organic compounds
4-[(E)-2-(2,4-Dichlorobenzylidene)hydrazin-1-yl]quinolin-1-ium chloride monohydrate
aCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and dInstituto de Tecnologia em Fármacos–Farmanguinhos, FioCruz–Fundação Oswaldo Cruz, R. Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com
In the title hydrated salt, C16H12Cl2N3+·Cl−·H2O, there is a small twist in the cation as seen in the torsion angle linking the benzene ring to the rest of the molecule [171.96 (17)°]. In the crystal, the quinolinium H atom forms a hydrogen bond to the lattice water molecule, which also forms hydrogen bonds to two Cl− anions. Each Cl− ion also accepts a hydrogen bond from the hydrazine H atom. The three-dimensional architecture is also stabilized by π–π interactions between centrosymmetrically related quinoline residues [centroid–centroid distance = 3.5574 (11) Å].
Related literature
For the biological activity, including anti-tubercular and anti-tumour activity, of compounds containing the quinolinyl nucleus, see: de Souza et al. (2009), Candea et al. (2009); Montenegro et al. (2011, 2012). For related structures, see: Howie et al. (2010); de Souza et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812012962/xu5495sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812012962/xu5495Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812012962/xu5495Isup3.cml
The compound was prepared from 7-chloro-4-quinolinylhydrazone with 2,5-dimethoxybenzaldehyde (Montenegro et al., 2012). The crystals used in the
were grown from an ethanol solution of the compound.The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound and O-bound H-atoms were located in a difference Fourier map and refined with a O—H = 0.84±0.01 Å [Uiso(H) = 1.5Ueq(O)] and N—H = 0.88±0.01 Å [Uiso(H) = 1.2Ueq(N)]. Owing to poor agreement, the (1 1 3) reflection was omitted from the final cycles of refinement.
A wide range of pharmacological activities have been noted for compounds containing the quinoline nucleus (de Souza et al., 2009), including anti-tubercular (Candea et al., 2009) and anti-tumour (Montenegro et al., 2012) activities. Recently, we have focused attention on arylaldehyde 7-chloroquinoline-4-hydrazone derivatives (Candea et al., 2009; Montenegro et al., 2011). Complementing synthetic studies are crystallographic investigations of the these
(Howie et al., 2010; de Souza et al., 2010). In this connection, we now wish to report the of the title hydrated salt, (I).The ═C10 bond [1.286 (2) Å] is E.
of (I), Fig. 1, comprises a 4-[(E)-2-[(2,4-dichlorophenyl)methylidene]hydrazin-1-yl]quinolin-1-ium cation, a chloride anion and a solvent water molecule. There is a small twist about the C10—C11 bond as seen in the value of the N3—C10—C11—C12 torsion angle, i.e. 171.96 (17)°. Nevertheless, the entire molecule is approximately planar with the r.m.s. deviation of all 24 non-hydrogen atoms being 0.072 Å. The maximum deviations from the least-squares plane are 0.148 (2) for the C14 atom and -0.130 (1) Å for the Cl1 atom. The conformation about the N3There are a number of hydrogen-bonding interactions operating in the π—π interactions between centrosymmetrically related quinolinyl residues [centroid···centroid distance = 3.5574 (11) Å for 1 - x, 1 - y, 1 - z], Fig. 2.
of (I), Table 1. The pyridinium-H forms a hydrogen bond to the water molecule which links two chloride anions via O—H···Cl interactions. Through a centre of inversion, an eight-membered {···HOH···Cl}2 synthon is formed. Finally, the hydrazine-H atom forms a hydrogen bond to the chloride atom. The three-dimensional architecture is also stabilized byFor the biological activity, including anti-tubercular and anti-tumour activity, of compounds containing the quinolinyl nucleus, see: de Souza et al. (2009), Candea et al. (2009); Montenegro et al. (2011, 2012). For related structures, see: Howie et al. (2010); de Souza et al. (2010).
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C16H12Cl2N3+·Cl−·H2O | Z = 2 |
Mr = 370.65 | F(000) = 380 |
Triclinic, P1 | Dx = 1.521 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6815 (2) Å | Cell parameters from 10943 reflections |
b = 9.7491 (3) Å | θ = 2.9–27.5° |
c = 10.8418 (3) Å | µ = 0.57 mm−1 |
α = 87.831 (2)° | T = 120 K |
β = 87.171 (2)° | Block, colourless |
γ = 87.146 (2)° | 0.10 × 0.09 × 0.08 mm |
V = 809.41 (4) Å3 |
Bruker–Nonius Roper CCD camera on a κ-goniostat diffractometer | 3701 independent reflections |
Radiation source: Bruker–Nonius FR591 rotating anode | 3016 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
φ and ω scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −12→12 |
Tmin = 0.666, Tmax = 0.746 | l = −14→14 |
16815 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2111P] where P = (Fo2 + 2Fc2)/3 |
3701 reflections | (Δ/σ)max = 0.001 |
220 parameters | Δρmax = 0.36 e Å−3 |
5 restraints | Δρmin = −0.34 e Å−3 |
C16H12Cl2N3+·Cl−·H2O | γ = 87.146 (2)° |
Mr = 370.65 | V = 809.41 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.6815 (2) Å | Mo Kα radiation |
b = 9.7491 (3) Å | µ = 0.57 mm−1 |
c = 10.8418 (3) Å | T = 120 K |
α = 87.831 (2)° | 0.10 × 0.09 × 0.08 mm |
β = 87.171 (2)° |
Bruker–Nonius Roper CCD camera on a κ-goniostat diffractometer | 3701 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 3016 reflections with I > 2σ(I) |
Tmin = 0.666, Tmax = 0.746 | Rint = 0.056 |
16815 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 5 restraints |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.36 e Å−3 |
3701 reflections | Δρmin = −0.34 e Å−3 |
220 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.23598 (6) | 1.20701 (5) | 0.14241 (5) | 0.02343 (14) | |
Cl2 | 0.81838 (6) | 1.41676 (5) | −0.06262 (5) | 0.02564 (14) | |
N1 | 0.7250 (2) | 0.35248 (17) | 0.32132 (15) | 0.0184 (3) | |
H1n | 0.785 (2) | 0.2747 (14) | 0.337 (2) | 0.022* | |
N2 | 0.4580 (2) | 0.72610 (16) | 0.26643 (15) | 0.0176 (3) | |
H2n | 0.3464 (14) | 0.740 (2) | 0.2871 (19) | 0.021* | |
N3 | 0.5488 (2) | 0.83194 (16) | 0.21124 (14) | 0.0177 (3) | |
C1 | 0.8043 (3) | 0.4576 (2) | 0.26455 (18) | 0.0207 (4) | |
H1 | 0.9235 | 0.4453 | 0.2378 | 0.025* | |
C2 | 0.7194 (2) | 0.5834 (2) | 0.24339 (17) | 0.0196 (4) | |
H2 | 0.7794 | 0.6566 | 0.2029 | 0.024* | |
C3 | 0.5435 (2) | 0.60214 (19) | 0.28223 (16) | 0.0161 (4) | |
C4 | 0.4548 (2) | 0.48914 (19) | 0.34195 (16) | 0.0157 (4) | |
C5 | 0.2776 (2) | 0.4957 (2) | 0.38498 (17) | 0.0186 (4) | |
H5 | 0.2080 | 0.5778 | 0.3719 | 0.022* | |
C6 | 0.2056 (3) | 0.3845 (2) | 0.44529 (18) | 0.0207 (4) | |
H6 | 0.0868 | 0.3907 | 0.4742 | 0.025* | |
C7 | 0.3057 (3) | 0.2609 (2) | 0.46494 (18) | 0.0218 (4) | |
H7 | 0.2544 | 0.1849 | 0.5074 | 0.026* | |
C8 | 0.4769 (3) | 0.2506 (2) | 0.42284 (18) | 0.0202 (4) | |
H8 | 0.5441 | 0.1672 | 0.4353 | 0.024* | |
C9 | 0.5527 (2) | 0.36373 (19) | 0.36120 (16) | 0.0167 (4) | |
C10 | 0.4620 (2) | 0.94746 (19) | 0.19875 (17) | 0.0176 (4) | |
H10 | 0.3440 | 0.9576 | 0.2288 | 0.021* | |
C11 | 0.5500 (2) | 1.06322 (19) | 0.13685 (17) | 0.0171 (4) | |
C12 | 0.4584 (2) | 1.18619 (19) | 0.10639 (17) | 0.0174 (4) | |
C13 | 0.5395 (2) | 1.2951 (2) | 0.04510 (17) | 0.0190 (4) | |
H13 | 0.4754 | 1.3783 | 0.0258 | 0.023* | |
C14 | 0.7152 (3) | 1.27973 (19) | 0.01280 (17) | 0.0193 (4) | |
C15 | 0.8113 (2) | 1.1589 (2) | 0.04001 (18) | 0.0210 (4) | |
H15 | 0.9317 | 1.1491 | 0.0157 | 0.025* | |
C16 | 0.7286 (3) | 1.0533 (2) | 0.10297 (18) | 0.0207 (4) | |
H16 | 0.7945 | 0.9715 | 0.1241 | 0.025* | |
Cl3 | 0.05983 (6) | 0.83146 (5) | 0.32453 (5) | 0.02497 (14) | |
O1w | 0.8874 (3) | 0.11709 (18) | 0.39542 (16) | 0.0445 (5) | |
H1w | 0.908 (4) | 0.119 (3) | 0.4704 (12) | 0.067* | |
H2w | 0.933 (4) | 0.0432 (19) | 0.370 (3) | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0168 (2) | 0.0208 (3) | 0.0321 (3) | 0.00144 (18) | 0.00122 (19) | 0.0017 (2) |
Cl2 | 0.0283 (3) | 0.0229 (3) | 0.0258 (3) | −0.0093 (2) | 0.0037 (2) | 0.0014 (2) |
N1 | 0.0188 (8) | 0.0192 (8) | 0.0164 (8) | 0.0052 (7) | 0.0006 (6) | 0.0008 (7) |
N2 | 0.0171 (8) | 0.0150 (8) | 0.0206 (8) | 0.0000 (6) | −0.0001 (6) | 0.0007 (6) |
N3 | 0.0196 (8) | 0.0164 (8) | 0.0173 (8) | −0.0033 (6) | −0.0013 (6) | 0.0015 (6) |
C1 | 0.0190 (9) | 0.0238 (10) | 0.0187 (10) | 0.0020 (8) | 0.0007 (8) | 0.0009 (8) |
C2 | 0.0209 (9) | 0.0189 (10) | 0.0187 (10) | −0.0016 (8) | 0.0001 (8) | 0.0026 (8) |
C3 | 0.0198 (9) | 0.0174 (9) | 0.0112 (8) | 0.0004 (7) | −0.0021 (7) | −0.0019 (7) |
C4 | 0.0186 (9) | 0.0162 (9) | 0.0125 (9) | 0.0005 (7) | −0.0026 (7) | −0.0007 (7) |
C5 | 0.0201 (9) | 0.0176 (10) | 0.0177 (9) | 0.0032 (8) | −0.0018 (8) | −0.0009 (7) |
C6 | 0.0208 (10) | 0.0207 (10) | 0.0205 (10) | −0.0015 (8) | 0.0008 (8) | −0.0019 (8) |
C7 | 0.0257 (10) | 0.0189 (10) | 0.0204 (10) | −0.0030 (8) | 0.0020 (8) | 0.0022 (8) |
C8 | 0.0270 (10) | 0.0154 (9) | 0.0180 (10) | 0.0022 (8) | −0.0031 (8) | 0.0011 (7) |
C9 | 0.0190 (9) | 0.0179 (10) | 0.0131 (9) | 0.0020 (8) | −0.0017 (7) | −0.0022 (7) |
C10 | 0.0176 (9) | 0.0182 (10) | 0.0169 (9) | −0.0005 (8) | −0.0001 (7) | −0.0003 (7) |
C11 | 0.0187 (9) | 0.0180 (10) | 0.0150 (9) | −0.0025 (7) | −0.0009 (7) | −0.0021 (7) |
C12 | 0.0163 (9) | 0.0187 (10) | 0.0175 (9) | −0.0004 (7) | −0.0019 (7) | −0.0034 (7) |
C13 | 0.0229 (10) | 0.0162 (9) | 0.0179 (10) | −0.0009 (8) | −0.0013 (8) | 0.0010 (7) |
C14 | 0.0247 (10) | 0.0169 (10) | 0.0172 (9) | −0.0078 (8) | −0.0023 (8) | −0.0005 (7) |
C15 | 0.0173 (9) | 0.0230 (10) | 0.0229 (10) | −0.0020 (8) | 0.0008 (8) | −0.0031 (8) |
C16 | 0.0210 (10) | 0.0186 (10) | 0.0225 (10) | 0.0020 (8) | −0.0024 (8) | −0.0016 (8) |
Cl3 | 0.0219 (3) | 0.0205 (3) | 0.0312 (3) | 0.00329 (19) | 0.0060 (2) | 0.0001 (2) |
O1w | 0.0646 (12) | 0.0317 (9) | 0.0356 (10) | 0.0289 (9) | −0.0141 (9) | −0.0066 (8) |
Cl1—C12 | 1.7374 (19) | C6—H6 | 0.9500 |
Cl2—C14 | 1.7435 (19) | C7—C8 | 1.371 (3) |
N1—C1 | 1.334 (3) | C7—H7 | 0.9500 |
N1—C9 | 1.372 (2) | C8—C9 | 1.404 (3) |
N1—H1n | 0.884 (9) | C8—H8 | 0.9500 |
N2—C3 | 1.355 (2) | C10—C11 | 1.468 (3) |
N2—N3 | 1.376 (2) | C10—H10 | 0.9500 |
N2—H2n | 0.881 (9) | C11—C12 | 1.396 (3) |
N3—C10 | 1.286 (2) | C11—C16 | 1.402 (3) |
C1—C2 | 1.377 (3) | C12—C13 | 1.388 (3) |
C1—H1 | 0.9500 | C13—C14 | 1.380 (3) |
C2—C3 | 1.401 (3) | C13—H13 | 0.9500 |
C2—H2 | 0.9500 | C14—C15 | 1.389 (3) |
C3—C4 | 1.440 (3) | C15—C16 | 1.377 (3) |
C4—C9 | 1.418 (2) | C15—H15 | 0.9500 |
C4—C5 | 1.416 (3) | C16—H16 | 0.9500 |
C5—C6 | 1.371 (3) | O1w—H1w | 0.836 (10) |
C5—H5 | 0.9500 | O1w—H2w | 0.834 (10) |
C6—C7 | 1.412 (3) | ||
C1—N1—C9 | 121.52 (16) | C7—C8—C9 | 119.77 (17) |
C1—N1—H1n | 119.8 (14) | C7—C8—H8 | 120.1 |
C9—N1—H1n | 118.6 (14) | C9—C8—H8 | 120.1 |
C3—N2—N3 | 118.12 (16) | N1—C9—C8 | 119.09 (16) |
C3—N2—H2n | 122.5 (14) | N1—C9—C4 | 119.98 (17) |
N3—N2—H2n | 119.3 (14) | C8—C9—C4 | 120.93 (17) |
C10—N3—N2 | 115.69 (16) | N3—C10—C11 | 118.31 (17) |
N1—C1—C2 | 122.28 (18) | N3—C10—H10 | 120.8 |
N1—C1—H1 | 118.9 | C11—C10—H10 | 120.8 |
C2—C1—H1 | 118.9 | C12—C11—C16 | 117.33 (17) |
C1—C2—C3 | 119.17 (18) | C12—C11—C10 | 121.41 (17) |
C1—C2—H2 | 120.4 | C16—C11—C10 | 121.24 (17) |
C3—C2—H2 | 120.4 | C13—C12—C11 | 121.87 (17) |
N2—C3—C2 | 120.53 (17) | C13—C12—Cl1 | 117.49 (14) |
N2—C3—C4 | 120.06 (17) | C11—C12—Cl1 | 120.64 (15) |
C2—C3—C4 | 119.39 (17) | C14—C13—C12 | 118.55 (18) |
C9—C4—C5 | 117.85 (17) | C14—C13—H13 | 120.7 |
C9—C4—C3 | 117.65 (17) | C12—C13—H13 | 120.7 |
C5—C4—C3 | 124.49 (17) | C13—C14—C15 | 121.63 (18) |
C6—C5—C4 | 120.52 (17) | C13—C14—Cl2 | 118.79 (15) |
C6—C5—H5 | 119.7 | C15—C14—Cl2 | 119.58 (15) |
C4—C5—H5 | 119.7 | C16—C15—C14 | 118.69 (18) |
C5—C6—C7 | 120.85 (18) | C16—C15—H15 | 120.7 |
C5—C6—H6 | 119.6 | C14—C15—H15 | 120.7 |
C7—C6—H6 | 119.6 | C15—C16—C11 | 121.90 (18) |
C8—C7—C6 | 120.07 (18) | C15—C16—H16 | 119.0 |
C8—C7—H7 | 120.0 | C11—C16—H16 | 119.0 |
C6—C7—H7 | 120.0 | H1w—O1w—H2w | 107 (3) |
C3—N2—N3—C10 | −179.79 (16) | C5—C4—C9—N1 | −179.89 (16) |
C9—N1—C1—C2 | 0.5 (3) | C3—C4—C9—N1 | −1.2 (3) |
N1—C1—C2—C3 | −0.2 (3) | C5—C4—C9—C8 | −1.1 (3) |
N3—N2—C3—C2 | 0.1 (3) | C3—C4—C9—C8 | 177.65 (16) |
N3—N2—C3—C4 | 178.67 (15) | N2—N3—C10—C11 | −178.02 (15) |
C1—C2—C3—N2 | 177.78 (17) | N3—C10—C11—C12 | 171.96 (17) |
C1—C2—C3—C4 | −0.8 (3) | N3—C10—C11—C16 | −6.3 (3) |
N2—C3—C4—C9 | −177.12 (16) | C16—C11—C12—C13 | 0.0 (3) |
C2—C3—C4—C9 | 1.5 (3) | C10—C11—C12—C13 | −178.37 (17) |
N2—C3—C4—C5 | 1.5 (3) | C16—C11—C12—Cl1 | 178.98 (14) |
C2—C3—C4—C5 | −179.93 (17) | C10—C11—C12—Cl1 | 0.6 (3) |
C9—C4—C5—C6 | 1.2 (3) | C11—C12—C13—C14 | 0.6 (3) |
C3—C4—C5—C6 | −177.37 (17) | Cl1—C12—C13—C14 | −178.43 (14) |
C4—C5—C6—C7 | −0.5 (3) | C12—C13—C14—C15 | 0.1 (3) |
C5—C6—C7—C8 | −0.4 (3) | C12—C13—C14—Cl2 | −179.28 (14) |
C6—C7—C8—C9 | 0.6 (3) | C13—C14—C15—C16 | −1.3 (3) |
C1—N1—C9—C8 | −178.63 (17) | Cl2—C14—C15—C16 | 178.04 (15) |
C1—N1—C9—C4 | 0.2 (3) | C14—C15—C16—C11 | 1.9 (3) |
C7—C8—C9—N1 | 178.98 (17) | C12—C11—C16—C15 | −1.3 (3) |
C7—C8—C9—C4 | 0.1 (3) | C10—C11—C16—C15 | 177.08 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1n···O1w | 0.88 (2) | 1.80 (2) | 2.673 (2) | 170 (2) |
O1w—H1w···Cl3i | 0.84 (2) | 2.32 (2) | 3.1451 (18) | 169 (3) |
N2—H2n···Cl3 | 0.88 (1) | 2.36 (1) | 3.2175 (16) | 166 (2) |
O1w—H2w···Cl3ii | 0.84 (2) | 2.30 (2) | 3.1295 (19) | 173 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C16H12Cl2N3+·Cl−·H2O |
Mr | 370.65 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 7.6815 (2), 9.7491 (3), 10.8418 (3) |
α, β, γ (°) | 87.831 (2), 87.171 (2), 87.146 (2) |
V (Å3) | 809.41 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.57 |
Crystal size (mm) | 0.10 × 0.09 × 0.08 |
Data collection | |
Diffractometer | Bruker–Nonius Roper CCD camera on a κ-goniostat |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.666, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16815, 3701, 3016 |
Rint | 0.056 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.103, 1.06 |
No. of reflections | 3701 |
No. of parameters | 220 |
No. of restraints | 5 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.36, −0.34 |
Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1n···O1w | 0.883 (15) | 1.799 (15) | 2.673 (2) | 170 (2) |
O1w—H1w···Cl3i | 0.837 (15) | 2.321 (15) | 3.1451 (18) | 169 (3) |
N2—H2n···Cl3 | 0.881 (12) | 2.356 (13) | 3.2175 (16) | 166.2 (18) |
O1w—H2w···Cl3ii | 0.84 (2) | 2.30 (2) | 3.1295 (19) | 173 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y−1, z. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) is gratefully acknowledged.
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Candea, A. L. P., Ferreira, M. de L., Pais, K. C., Cardoso, L. N. de F., Kaiser, C. R., Henriques, M., das, G. M. de O., Lourenco, M. C. S., Bezerra, F. A. F. M. & de Souza, M. V. N. (2009). Bioorg. Med. Chem. Lett. 19, 6272–6274. Web of Science PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Howie, R. A., de Souza, M. V. N., Ferreira, M. de L., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 440–447. Web of Science CSD CrossRef CAS Google Scholar
Montenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C., do, O., Rodriques, F. A. R., Bispo, M. L. F., Freire, B. A., Kaiser, C. R. & de Souza, M. V. N. (2012). Lett. Drug Des. Disc, 9, 251–256. CAS Google Scholar
Montenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C. Do O., Rodriques, F. A. R., Bispo, M. L. F., Cardoso, L. N. F., Kaiser, C. R. & de Souza, M. V. N. (2011). Med. Chem. 7, 599–604. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698–o699. Web of Science CSD CrossRef IUCr Journals Google Scholar
Souza, M. V. N. de, Pais, K. C., Kaiser, C. R., Peralta, M. A., Ferreira, M. de L. & Lourenco, M. C. S. (2009). Bioorg. Med. Chem. 17, 1474–1480. Web of Science PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A wide range of pharmacological activities have been noted for compounds containing the quinoline nucleus (de Souza et al., 2009), including anti-tubercular (Candea et al., 2009) and anti-tumour (Montenegro et al., 2012) activities. Recently, we have focused attention on arylaldehyde 7-chloroquinoline-4-hydrazone derivatives (Candea et al., 2009; Montenegro et al., 2011). Complementing synthetic studies are crystallographic investigations of the these hydrazones (Howie et al., 2010; de Souza et al., 2010). In this connection, we now wish to report the crystal structure of the title hydrated salt, (I).
The asymmetric unit of (I), Fig. 1, comprises a 4-[(E)-2-[(2,4-dichlorophenyl)methylidene]hydrazin-1-yl]quinolin-1-ium cation, a chloride anion and a solvent water molecule. There is a small twist about the C10—C11 bond as seen in the value of the N3—C10—C11—C12 torsion angle, i.e. 171.96 (17)°. Nevertheless, the entire molecule is approximately planar with the r.m.s. deviation of all 24 non-hydrogen atoms being 0.072 Å. The maximum deviations from the least-squares plane are 0.148 (2) for the C14 atom and -0.130 (1) Å for the Cl1 atom. The conformation about the N3═C10 bond [1.286 (2) Å] is E.
There are a number of hydrogen-bonding interactions operating in the crystal structure of (I), Table 1. The pyridinium-H forms a hydrogen bond to the water molecule which links two chloride anions via O—H···Cl interactions. Through a centre of inversion, an eight-membered {···HOH···Cl}2 synthon is formed. Finally, the hydrazine-H atom forms a hydrogen bond to the chloride atom. The three-dimensional architecture is also stabilized by π—π interactions between centrosymmetrically related quinolinyl residues [centroid···centroid distance = 3.5574 (11) Å for symmetry operation: 1 - x, 1 - y, 1 - z], Fig. 2.