metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(4-methyl­anilinium) penta­chlorido­anti­monate(III) chloride monohydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: xqchem@yahoo.com.cn

(Received 27 February 2012; accepted 3 March 2012; online 17 March 2012)

The title compound, (C7H10N)3[SbCl5]Cl·H2O, consists of 4-methyl­anilinium cations, Cl and [SbCl5]2− anions and water mol­ecules. The five Cl atoms bound to Sb [Sb—Cl = 2.4043 (9)–2.6262 (11) Å] form a square-pyramidal coordination environment. In addition, two [SbCl5]2− anions related by an inversion center are joined by Sb⋯Cl inter­actions [Sb⋯Cl = 3.7273 (14) Å] into an [Sb2Cl10]4− dimer with two bridging Cl atoms. The anions, water mol­ecules and ammonium groups of the cations are linked by N—H⋯Cl, N—H⋯O and O—H⋯Cl hydrogen bonds, forming layers parallel to the ac plane. The benzene rings of the 4-methyl­anilinium cations are packed between these layers.

Related literature

For the closely related structures of bis­(anilinium) penta­chlorido­anti­monate(III) and tris­(anilinium) chloride penta­chlorido­anti­monate(III) monohydrate, see: Lipka (1980[Lipka, A. (1980). Z. Anorg. Allg. Chem. 469, 218-228.]) and Chaabouni et al. (2004[Chaabouni, S., Savariault, J. M. & Salah, H. (2004). J. Chem. Crystallogr. 34, 661-664.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • (C7H10N)3[SbCl5]Cl·H2O

  • Mr = 676.95

  • Triclinic, [P \overline 1]

  • a = 9.4109 (19) Å

  • b = 12.867 (3) Å

  • c = 13.501 (3) Å

  • α = 63.35 (3)°

  • β = 83.08 (3)°

  • γ = 82.51 (3)°

  • V = 1445.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 293 K

  • 0.31 × 0.25 × 0.22 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.649, Tmax = 0.730

  • 15103 measured reflections

  • 6609 independent reflections

  • 6031 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.06

  • 6609 reflections

  • 304 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯Cl1 0.89 2.32 3.202 (2) 170
N1—H1E⋯Cl1i 0.89 2.43 3.298 (3) 167
N1—H1F⋯Cl3i 0.89 2.52 3.381 (2) 162
N2—H2A⋯O1W 0.89 1.97 2.849 (4) 170
N2—H2B⋯Cl3ii 0.89 2.61 3.389 (2) 146
N2—H2C⋯Cl4 0.89 2.45 3.307 (3) 161
N3—H3A⋯Cl1i 0.89 2.46 3.293 (3) 156
N3—H3B⋯Cl5 0.89 2.51 3.402 (2) 174
N3—H3C⋯Cl1iii 0.89 2.32 3.201 (3) 173
O1W—H1WA⋯Cl4ii 0.85 (1) 2.56 (3) 3.283 (2) 143 (4)
O1W—H1WB⋯Cl2iv 0.85 (4) 2.69 (3) 3.344 (2) 136 (4)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was prepared in attempts to synthesize new materials with ferroelectric phase transition. Unfortunately, the dielectric permeability of title compound goes smoothly in the temperature range 80–293 K, suggesting no distinct phase transitions occurred.

A view asymmetric unit of the title compound is shown in Fig. 1. It consists of three p-toluidine cations, one water molecule, and Cl- and [SbCl5]2- anions. Hydrogen bonding between cations, anions and water molecules (Table 1, Fig. 2) produces two-dimensional network parallel to the ac plane. Analogous system of hydrogen bonds exists in closely related structure of tris-anilinium chloride pentachloroantimonate (III) monohydrate (Chaabouni et al., 2004)

The Sb atom is coordinated by five Cl atoms in a slightly distorted square-pyramidal mode. The distance from Sb to the apical Cl atom is much shorter than the equatorial Sb—Cl bonds. Such structure is typical of [SbCl5]2--containing salts (Lipka, 1980). Two anions [SbCl5]2- related by an inversion center are joined by Sb···Cl interactions [Sb···Cl = 3.7273 (14) Å] into the Sb2Cl104- dimer with two bridging Cl atoms.

Related literature top

For the closely related structures of bis(anilinium) pentachloroantimonate(III) and tris(anilinium) chloride pentachloroantimonate(III) monohydrate, see: Lipka (1980) and Chaabouni et al. (2004), respectively.

Experimental top

The mixture of SbCl3 (1.1 g, 5 mmol) and p-toluidine (1.05 g, 10 mmol) was dissolved in hydrochloric acid and stirred for several minutes at room temperature. Colorless crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solution at room temperature over 2 weeks.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 Å for phenyl and 0.96 Å for methyl groups, and N—H = 0.89 Å; Uiso(H) = 1.2 Uiso(C) for phenyl and 1.5 Uiso(C,N) for methyl and ammonium H atoms. In water molecule the O—H distances in water were restrained to 0.85 (1) Å, and the distance H···H – to 1.38 (2) Å.

Structure description top

The title compound was prepared in attempts to synthesize new materials with ferroelectric phase transition. Unfortunately, the dielectric permeability of title compound goes smoothly in the temperature range 80–293 K, suggesting no distinct phase transitions occurred.

A view asymmetric unit of the title compound is shown in Fig. 1. It consists of three p-toluidine cations, one water molecule, and Cl- and [SbCl5]2- anions. Hydrogen bonding between cations, anions and water molecules (Table 1, Fig. 2) produces two-dimensional network parallel to the ac plane. Analogous system of hydrogen bonds exists in closely related structure of tris-anilinium chloride pentachloroantimonate (III) monohydrate (Chaabouni et al., 2004)

The Sb atom is coordinated by five Cl atoms in a slightly distorted square-pyramidal mode. The distance from Sb to the apical Cl atom is much shorter than the equatorial Sb—Cl bonds. Such structure is typical of [SbCl5]2--containing salts (Lipka, 1980). Two anions [SbCl5]2- related by an inversion center are joined by Sb···Cl interactions [Sb···Cl = 3.7273 (14) Å] into the Sb2Cl104- dimer with two bridging Cl atoms.

For the closely related structures of bis(anilinium) pentachloroantimonate(III) and tris(anilinium) chloride pentachloroantimonate(III) monohydrate, see: Lipka (1980) and Chaabouni et al. (2004), respectively.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labelling scheme and thermal ellipsoids drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The system of hydrogen bonds (shown as dashed lines) in the title compound.
Tris(4-methylanilinium) pentachloridoantimonate(III) chloride monohydrate top
Crystal data top
(C7H10N)3[SbCl5]Cl·H2OZ = 2
Mr = 676.95F(000) = 680
Triclinic, P1Dx = 1.556 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4109 (19) ÅCell parameters from 6609 reflections
b = 12.867 (3) Åθ = 2.3–27.5°
c = 13.501 (3) ŵ = 1.53 mm1
α = 63.35 (3)°T = 293 K
β = 83.08 (3)°Block, brown
γ = 82.51 (3)°0.31 × 0.25 × 0.22 mm
V = 1445.1 (5) Å3
Data collection top
Rigaku SCXmini
diffractometer
6609 independent reflections
Radiation source: fine-focus sealed tube6031 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1212
Tmin = 0.649, Tmax = 0.730k = 1616
15103 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.2569P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.041
6609 reflectionsΔρmax = 0.45 e Å3
304 parametersΔρmin = 0.63 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0277 (8)
Crystal data top
(C7H10N)3[SbCl5]Cl·H2Oγ = 82.51 (3)°
Mr = 676.95V = 1445.1 (5) Å3
Triclinic, P1Z = 2
a = 9.4109 (19) ÅMo Kα radiation
b = 12.867 (3) ŵ = 1.53 mm1
c = 13.501 (3) ÅT = 293 K
α = 63.35 (3)°0.31 × 0.25 × 0.22 mm
β = 83.08 (3)°
Data collection top
Rigaku SCXmini
diffractometer
6609 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
6031 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.730Rint = 0.029
15103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0283 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.45 e Å3
6609 reflectionsΔρmin = 0.63 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5819 (5)0.1182 (3)0.1786 (3)0.0788 (11)
H1A0.61790.15190.12890.118*
H1B0.48730.14160.20870.118*
H1C0.64450.14460.23790.118*
C20.5756 (3)0.0133 (2)0.1160 (2)0.0491 (6)
C30.4543 (4)0.0833 (3)0.1201 (3)0.0681 (9)
H30.37460.04920.16550.082*
C40.4473 (3)0.2033 (3)0.0584 (3)0.0599 (8)
H40.36350.24930.06120.072*
C50.5651 (3)0.2528 (2)0.00645 (19)0.0379 (5)
C60.6881 (3)0.1871 (2)0.0109 (3)0.0553 (7)
H60.76850.22190.05450.066*
C70.6920 (4)0.0668 (2)0.0508 (3)0.0614 (8)
H70.77610.02140.04760.074*
C80.7153 (4)0.0700 (3)0.4215 (4)0.0913 (13)
H8A0.80160.10840.45820.137*
H8B0.72780.05940.34600.137*
H8C0.63670.11690.45940.137*
C90.6836 (3)0.0481 (3)0.4229 (3)0.0570 (8)
C100.6689 (3)0.0565 (3)0.5211 (3)0.0636 (8)
H100.67620.01150.58720.076*
C110.6434 (3)0.1633 (2)0.5252 (2)0.0522 (7)
H110.63580.16730.59270.063*
C120.6420 (3)0.2577 (2)0.3272 (2)0.0486 (6)
H120.63180.32550.26130.058*
C130.6697 (3)0.1498 (3)0.3258 (3)0.0595 (8)
H130.67910.14590.25820.071*
C140.0597 (5)0.1055 (3)0.2261 (4)0.0835 (11)
H14A0.00810.14870.28500.125*
H14B0.15490.14190.24370.125*
H14C0.03760.10440.15800.125*
C150.0512 (3)0.0175 (2)0.2129 (3)0.0520 (7)
C160.0510 (3)0.0397 (2)0.3037 (2)0.0548 (7)
H160.05820.02280.37380.066*
C170.0403 (3)0.1524 (2)0.2937 (2)0.0504 (6)
H170.04060.16550.35610.060*
C180.0292 (2)0.2445 (2)0.1900 (2)0.0379 (5)
C190.0306 (3)0.2262 (2)0.0970 (2)0.0509 (7)
H190.02390.28890.02710.061*
C200.0423 (4)0.1126 (3)0.1097 (3)0.0597 (8)
H200.04430.09970.04700.072*
C210.6298 (2)0.2630 (2)0.4271 (2)0.0382 (5)
Cl60.28747 (6)0.39064 (5)0.30055 (5)0.03994 (14)
Cl30.34735 (7)0.63633 (5)0.32019 (5)0.04439 (14)
Cl20.02743 (7)0.61394 (6)0.19317 (5)0.04800 (15)
Cl40.27679 (8)0.36960 (6)0.56178 (5)0.05163 (16)
Cl50.04581 (7)0.34297 (6)0.43914 (6)0.04692 (15)
N10.5587 (2)0.38021 (17)0.07764 (17)0.0446 (5)
H1D0.62010.41170.05590.067*
H1E0.47010.41180.07180.067*
H1F0.58200.39380.14800.067*
N20.5985 (2)0.37651 (19)0.43079 (19)0.0467 (5)
H2A0.62030.43350.36420.070*
H2B0.65070.37840.48060.070*
H2C0.50560.38620.44980.070*
N30.0109 (2)0.36535 (18)0.17691 (19)0.0454 (5)
H3A0.08900.40140.14070.068*
H3B0.00190.36470.24360.068*
H3C0.06530.40290.13850.068*
Sb10.137115 (15)0.499310 (12)0.384947 (11)0.03139 (7)
Cl10.74902 (6)0.49450 (5)0.02248 (5)0.04278 (14)
O1W0.6775 (2)0.5732 (2)0.23099 (19)0.0591 (5)
H1WA0.686 (5)0.620 (4)0.258 (4)0.129 (18)*
H1WB0.758 (3)0.562 (4)0.200 (4)0.14 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.126 (3)0.0427 (16)0.059 (2)0.0255 (19)0.015 (2)0.0082 (14)
C20.0684 (18)0.0365 (13)0.0381 (14)0.0169 (13)0.0052 (12)0.0091 (11)
C30.0575 (19)0.0624 (19)0.064 (2)0.0254 (16)0.0151 (15)0.0092 (15)
C40.0463 (15)0.0519 (17)0.0643 (19)0.0039 (13)0.0102 (13)0.0138 (14)
C50.0428 (13)0.0362 (12)0.0348 (12)0.0074 (10)0.0032 (10)0.0146 (10)
C60.0432 (14)0.0420 (14)0.0656 (19)0.0089 (12)0.0110 (13)0.0125 (13)
C70.0587 (18)0.0377 (14)0.073 (2)0.0026 (13)0.0010 (15)0.0146 (14)
C80.063 (2)0.061 (2)0.167 (4)0.0060 (18)0.007 (2)0.066 (3)
C90.0355 (13)0.0500 (16)0.092 (2)0.0043 (12)0.0065 (14)0.0361 (16)
C100.0588 (18)0.0506 (17)0.068 (2)0.0120 (14)0.0118 (15)0.0110 (15)
C110.0547 (16)0.0536 (16)0.0476 (16)0.0097 (13)0.0041 (12)0.0204 (13)
C120.0460 (14)0.0525 (16)0.0477 (15)0.0012 (12)0.0047 (11)0.0228 (12)
C130.0535 (17)0.072 (2)0.070 (2)0.0007 (15)0.0069 (14)0.0470 (17)
C140.094 (3)0.054 (2)0.102 (3)0.0050 (19)0.003 (2)0.038 (2)
C150.0428 (14)0.0463 (15)0.0651 (18)0.0038 (12)0.0050 (13)0.0245 (13)
C160.0547 (16)0.0446 (15)0.0519 (17)0.0005 (13)0.0095 (13)0.0091 (12)
C170.0586 (16)0.0506 (15)0.0418 (14)0.0059 (13)0.0096 (12)0.0184 (12)
C180.0321 (11)0.0394 (12)0.0441 (13)0.0036 (10)0.0078 (10)0.0186 (10)
C190.0662 (18)0.0444 (14)0.0394 (14)0.0025 (13)0.0103 (12)0.0150 (11)
C200.076 (2)0.0608 (18)0.0523 (17)0.0000 (16)0.0066 (15)0.0344 (15)
C210.0283 (11)0.0415 (13)0.0487 (14)0.0063 (10)0.0029 (10)0.0225 (11)
Cl60.0361 (3)0.0465 (3)0.0429 (3)0.0003 (2)0.0002 (2)0.0262 (3)
Cl30.0448 (3)0.0446 (3)0.0474 (3)0.0162 (3)0.0032 (3)0.0218 (3)
Cl20.0510 (4)0.0476 (3)0.0368 (3)0.0034 (3)0.0084 (3)0.0099 (3)
Cl40.0647 (4)0.0520 (4)0.0348 (3)0.0012 (3)0.0120 (3)0.0156 (3)
Cl50.0387 (3)0.0489 (3)0.0551 (4)0.0166 (3)0.0054 (3)0.0233 (3)
N10.0557 (13)0.0341 (10)0.0411 (12)0.0069 (9)0.0067 (9)0.0124 (9)
N20.0415 (11)0.0518 (13)0.0542 (13)0.0025 (10)0.0072 (10)0.0293 (11)
N30.0459 (12)0.0422 (11)0.0508 (13)0.0045 (10)0.0130 (10)0.0202 (10)
Sb10.02980 (10)0.03616 (10)0.02999 (10)0.00388 (6)0.00011 (6)0.01637 (7)
Cl10.0404 (3)0.0455 (3)0.0445 (3)0.0007 (3)0.0049 (2)0.0220 (3)
O1W0.0567 (13)0.0671 (14)0.0617 (13)0.0053 (11)0.0021 (10)0.0361 (11)
Geometric parameters (Å, º) top
C1—C21.511 (4)C14—H14B0.9600
C1—H1A0.9600C14—H14C0.9600
C1—H1B0.9600C15—C161.377 (4)
C1—H1C0.9600C15—C201.385 (4)
C2—C71.367 (4)C16—C171.386 (4)
C2—C31.371 (5)C16—H160.9300
C3—C41.385 (4)C17—C181.375 (4)
C3—H30.9300C17—H170.9300
C4—C51.360 (4)C18—C191.376 (3)
C4—H40.9300C18—N31.473 (3)
C5—C61.353 (4)C19—C201.385 (4)
C5—N11.480 (3)C19—H190.9300
C6—C71.388 (4)C20—H200.9300
C6—H60.9300C21—N21.474 (3)
C7—H70.9300Cl6—Sb12.4043 (9)
C8—C91.518 (4)Cl3—Sb12.6262 (11)
C8—H8A0.9600Cl2—Sb12.6011 (12)
C8—H8B0.9600Cl4—Sb12.6120 (13)
C8—H8C0.9600Cl5—Sb12.6124 (11)
C9—C101.367 (5)N1—H1D0.8900
C9—C131.380 (5)N1—H1E0.8900
C10—C111.389 (4)N1—H1F0.8900
C10—H100.9300N2—H2A0.8900
C11—C211.375 (4)N2—H2B0.8900
C11—H110.9300N2—H2C0.8900
C12—C211.371 (3)N3—H3A0.8900
C12—C131.387 (4)N3—H3B0.8900
C12—H120.9300N3—H3C0.8900
C13—H130.9300O1W—H1WA0.845 (10)
C14—C151.504 (4)O1W—H1WB0.847 (10)
C14—H14A0.9600
C2—C1—H1A109.5C16—C15—C20117.5 (3)
C2—C1—H1B109.5C16—C15—C14121.0 (3)
H1A—C1—H1B109.5C20—C15—C14121.5 (3)
C2—C1—H1C109.5C15—C16—C17121.9 (3)
H1A—C1—H1C109.5C15—C16—H16119.0
H1B—C1—H1C109.5C17—C16—H16119.0
C7—C2—C3117.4 (2)C18—C17—C16118.8 (3)
C7—C2—C1120.5 (3)C18—C17—H17120.6
C3—C2—C1122.2 (3)C16—C17—H17120.6
C2—C3—C4121.8 (3)C17—C18—C19121.1 (2)
C2—C3—H3119.1C17—C18—N3120.3 (2)
C4—C3—H3119.1C19—C18—N3118.6 (2)
C5—C4—C3118.8 (3)C18—C19—C20118.7 (2)
C5—C4—H4120.6C18—C19—H19120.7
C3—C4—H4120.6C20—C19—H19120.7
C6—C5—C4121.3 (2)C15—C20—C19121.9 (3)
C6—C5—N1118.6 (2)C15—C20—H20119.0
C4—C5—N1120.1 (2)C19—C20—H20119.0
C5—C6—C7118.8 (3)C12—C21—C11121.0 (2)
C5—C6—H6120.6C12—C21—N2120.1 (2)
C7—C6—H6120.6C11—C21—N2118.9 (2)
C2—C7—C6121.9 (3)C5—N1—H1D109.5
C2—C7—H7119.0C5—N1—H1E109.5
C6—C7—H7119.0H1D—N1—H1E109.5
C9—C8—H8A109.5C5—N1—H1F109.5
C9—C8—H8B109.5H1D—N1—H1F109.5
H8A—C8—H8B109.5H1E—N1—H1F109.5
C9—C8—H8C109.5C21—N2—H2A109.5
H8A—C8—H8C109.5C21—N2—H2B109.5
H8B—C8—H8C109.5H2A—N2—H2B109.5
C10—C9—C13118.1 (3)C21—N2—H2C109.5
C10—C9—C8120.5 (3)H2A—N2—H2C109.5
C13—C9—C8121.4 (3)H2B—N2—H2C109.5
C9—C10—C11122.0 (3)C18—N3—H3A109.5
C9—C10—H10119.0C18—N3—H3B109.5
C11—C10—H10119.0H3A—N3—H3B109.5
C21—C11—C10118.5 (3)C18—N3—H3C109.5
C21—C11—H11120.8H3A—N3—H3C109.5
C10—C11—H11120.8H3B—N3—H3C109.5
C21—C12—C13119.1 (3)Cl6—Sb1—Cl285.80 (4)
C21—C12—H12120.5Cl6—Sb1—Cl485.36 (3)
C13—C12—H12120.5Cl2—Sb1—Cl4171.07 (2)
C9—C13—C12121.3 (3)Cl6—Sb1—Cl586.20 (3)
C9—C13—H13119.4Cl2—Sb1—Cl588.98 (4)
C12—C13—H13119.4Cl4—Sb1—Cl591.76 (4)
C15—C14—H14A109.5Cl6—Sb1—Cl385.26 (3)
C15—C14—H14B109.5Cl2—Sb1—Cl391.42 (4)
H14A—C14—H14B109.5Cl4—Sb1—Cl386.53 (4)
C15—C14—H14C109.5Cl5—Sb1—Cl3171.40 (2)
H14A—C14—H14C109.5H1WA—O1W—H1WB109 (2)
H14B—C14—H14C109.5
C7—C2—C3—C41.8 (5)C21—C12—C13—C90.7 (4)
C1—C2—C3—C4176.9 (3)C20—C15—C16—C170.9 (4)
C2—C3—C4—C51.1 (5)C14—C15—C16—C17178.7 (3)
C3—C4—C5—C60.4 (5)C15—C16—C17—C180.2 (4)
C3—C4—C5—N1176.9 (3)C16—C17—C18—C191.0 (4)
C4—C5—C6—C71.1 (5)C16—C17—C18—N3177.2 (2)
N1—C5—C6—C7176.3 (3)C17—C18—C19—C200.6 (4)
C3—C2—C7—C61.1 (5)N3—C18—C19—C20177.6 (3)
C1—C2—C7—C6177.6 (3)C16—C15—C20—C191.3 (5)
C5—C6—C7—C20.3 (5)C14—C15—C20—C19178.2 (3)
C13—C9—C10—C111.2 (4)C18—C19—C20—C150.6 (5)
C8—C9—C10—C11178.4 (3)C13—C12—C21—C110.5 (4)
C9—C10—C11—C211.4 (4)C13—C12—C21—N2179.2 (2)
C10—C9—C13—C120.2 (4)C10—C11—C21—C120.5 (4)
C8—C9—C13—C12179.4 (3)C10—C11—C21—N2178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl10.892.323.202 (2)170
N1—H1E···Cl1i0.892.433.298 (3)167
N1—H1F···Cl3i0.892.523.381 (2)162
N2—H2A···O1W0.891.972.849 (4)170
N2—H2B···Cl3ii0.892.613.389 (2)146
N2—H2C···Cl40.892.453.307 (3)161
N3—H3A···Cl1i0.892.463.293 (3)156
N3—H3B···Cl50.892.513.402 (2)174
N3—H3C···Cl1iii0.892.323.201 (3)173
O1W—H1WA···Cl4ii0.85 (1)2.56 (3)3.283 (2)143 (4)
O1W—H1WB···Cl2iv0.85 (4)2.69 (3)3.344 (2)136 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C7H10N)3[SbCl5]Cl·H2O
Mr676.95
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.4109 (19), 12.867 (3), 13.501 (3)
α, β, γ (°)63.35 (3), 83.08 (3), 82.51 (3)
V3)1445.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.31 × 0.25 × 0.22
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.649, 0.730
No. of measured, independent and
observed [I > 2σ(I)] reflections
15103, 6609, 6031
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.06
No. of reflections6609
No. of parameters304
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.63

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl10.892.323.202 (2)170.3
N1—H1E···Cl1i0.892.433.298 (3)166.5
N1—H1F···Cl3i0.892.523.381 (2)162.1
N2—H2A···O1W0.891.972.849 (4)170.2
N2—H2B···Cl3ii0.892.613.389 (2)146.3
N2—H2C···Cl40.892.453.307 (3)161.4
N3—H3A···Cl1i0.892.463.293 (3)156.1
N3—H3B···Cl50.892.513.402 (2)174.3
N3—H3C···Cl1iii0.892.323.201 (3)173.2
O1W—H1WA···Cl4ii0.845 (10)2.56 (3)3.283 (2)143 (4)
O1W—H1WB···Cl2iv0.85 (4)2.69 (3)3.344 (2)136 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z.
 

Acknowledgements

This work was supported by Southeast University.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChaabouni, S., Savariault, J. M. & Salah, H. (2004). J. Chem. Crystallogr. 34, 661–664.  Web of Science CSD CrossRef CAS Google Scholar
First citationLipka, A. (1980). Z. Anorg. Allg. Chem. 469, 218–228.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds