, 9, 251–256.  CAS Google Scholar
First citationMontenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C. Do O., Rodriques, F. A. R., Bispo, M. L. F., Cardoso, L. N. F., Kaiser, C. R. & de Souza, M. V. N. (2011). Med. Chem. 7, 599–604.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698–o699.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Pais, K. C., Kaiser, C. R., Peralta, M. A., Ferreira, M. de L. & Lourenco, M. C. S. (2009). Bioorg. Med. Chem. 17, 1474–1480.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1232-o1233
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds