organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis(di­phenyl­phosphan­yl)-1,1,2,3,3,4-hexa­phenyl-1,3-diphospha-2,4-dibora­cyclo­butane tetra­hydro­furan sesqui­solvate

aLeibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: normen.peulecke@catalysis.de

(Received 5 March 2012; accepted 15 March 2012; online 21 March 2012)

In the title compound, C60H50B2P4·1.5C4H8O, the diphospha­diborane mol­ecule lies on an inversion centre, whereas the disordered tetra­hydro­furan solvent mol­ecule is in a general position with a partial occupancy of 0.75. The diphosphadiborane mol­ecule consists of an ideal planar four-membered B2P2 ring with an additional phenyl and a –PPh2 group attached to each B atom.

Related literature

For the structure of a monomeric diphosphaborane mol­ecule, see: Bartlett et al. (1988[Bartlett, R. U., Dias, H. V. R. & Power, P. P. (1988). Inorg. Chem. 27, 3919-3922.]). For assumed monomeric PhB(PPh2)2, see: Coates & Livingstone (1961[Coates, G. E. & Livingstone, J. G. (1961). J. Chem. Soc. pp. 5053-5055.]). For the structures of other dimeric boron-bridged bis­phosphine compounds, see: Herdtweck et al. (1997[Herdtweck, E., Jäckle, F. & Wagner, M. (1997). Organometallics, 16, 4737-4745.]); Kaufmann et al. (1997[Kaufmann, B., Jetzfellner, R., Leissring, E., Issleib, K., Nöth, H. & Schmidt, M. (1997). Chem. Ber. 130, 1677-1692.]); Nöth (1987[Nöth, H. (1987). Z. Anorg. Allg. Chem. 555, 79-84.]).

[Scheme 1]

Experimental

Crystal data
  • C60H50B2P4·1.5C4H8O

  • Mr = 1024.66

  • Orthorhombic, P b c a

  • a = 19.2421 (4) Å

  • b = 11.6938 (2) Å

  • c = 24.9769 (5) Å

  • V = 5620.13 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 150 K

  • 0.35 × 0.28 × 0.20 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.927, Tmax = 0.986

  • 91233 measured reflections

  • 6705 independent reflections

  • 4392 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.096

  • S = 0.87

  • 6705 reflections

  • 343 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We became interested in such a class of compounds, because the boron-bridged bisphosphines could be potential ligands for the chromium catalyzed selective oligomerization of ethene, like PNP. Unfortunately the synthesis of PhB(PPh2)2, according to the literature (Coates & Livingstone, 1961), failed and always ended up with insoluble polymer. Therefore we changed the procedure using LiPPh2 instead of HPPh2. Examples of structurally characterized borone-bridged bisphosphines are known (Herdtweck et al., 1997; Kaufmann et al., 1997; Nöth, 1987). Only bulky substituents at the boron lead to a monomeric structure (Bartlett et al., 1988). In the present publication, we report on the formation of the dimeric C60H50B2P4. In the structure of the title compound, the diphosphadiborane molecule occupies the position at an inversion center, whereas the solvent molecule of tetrahydrofuran lies in general position with partial occupancy equal to 0.75. In the tetrahydrofuran molecule the O atom is disordered over two sites with occupancies of 0.341 (9): 0.409 (9). All P—B distances in the four-membered ring are essentially identical [B1—P2 = 2.030 (3) Å and B1—P2i = 2.036 (2) Å], and also the B1—P1 bond distance of 2.043 (2) Å is not significantly different. In the B2P2 ring, angles of nearly 90° were observed [P2—B1—P2i = 87.24 (9)° and B1—P2—B1i = 92.75°].

Related literature top

For the structure of a monomeric diphosphaborane molecule, see: Bartlett et al. (1988). For assumed monomeric PhB(PPh2)2, see: Coates & Livingstone (1961). For the structures of other dimeric boron-bridged bisphosphine compounds, see: Herdtweck et al. (1997); Kaufmann et al. (1997); Nöth (1987).

Experimental top

PhBCl2 (0.817 ml, 6.3 mmol) was added to a solution of 25 mL Ph2PLi (0.5M in thf) in 20 ml of thf at -40°C and the resulting solution was stirred at room temperature for 48 h. Subsequently, the formed light brown solution was filtered, reduced to the half, over-layered with n-hexane and stored at 0°C. Crystals of the title compound appeared, which were suitable for crystal structure analysis. The white compound was fully characterized by standard analytical methods e.g. 31P-NMR: (C6D6): -10.7(br), -42.2(tr) p.p.m..

Refinement top

H atoms were placed in idealized positions with d(C—H) = 0.95 Å (CH), 0.99 Å (CH2) and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C).

Structure description top

We became interested in such a class of compounds, because the boron-bridged bisphosphines could be potential ligands for the chromium catalyzed selective oligomerization of ethene, like PNP. Unfortunately the synthesis of PhB(PPh2)2, according to the literature (Coates & Livingstone, 1961), failed and always ended up with insoluble polymer. Therefore we changed the procedure using LiPPh2 instead of HPPh2. Examples of structurally characterized borone-bridged bisphosphines are known (Herdtweck et al., 1997; Kaufmann et al., 1997; Nöth, 1987). Only bulky substituents at the boron lead to a monomeric structure (Bartlett et al., 1988). In the present publication, we report on the formation of the dimeric C60H50B2P4. In the structure of the title compound, the diphosphadiborane molecule occupies the position at an inversion center, whereas the solvent molecule of tetrahydrofuran lies in general position with partial occupancy equal to 0.75. In the tetrahydrofuran molecule the O atom is disordered over two sites with occupancies of 0.341 (9): 0.409 (9). All P—B distances in the four-membered ring are essentially identical [B1—P2 = 2.030 (3) Å and B1—P2i = 2.036 (2) Å], and also the B1—P1 bond distance of 2.043 (2) Å is not significantly different. In the B2P2 ring, angles of nearly 90° were observed [P2—B1—P2i = 87.24 (9)° and B1—P2—B1i = 92.75°].

For the structure of a monomeric diphosphaborane molecule, see: Bartlett et al. (1988). For assumed monomeric PhB(PPh2)2, see: Coates & Livingstone (1961). For the structures of other dimeric boron-bridged bisphosphine compounds, see: Herdtweck et al. (1997); Kaufmann et al. (1997); Nöth (1987).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the diphosphadiborane molecule showing the atom-labelling scheme. Hydrogen atoms are omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
2,4-Bis(diphenylphosphanyl)-1,1,2,3,3,4-hexaphenyl- 1,3-diphospha-2,4-diboracyclobutane tetrahydrofuran sesquisolvate top
Crystal data top
C60H50B2P4·1.5C4H8ODx = 1.211 Mg m3
Mr = 1024.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 6569 reflections
a = 19.2421 (4) Åθ = 1.6–28.0°
b = 11.6938 (2) ŵ = 0.18 mm1
c = 24.9769 (5) ÅT = 150 K
V = 5620.13 (19) Å3Prism, colourless
Z = 40.35 × 0.28 × 0.20 mm
F(000) = 2160
Data collection top
Stoe IPDS II
diffractometer
6705 independent reflections
Radiation source: fine-focus sealed tube4392 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ω scansθmax = 28.0°, θmin = 2.2°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
h = 2525
Tmin = 0.927, Tmax = 0.986k = 1515
91233 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.0P]
where P = (Fo2 + 2Fc2)/3
6705 reflections(Δ/σ)max = 0.002
343 parametersΔρmax = 0.64 e Å3
9 restraintsΔρmin = 0.29 e Å3
Crystal data top
C60H50B2P4·1.5C4H8OV = 5620.13 (19) Å3
Mr = 1024.66Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 19.2421 (4) ŵ = 0.18 mm1
b = 11.6938 (2) ÅT = 150 K
c = 24.9769 (5) Å0.35 × 0.28 × 0.20 mm
Data collection top
Stoe IPDS II
diffractometer
6705 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
4392 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.986Rint = 0.072
91233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0419 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 0.87Δρmax = 0.64 e Å3
6705 reflectionsΔρmin = 0.29 e Å3
343 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.1872 (2)0.6123 (6)0.2276 (2)0.061 (2)*0.341 (9)
O1B0.1940 (2)0.5614 (5)0.24577 (17)0.0613 (19)*0.409 (9)
C310.2198 (2)0.5279 (4)0.1944 (2)0.0981 (17)0.75
H31A0.19090.50860.16290.118*0.341 (9)
H31B0.23050.45720.21470.118*0.341 (9)
H31C0.18340.54190.16720.118*0.409 (9)
H31D0.22970.44480.19480.118*0.409 (9)
C320.2832 (2)0.5897 (4)0.17909 (16)0.0913 (16)0.75
H32A0.27490.63780.14710.110*0.75
H32B0.32140.53560.17110.110*0.75
C330.3004 (2)0.6610 (4)0.22580 (13)0.0766 (13)0.75
H33A0.30590.74200.21510.092*0.75
H33B0.34410.63460.24270.092*0.75
C340.24158 (17)0.6479 (4)0.26295 (13)0.0627 (10)0.75
H34A0.25130.58910.29050.075*0.341 (9)
H34B0.23010.72110.28080.075*0.341 (9)
H34C0.25950.62790.29890.075*0.409 (9)
H34D0.21670.72170.26590.075*0.409 (9)
C11.06155 (9)0.01162 (16)0.34268 (7)0.0246 (4)
C21.00019 (10)0.02724 (18)0.31988 (7)0.0307 (4)
H20.97190.07950.33920.037*
C30.97947 (11)0.00883 (19)0.26950 (8)0.0364 (5)
H30.93710.01850.25470.044*
C41.01996 (11)0.0841 (2)0.24080 (8)0.0369 (5)
H41.00570.10890.20630.044*
C51.08146 (11)0.12344 (19)0.26268 (8)0.0369 (5)
H51.10990.17490.24300.044*
C61.10164 (10)0.08786 (17)0.31321 (7)0.0308 (4)
H61.14370.11610.32800.037*
C71.13848 (10)0.16430 (16)0.39173 (7)0.0257 (4)
C81.20183 (10)0.18941 (18)0.41622 (7)0.0299 (4)
H81.22140.13650.44080.036*
C91.23674 (11)0.29054 (19)0.40521 (9)0.0376 (5)
H91.27940.30700.42280.045*
C101.20972 (12)0.36709 (19)0.36884 (9)0.0414 (5)
H101.23320.43690.36170.050*
C111.14820 (11)0.34169 (18)0.34279 (9)0.0383 (5)
H111.13020.39330.31690.046*
C121.11277 (10)0.24195 (18)0.35416 (8)0.0319 (4)
H121.07040.22590.33620.038*
C130.98211 (9)0.19751 (16)0.43708 (7)0.0240 (4)
C141.01833 (11)0.29722 (16)0.45140 (7)0.0304 (4)
H141.05790.29090.47400.036*
C150.99832 (12)0.40388 (18)0.43376 (9)0.0390 (5)
H151.02360.46960.44480.047*
C160.94210 (12)0.41587 (19)0.40029 (9)0.0427 (6)
H160.92910.48920.38740.051*
C170.90491 (12)0.32050 (19)0.38570 (8)0.0382 (5)
H170.86590.32820.36270.046*
C180.92386 (10)0.21293 (17)0.40430 (7)0.0280 (4)
H180.89670.14840.39460.034*
C190.86269 (9)0.06475 (16)0.46070 (6)0.0237 (4)
C200.82663 (9)0.03413 (16)0.47541 (7)0.0263 (4)
H200.85170.10140.48440.032*
C210.75461 (10)0.03493 (18)0.47697 (8)0.0314 (4)
H210.73060.10220.48760.038*
C220.71758 (10)0.06199 (19)0.46314 (8)0.0344 (4)
H220.66820.06120.46390.041*
C230.75253 (10)0.15974 (18)0.44826 (8)0.0328 (4)
H230.72710.22590.43810.039*
C240.82462 (10)0.16246 (17)0.44795 (7)0.0280 (4)
H240.84820.23130.43900.034*
C250.98791 (10)0.18291 (16)0.42454 (7)0.0243 (4)
C260.95519 (11)0.21012 (17)0.37607 (7)0.0295 (4)
H260.91380.17140.36600.035*
C270.98292 (11)0.29323 (18)0.34282 (8)0.0359 (5)
H270.96000.31240.31040.043*
C281.04372 (12)0.34830 (17)0.35668 (8)0.0385 (5)
H281.06240.40540.33380.046*
C291.07740 (11)0.32094 (17)0.40355 (8)0.0337 (5)
H291.11970.35810.41260.040*
C301.04967 (10)0.23923 (16)0.43754 (7)0.0268 (4)
H301.07290.22130.47000.032*
B11.01311 (10)0.07717 (18)0.45461 (7)0.0212 (4)
P11.09614 (2)0.02764 (4)0.409099 (17)0.02250 (11)
P20.95699 (2)0.06707 (4)0.467327 (17)0.02053 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C310.079 (3)0.089 (4)0.126 (4)0.017 (3)0.022 (3)0.053 (3)
C320.098 (4)0.128 (4)0.048 (2)0.003 (3)0.015 (2)0.035 (3)
C330.081 (3)0.080 (3)0.069 (3)0.027 (2)0.015 (2)0.019 (2)
C340.048 (2)0.089 (3)0.0510 (19)0.013 (2)0.0032 (16)0.0253 (19)
C10.0280 (9)0.0259 (10)0.0200 (8)0.0036 (8)0.0021 (7)0.0005 (7)
C20.0311 (10)0.0355 (11)0.0256 (9)0.0051 (9)0.0015 (8)0.0013 (8)
C30.0369 (11)0.0464 (13)0.0260 (9)0.0042 (10)0.0062 (8)0.0006 (9)
C40.0420 (12)0.0480 (13)0.0207 (9)0.0042 (10)0.0003 (8)0.0058 (9)
C50.0399 (12)0.0422 (13)0.0285 (10)0.0029 (10)0.0061 (8)0.0082 (9)
C60.0287 (10)0.0343 (11)0.0294 (9)0.0007 (9)0.0010 (8)0.0022 (8)
C70.0261 (9)0.0268 (10)0.0243 (9)0.0006 (8)0.0043 (7)0.0015 (7)
C80.0293 (10)0.0337 (11)0.0267 (9)0.0032 (8)0.0019 (8)0.0003 (8)
C90.0321 (11)0.0420 (12)0.0387 (11)0.0092 (9)0.0044 (9)0.0064 (10)
C100.0395 (12)0.0311 (12)0.0535 (13)0.0086 (10)0.0155 (10)0.0006 (10)
C110.0370 (12)0.0322 (12)0.0458 (12)0.0028 (9)0.0100 (10)0.0113 (9)
C120.0271 (10)0.0330 (11)0.0355 (10)0.0004 (8)0.0028 (8)0.0068 (9)
C130.0284 (9)0.0237 (9)0.0199 (8)0.0006 (8)0.0053 (7)0.0009 (7)
C140.0389 (11)0.0246 (10)0.0276 (9)0.0031 (9)0.0080 (8)0.0011 (8)
C150.0532 (13)0.0237 (11)0.0401 (11)0.0005 (10)0.0192 (10)0.0018 (9)
C160.0525 (13)0.0302 (12)0.0455 (12)0.0149 (10)0.0232 (10)0.0159 (10)
C170.0359 (11)0.0462 (13)0.0324 (10)0.0167 (10)0.0111 (9)0.0150 (9)
C180.0290 (10)0.0321 (10)0.0229 (8)0.0056 (8)0.0054 (7)0.0043 (8)
C190.0248 (8)0.0265 (9)0.0198 (8)0.0023 (8)0.0019 (7)0.0022 (7)
C200.0278 (9)0.0252 (10)0.0257 (8)0.0013 (8)0.0036 (7)0.0019 (7)
C210.0294 (10)0.0317 (11)0.0331 (10)0.0033 (8)0.0045 (8)0.0013 (8)
C220.0230 (9)0.0424 (12)0.0379 (10)0.0015 (9)0.0057 (8)0.0018 (9)
C230.0290 (10)0.0330 (11)0.0363 (10)0.0093 (9)0.0073 (8)0.0008 (9)
C240.0289 (10)0.0267 (10)0.0285 (9)0.0021 (8)0.0035 (8)0.0012 (8)
C250.0300 (10)0.0207 (9)0.0221 (8)0.0051 (8)0.0038 (7)0.0002 (7)
C260.0335 (10)0.0294 (10)0.0255 (9)0.0058 (9)0.0008 (8)0.0008 (7)
C270.0471 (13)0.0333 (11)0.0271 (9)0.0123 (10)0.0023 (9)0.0075 (8)
C280.0524 (13)0.0265 (11)0.0367 (11)0.0033 (10)0.0130 (10)0.0102 (9)
C290.0394 (11)0.0244 (10)0.0375 (11)0.0005 (8)0.0080 (9)0.0003 (8)
C300.0306 (10)0.0236 (10)0.0263 (9)0.0034 (8)0.0037 (8)0.0015 (7)
B10.0235 (9)0.0220 (10)0.0182 (9)0.0021 (8)0.0006 (7)0.0005 (7)
P10.0239 (2)0.0231 (2)0.0206 (2)0.0002 (2)0.00034 (18)0.00079 (18)
P20.0229 (2)0.0195 (2)0.01925 (19)0.00212 (19)0.00134 (18)0.00060 (17)
Geometric parameters (Å, º) top
O1A—C341.431 (3)C12—H120.9500
O1A—C311.433 (4)C13—C181.400 (3)
O1B—C341.429 (3)C13—C141.405 (3)
O1B—C311.430 (4)C13—B11.590 (3)
C31—C321.470 (3)C14—C151.378 (3)
C31—H31A0.9900C14—H140.9500
C31—H31B0.9900C15—C161.374 (3)
C31—H31C0.9900C15—H150.9500
C31—H31D0.9900C16—C171.374 (3)
C32—C331.471 (3)C16—H160.9500
C32—H32A0.9900C17—C181.390 (3)
C32—H32B0.9900C17—H170.9500
C33—C341.472 (3)C18—H180.9500
C33—H33A0.9900C19—C241.394 (3)
C33—H33B0.9900C19—C201.398 (3)
C34—H34A0.9900C19—P21.8222 (18)
C34—H34B0.9900C20—C211.386 (3)
C34—H34C0.9900C20—H200.9500
C34—H34D0.9900C21—C221.383 (3)
C1—C21.387 (3)C21—H210.9500
C1—C61.390 (3)C22—C231.377 (3)
C1—P11.8455 (18)C22—H220.9500
C2—C31.386 (3)C23—C241.388 (3)
C2—H20.9500C23—H230.9500
C3—C41.377 (3)C24—H240.9500
C3—H30.9500C25—C301.397 (3)
C4—C51.382 (3)C25—C261.401 (2)
C4—H40.9500C25—P21.8251 (19)
C5—C61.385 (3)C26—C271.385 (3)
C5—H50.9500C26—H260.9500
C6—H60.9500C27—C281.380 (3)
C7—C81.395 (3)C27—H270.9500
C7—C121.396 (3)C28—C291.376 (3)
C7—P11.8454 (19)C28—H280.9500
C8—C91.388 (3)C29—C301.385 (3)
C8—H80.9500C29—H290.9500
C9—C101.377 (3)C30—H300.9500
C9—H90.9500B1—P22.028 (2)
C10—C111.383 (3)B1—P2i2.0361 (18)
C10—H100.9500B1—P12.045 (2)
C11—C121.381 (3)P2—B1i2.0363 (18)
C11—H110.9500
C34—O1A—C31103.7 (3)C9—C10—H10120.2
C34—O1B—C31104.0 (3)C11—C10—H10120.2
O1B—C31—C32112.7 (3)C12—C11—C10120.5 (2)
O1A—C31—C32100.1 (4)C12—C11—H11119.8
O1B—C31—H31A125.6C10—C11—H11119.8
O1A—C31—H31A111.8C11—C12—C7120.84 (19)
C32—C31—H31A111.8C11—C12—H12119.6
O1B—C31—H31B81.0C7—C12—H12119.6
O1A—C31—H31B111.8C18—C13—C14116.06 (17)
C32—C31—H31B111.8C18—C13—B1125.14 (17)
H31A—C31—H31B109.5C14—C13—B1118.58 (16)
O1B—C31—H31C109.0C15—C14—C13122.1 (2)
O1A—C31—H31C88.5C15—C14—H14119.0
C32—C31—H31C109.0C13—C14—H14119.0
H31B—C31—H31C129.5C16—C15—C14120.5 (2)
O1B—C31—H31D109.0C16—C15—H15119.8
O1A—C31—H31D138.9C14—C15—H15119.8
C32—C31—H31D109.0C15—C16—C17119.23 (19)
H31A—C31—H31D83.9C15—C16—H16120.4
H31C—C31—H31D107.8C17—C16—H16120.4
C31—C32—C33105.0 (3)C16—C17—C18120.6 (2)
C31—C32—H32A110.8C16—C17—H17119.7
C33—C32—H32A110.8C18—C17—H17119.7
C31—C32—H32B110.8C17—C18—C13121.5 (2)
C33—C32—H32B110.8C17—C18—H18119.3
H32A—C32—H32B108.8C13—C18—H18119.3
C32—C33—C34105.6 (3)C24—C19—C20118.51 (16)
C32—C33—H33A110.6C24—C19—P2122.12 (14)
C34—C33—H33A110.6C20—C19—P2118.87 (14)
C32—C33—H33B110.6C21—C20—C19120.61 (18)
C34—C33—H33B110.6C21—C20—H20119.7
H33A—C33—H33B108.8C19—C20—H20119.7
O1B—C34—C33112.1 (3)C22—C21—C20120.17 (19)
O1A—C34—C33101.7 (3)C22—C21—H21119.9
O1B—C34—H34A80.7C20—C21—H21119.9
O1A—C34—H34A111.4C23—C22—C21119.75 (18)
C33—C34—H34A111.4C23—C22—H22120.1
O1B—C34—H34B127.1C21—C22—H22120.1
O1A—C34—H34B111.4C22—C23—C24120.57 (18)
C33—C34—H34B111.4C22—C23—H23119.7
H34A—C34—H34B109.3C24—C23—H23119.7
O1B—C34—H34C109.2C23—C24—C19120.35 (18)
O1A—C34—H34C138.2C23—C24—H24119.8
C33—C34—H34C109.2C19—C24—H24119.8
H34B—C34—H34C82.8C30—C25—C26118.43 (17)
O1B—C34—H34D109.2C30—C25—P2119.41 (13)
O1A—C34—H34D86.8C26—C25—P2121.88 (15)
C33—C34—H34D109.2C27—C26—C25120.28 (19)
H34A—C34—H34D130.1C27—C26—H26119.9
H34C—C34—H34D107.9C25—C26—H26119.9
C2—C1—C6117.71 (17)C28—C27—C26120.24 (19)
C2—C1—P1126.48 (14)C28—C27—H27119.9
C6—C1—P1115.81 (14)C26—C27—H27119.9
C3—C2—C1121.20 (19)C29—C28—C27120.29 (19)
C3—C2—H2119.4C29—C28—H28119.9
C1—C2—H2119.4C27—C28—H28119.9
C4—C3—C2120.30 (19)C28—C29—C30120.0 (2)
C4—C3—H3119.9C28—C29—H29120.0
C2—C3—H3119.9C30—C29—H29120.0
C3—C4—C5119.42 (18)C29—C30—C25120.69 (18)
C3—C4—H4120.3C29—C30—H30119.7
C5—C4—H4120.3C25—C30—H30119.7
C4—C5—C6120.05 (19)C13—B1—P2125.41 (13)
C4—C5—H5120.0C13—B1—P2i114.90 (12)
C6—C5—H5120.0P2—B1—P2i87.27 (8)
C5—C6—C1121.32 (19)C13—B1—P1113.00 (12)
C5—C6—H6119.3P2—B1—P1105.52 (9)
C1—C6—H6119.3P2i—B1—P1107.17 (9)
C8—C7—C12117.86 (18)C7—P1—C199.40 (8)
C8—C7—P1117.71 (14)C7—P1—B1103.32 (8)
C12—C7—P1124.38 (15)C1—P1—B1106.76 (8)
C9—C8—C7121.03 (19)C19—P2—C25106.41 (9)
C9—C8—H8119.5C19—P2—B1120.25 (8)
C7—C8—H8119.5C25—P2—B1110.61 (8)
C10—C9—C8120.13 (19)C19—P2—B1i111.67 (8)
C10—C9—H9119.9C25—P2—B1i115.19 (8)
C8—C9—H9119.9B1—P2—B1i92.73 (8)
C9—C10—C11119.6 (2)
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC60H50B2P4·1.5C4H8O
Mr1024.66
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)19.2421 (4), 11.6938 (2), 24.9769 (5)
V3)5620.13 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.35 × 0.28 × 0.20
Data collection
DiffractometerStoe IPDS II
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.927, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
91233, 6705, 4392
Rint0.072
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 0.87
No. of reflections6705
No. of parameters343
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.29

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Leibniz-Institut für Katalyse e.V. an der Universität Rostock.

References

First citationBartlett, R. U., Dias, H. V. R. & Power, P. P. (1988). Inorg. Chem. 27, 3919–3922.  CSD CrossRef CAS Web of Science Google Scholar
First citationCoates, G. E. & Livingstone, J. G. (1961). J. Chem. Soc. pp. 5053–5055.  Google Scholar
First citationHerdtweck, E., Jäckle, F. & Wagner, M. (1997). Organometallics, 16, 4737–4745.  CSD CrossRef CAS Web of Science Google Scholar
First citationKaufmann, B., Jetzfellner, R., Leissring, E., Issleib, K., Nöth, H. & Schmidt, M. (1997). Chem. Ber. 130, 1677–1692.  CrossRef CAS Web of Science Google Scholar
First citationNöth, H. (1987). Z. Anorg. Allg. Chem. 555, 79–84.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds