organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,7,13,15-Tetra­oxo-2,2,10,10-tetra­kis­(tri­fluoro­meth­yl)-4,8,12,16-tetra­oxa-1(1,4),3(1,4),6(1,2),9(1,4),11(1,4),14(1,2)-hexa­benzenahexa­deca­phane tetra­hydro­furan monosolvate

aSchool of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
*Correspondence e-mail: ggg602@sina.com

(Received 14 February 2012; accepted 14 March 2012; online 21 March 2012)

The title compound, C46H24F12O8·C4H8O, consists of a cyclic aryl ester dimer and a tetra­hydro­furan mol­ecule. In the structure of the cyclic dimer, one carbonyl group stretches above the cavity and the other below.

Related literature

For related structures of the cyclic aryl ester dimer, cyclo-bis­[1,4-phenyl­ene(hexa­fluoro­isopropyl­idene)phthalate] tetra­hydro­furan monosolvent, see: Jiang et al. (1997b[Jiang, H. Y., Chen, T. L. & Xu, J. P. (1997b). Macromolecules, 30, 2839-2842.]); Teasley et al. (1998[Teasley, M. F., Wu, D. Q. & Harlow, R. L. (1998). Macromolecules, 31, 2064-2074.]); Qi et al. (1999[Qi, Y. H., Chen, T. L., Jiang, H. Y. & Xu, J. P. (1999). Macromol. Chem. Phys. 200, 2407-2410.]); Guo et al. (2003[Guo, Q. Z., Wang, H. H. & Chen, T. L. (2003). Chin. J. Chem. 21, 369-371.]). For the use of ring-opening polymerization (ROP) reactions of cyclic aryl oligomers in the preparation of high performance aromatic polymers, see: Brunelle (2008[Brunelle, D. J. (2008). J. Polym. Sci. Part A, 46, 1151-1164.]); Brunelle et al. (1990[Brunelle, D. J., Boden, E. P. & Shannon, T. G. (1990). J. Am. Chem. Soc. 112, 2399-2402.]); Chan et al. (1995[Chan, K. P., Wang, Y. & Hay, A. S. (1995). Macromolecules, 28, 653-655.]); Jiang et al. (1997a[Jiang, H. Y., Chen, T. L. & Xu, J. P. (1997a). Macromol. Rapid Commun. 18, 401-409.]). For ideal bond angles, see: Coulter & Windle (1989[Coulter, P. & Windle, A. H. (1989). Macromolecules, 22, 1129-1136.]);

[Scheme 1]

Experimental

Crystal data
  • C46H24F12O8·C4H8O

  • Mr = 1004.76

  • Triclinic, [P \overline 1]

  • a = 9.3857 (17) Å

  • b = 11.2748 (17) Å

  • c = 12.615 (2) Å

  • α = 105.715 (14)°

  • β = 97.969 (14)°

  • γ = 103.167 (14)°

  • V = 1222.4 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.43 × 0.33 × 0.30 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Bruker, 2001[Bruker (2001). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.964

  • 5660 measured reflections

  • 4684 independent reflections

  • 1916 reflections with I > 2σ(I)

  • Rint = 0.022

  • 3 standard reflections every 197 reflections intensity decay: 2.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.158

  • S = 1.00

  • 4684 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: XSCANS (Bruker, 2001[Bruker (2001). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ring-opening polymerization (ROP) reactions constitute an important class of polymerization reactions. The advantages of using ROP of cyclic aryl oligomers to prepare high performance aromatic thermoplastics, such as polycarbonate and poly(aryl ester)s, have been widely recognized in recent years (Brunelle et al., 1990; Brunelle, 2008; Chan et al., 1995; Jiang et al. 1997a). It is generally believed that the ROP of aromatic cyclic oligomers is essentially thermoneutral and driven by entropy changes as the cyclic oligomers have big size with little or no ring strain. In order to obtain decisive evidence of the macrocyclic structure and investigate the nature of ROP, the single-crystal X-ray structure of cyclic ester dimer, the title compound, was determined.

The structure of cyclic dimer, cyclo-Bis[1,4-phenylene(hexafluoroisopropylidene)-phthalate (shown in Fig. 1) exhibits two types of conformation about ester groups. One of the carbonyl groups stretch above the cavity of the cyclic structure and the others stretch beneath the cavity. The interplanar dihedral angle of the phenyls attached to the hexafluoroisopropylidene is 69.67°. The distance between C(14) and its symmetrical carbon atom is 1.0729 nm. The bond angles at C7—O1—C8 of 119.6° and O3—C23(O4)—C6i of 111.0° are all close to the idealized values of 118. 8° and 111.7°, respectively (Jiang et al., 1997b; Coulter & Windle, 1989). The phenyl rings in cyclic dimer have a good planarity (root mean square deviations from the planarity of the phenyl planes are 0.00043, 0.00069 and 0.00053 nm, respectively). Overall, X-ray analysis indicates that the cyclic dimer is constructed without severe internal strain. This result indicates that the ROP of cyclic aryl ester dimer is driven by entropy changes and provides a base for the study on the mechanism of ROP reaction and the relationship between the cyclic nature and ROP reaction.

Related literature top

For related structures of the cyclic aryl ester dimer, cyclo-bis[1,4-phenylene(hexafluoroisopropylidene)phthalate] tetrahydrofuran monosolvent, see: Jiang et al. (1997b); Teasley et al. (1998); Qi et al. (1999); Guo et al. (2003). For the use of ring-opening polymerization (ROP) reactions of cyclic aryl oligomers in the preparation of high performance aromatic, see: Brunelle (2008); Brunelle et al. (1990); Chan et al. (1995); Jiang et al. (1997a). For ideal bond angles, see: Coulter & Windle (1989);

Experimental top

The cyclization reaction was conducted in a 500 ml threeneck round-bottom flask charged with 150 ml dichloromethane, 30 ml distilled water and 0.16 g cetyltrimethylammonium bromide at room temperature. A solution of phthaloyl dichloride (1.014 g, 5 mmol) in 50 ml dichloromethane and a solution of disodium salt of 4,4'-(hexafluoroisopropylidene) diphenol (1.682 g, 5 mmol) in 50 ml distilled water were delivered into the mechanically stirred flask in an equimolar fashion over an 8 h period. After the addition, the mixture was stirred for another 2 h to ensure complete reaction. The organic phase was separated by a separating funnel and extracted with distilled water three times and then evaporated to dryness. The colorless cyclic dimer was obtained by recrystallization from tetrahydrofuran (THF). The isolated yield of cyclic dimer was 1.3 g (54.7% yield). Colorless block crystals suitable for X-ray analysis were obtained by slow evaporation from a THF solution at room temperature for about one week.

Refinement top

The H atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C—H = 0.93Å and Uiso(H) = 1.0Ueq(C) except for in THF, where C—H = 0.97 Å.

Structure description top

Ring-opening polymerization (ROP) reactions constitute an important class of polymerization reactions. The advantages of using ROP of cyclic aryl oligomers to prepare high performance aromatic thermoplastics, such as polycarbonate and poly(aryl ester)s, have been widely recognized in recent years (Brunelle et al., 1990; Brunelle, 2008; Chan et al., 1995; Jiang et al. 1997a). It is generally believed that the ROP of aromatic cyclic oligomers is essentially thermoneutral and driven by entropy changes as the cyclic oligomers have big size with little or no ring strain. In order to obtain decisive evidence of the macrocyclic structure and investigate the nature of ROP, the single-crystal X-ray structure of cyclic ester dimer, the title compound, was determined.

The structure of cyclic dimer, cyclo-Bis[1,4-phenylene(hexafluoroisopropylidene)-phthalate (shown in Fig. 1) exhibits two types of conformation about ester groups. One of the carbonyl groups stretch above the cavity of the cyclic structure and the others stretch beneath the cavity. The interplanar dihedral angle of the phenyls attached to the hexafluoroisopropylidene is 69.67°. The distance between C(14) and its symmetrical carbon atom is 1.0729 nm. The bond angles at C7—O1—C8 of 119.6° and O3—C23(O4)—C6i of 111.0° are all close to the idealized values of 118. 8° and 111.7°, respectively (Jiang et al., 1997b; Coulter & Windle, 1989). The phenyl rings in cyclic dimer have a good planarity (root mean square deviations from the planarity of the phenyl planes are 0.00043, 0.00069 and 0.00053 nm, respectively). Overall, X-ray analysis indicates that the cyclic dimer is constructed without severe internal strain. This result indicates that the ROP of cyclic aryl ester dimer is driven by entropy changes and provides a base for the study on the mechanism of ROP reaction and the relationship between the cyclic nature and ROP reaction.

For related structures of the cyclic aryl ester dimer, cyclo-bis[1,4-phenylene(hexafluoroisopropylidene)phthalate] tetrahydrofuran monosolvent, see: Jiang et al. (1997b); Teasley et al. (1998); Qi et al. (1999); Guo et al. (2003). For the use of ring-opening polymerization (ROP) reactions of cyclic aryl oligomers in the preparation of high performance aromatic, see: Brunelle (2008); Brunelle et al. (1990); Chan et al. (1995); Jiang et al. (1997a). For ideal bond angles, see: Coulter & Windle (1989);

Computing details top

Data collection: XSCANS (Bruker, 2001); cell refinement: XSCANS (Bruker, 2001); data reduction: XSCANS (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. [Crystal structure of the title compound with ellipsoids of non-hydrogen atoms drawn at the 30% probability level.]
[Figure 2] Fig. 2. [The packing structure of the title complex. The C—O and C—F bonds are shown as red and yellowish-green thick bond mode for clarity.]
5,7,13,15-Tetraoxo-2,2,10,10-tetrakis(trifluoromethyl)-4,8,12,16- tetraoxa1-(1,4),3(1,4),6(1,2),9(1,4),11(1,4),14(1,2)-hexabenzenahexadecaphane tetrahydrofuran monosolvate top
Crystal data top
C46H24F12O8·C4H8OZ = 1
Mr = 1004.76F(000) = 512
Triclinic, P1Dx = 1.365 Mg m3
a = 9.3857 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2748 (17) ÅCell parameters from 23 reflections
c = 12.615 (2) Åθ = 9.5–20.1°
α = 105.715 (14)°µ = 0.12 mm1
β = 97.969 (14)°T = 293 K
γ = 103.167 (14)°Block, colorless
V = 1222.4 (3) Å30.43 × 0.33 × 0.30 mm
Data collection top
Siemens P4
diffractometer
1916 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 26.0°, θmin = 4.0°
ω scansh = 111
Absorption correction: ψ scan
(XSCANS; Bruker, 2001)
k = 1313
Tmin = 0.950, Tmax = 0.964l = 1515
5660 measured reflections3 standard reflections every 197 reflections
4684 independent reflections intensity decay: 2.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
4684 reflections(Δ/σ)max = 0.001
344 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C46H24F12O8·C4H8Oγ = 103.167 (14)°
Mr = 1004.76V = 1222.4 (3) Å3
Triclinic, P1Z = 1
a = 9.3857 (17) ÅMo Kα radiation
b = 11.2748 (17) ŵ = 0.12 mm1
c = 12.615 (2) ÅT = 293 K
α = 105.715 (14)°0.43 × 0.33 × 0.30 mm
β = 97.969 (14)°
Data collection top
Siemens P4
diffractometer
1916 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Bruker, 2001)
Rint = 0.022
Tmin = 0.950, Tmax = 0.9643 standard reflections every 197 reflections
5660 measured reflections intensity decay: 2.2%
4684 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
4684 reflectionsΔρmin = 0.20 e Å3
344 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0470 (3)0.3086 (2)0.5363 (2)0.0794 (8)
O20.1569 (4)0.3494 (4)0.5872 (3)0.1347 (15)
O30.8188 (3)0.3985 (2)0.1740 (2)0.0715 (8)
O40.7764 (4)0.5631 (3)0.2264 (3)0.1049 (11)
F10.1508 (2)0.2999 (2)0.0496 (2)0.1018 (9)
F20.0143 (2)0.1254 (2)0.1459 (2)0.0908 (8)
F30.1038 (3)0.2448 (2)0.2304 (2)0.0860 (7)
F40.3519 (3)0.2028 (2)0.04653 (17)0.1021 (9)
F50.3492 (3)0.0118 (3)0.0450 (2)0.0933 (8)
F60.1484 (3)0.0505 (2)0.00260 (18)0.0977 (8)
C10.0778 (4)0.4798 (3)0.7009 (3)0.0589 (10)
C20.2286 (4)0.5213 (4)0.7051 (3)0.0792 (12)
H20.26740.48350.64480.079*
C30.3231 (4)0.6168 (4)0.7958 (3)0.0827 (13)
H30.42450.64490.79680.083*
C40.2656 (5)0.6701 (4)0.8850 (3)0.0721 (11)
H40.32860.73470.94750.072*
C50.1159 (5)0.6294 (4)0.8830 (3)0.0706 (11)
H50.07810.66590.94440.071*
C60.0203 (4)0.5338 (3)0.7899 (3)0.0572 (9)
C70.0240 (5)0.3755 (4)0.6024 (3)0.0736 (11)
C80.0367 (4)0.2045 (3)0.4396 (3)0.0614 (10)
C90.0224 (4)0.2157 (3)0.3377 (4)0.0724 (11)
H90.03260.29230.33130.072*
C100.0913 (4)0.1106 (3)0.2421 (3)0.0658 (10)
H100.08320.11750.17120.066*
C110.1709 (3)0.0029 (3)0.2513 (3)0.0498 (8)
C120.1826 (4)0.0095 (3)0.3588 (3)0.0617 (10)
H120.23810.08520.36650.062*
C130.1140 (4)0.0932 (4)0.4529 (3)0.0680 (10)
H130.11980.08740.52440.068*
C140.2397 (3)0.1268 (3)0.1490 (3)0.0520 (9)
C150.1194 (4)0.2006 (4)0.1444 (4)0.0738 (12)
C160.2704 (5)0.0965 (5)0.0377 (3)0.0737 (12)
C170.3893 (4)0.2048 (3)0.1606 (3)0.0495 (8)
C180.4309 (4)0.3383 (3)0.1327 (3)0.0635 (10)
H180.36300.38340.11040.063*
C190.5725 (4)0.4043 (3)0.1380 (3)0.0640 (10)
H190.59970.49340.11760.064*
C200.6714 (4)0.3391 (3)0.1729 (3)0.0545 (9)
C210.6330 (4)0.2069 (3)0.2027 (3)0.0603 (10)
H210.70100.16250.22640.060*
C220.4938 (4)0.1420 (3)0.1968 (3)0.0633 (10)
H220.46810.05290.21780.063*
C230.8577 (5)0.5007 (4)0.2080 (3)0.0692 (11)
O50.6163 (12)0.0885 (7)0.3822 (10)0.172 (4)0.50
C240.5149 (18)0.1575 (12)0.4794 (11)0.152 (5)0.50
H24A0.52500.11360.53550.152*0.50
H24B0.41400.16830.46630.152*0.50
C250.5431 (12)0.2781 (11)0.5174 (9)0.123 (4)0.50
H25A0.45390.34250.56550.123*0.50
H25B0.62290.27350.55880.123*0.50
C260.5847 (17)0.3060 (8)0.4206 (11)0.140 (5)0.50
H26A0.66840.34280.42420.140*0.50
H26B0.50200.36520.40700.140*0.50
C270.632 (2)0.1677 (12)0.3238 (8)0.177 (7)0.50
H27A0.56670.16570.27060.177*0.50
H27B0.73490.14660.28320.177*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0608 (16)0.0640 (16)0.0805 (17)0.0018 (14)0.0152 (15)0.0173 (14)
O20.065 (2)0.153 (3)0.113 (3)0.010 (2)0.0058 (19)0.052 (2)
O30.0525 (16)0.0579 (16)0.100 (2)0.0004 (13)0.0185 (14)0.0299 (15)
O40.094 (2)0.104 (2)0.148 (3)0.045 (2)0.048 (2)0.064 (2)
F10.0708 (15)0.0862 (16)0.1111 (19)0.0068 (13)0.0357 (14)0.0247 (14)
F20.0465 (13)0.0826 (15)0.126 (2)0.0043 (12)0.0302 (13)0.0097 (14)
F30.0726 (15)0.0738 (15)0.1102 (19)0.0284 (12)0.0150 (14)0.0219 (14)
F40.0846 (17)0.124 (2)0.0530 (13)0.0261 (15)0.0017 (12)0.0078 (13)
F50.0768 (17)0.115 (2)0.0878 (17)0.0116 (15)0.0018 (13)0.0510 (16)
F60.0713 (15)0.125 (2)0.0685 (14)0.0213 (14)0.0194 (12)0.0227 (14)
C10.053 (2)0.048 (2)0.058 (2)0.0016 (18)0.0121 (18)0.0029 (17)
C20.058 (3)0.080 (3)0.073 (3)0.002 (2)0.023 (2)0.006 (2)
C30.058 (2)0.086 (3)0.075 (3)0.020 (2)0.016 (2)0.010 (2)
C40.069 (3)0.063 (2)0.057 (2)0.007 (2)0.006 (2)0.0006 (19)
C50.071 (3)0.084 (3)0.047 (2)0.009 (2)0.018 (2)0.012 (2)
C60.048 (2)0.062 (2)0.056 (2)0.0037 (18)0.0144 (18)0.0183 (19)
C70.046 (2)0.081 (3)0.071 (3)0.005 (2)0.005 (2)0.000 (2)
C80.050 (2)0.050 (2)0.061 (2)0.0018 (18)0.0037 (19)0.0053 (19)
C90.076 (3)0.048 (2)0.078 (3)0.003 (2)0.008 (2)0.011 (2)
C100.074 (3)0.060 (2)0.054 (2)0.001 (2)0.0122 (19)0.0171 (19)
C110.0417 (19)0.0453 (19)0.051 (2)0.0035 (16)0.0076 (16)0.0046 (16)
C120.066 (2)0.049 (2)0.056 (2)0.0016 (18)0.0127 (19)0.0071 (18)
C130.074 (3)0.063 (2)0.052 (2)0.002 (2)0.0131 (19)0.0086 (19)
C140.0427 (19)0.058 (2)0.046 (2)0.0087 (17)0.0096 (16)0.0051 (16)
C150.055 (3)0.068 (3)0.075 (3)0.006 (2)0.020 (2)0.009 (2)
C160.057 (3)0.088 (3)0.056 (3)0.003 (2)0.011 (2)0.010 (2)
C170.044 (2)0.048 (2)0.050 (2)0.0071 (16)0.0143 (16)0.0064 (16)
C180.055 (2)0.052 (2)0.071 (2)0.0101 (19)0.0199 (19)0.0003 (18)
C190.058 (2)0.046 (2)0.077 (2)0.0033 (19)0.023 (2)0.0071 (18)
C200.042 (2)0.054 (2)0.060 (2)0.0075 (18)0.0108 (17)0.0113 (18)
C210.048 (2)0.048 (2)0.084 (3)0.0100 (18)0.0246 (19)0.0163 (19)
C220.057 (2)0.0437 (19)0.078 (3)0.0058 (18)0.012 (2)0.0091 (18)
C230.071 (3)0.062 (3)0.070 (3)0.012 (2)0.020 (2)0.017 (2)
O50.195 (9)0.071 (5)0.184 (9)0.023 (5)0.018 (8)0.026 (6)
C240.203 (14)0.113 (10)0.132 (10)0.048 (10)0.041 (10)0.062 (9)
C250.114 (8)0.112 (8)0.094 (8)0.058 (7)0.053 (6)0.033 (7)
C260.216 (14)0.052 (6)0.168 (12)0.046 (7)0.043 (11)0.050 (7)
C270.33 (2)0.123 (10)0.048 (5)0.059 (12)0.041 (9)0.020 (6)
Geometric parameters (Å, º) top
O1—C71.324 (4)C11—C141.554 (4)
O1—C81.421 (4)C12—C131.368 (5)
O2—C71.190 (4)C12—H120.9300
O3—C231.328 (4)C13—H130.9300
O3—C201.397 (4)C14—C171.526 (4)
O4—C231.189 (4)C14—C161.538 (5)
F1—C151.341 (4)C14—C151.547 (5)
F2—C151.339 (4)C17—C221.393 (5)
F3—C151.314 (5)C17—C181.396 (4)
F4—C161.348 (4)C18—C191.387 (5)
F5—C161.326 (5)C18—H180.9300
F6—C161.331 (4)C19—C201.359 (5)
C1—C61.367 (5)C19—H190.9300
C1—C21.375 (5)C20—C211.381 (4)
C1—C71.486 (5)C21—C221.366 (5)
C2—C31.368 (5)C21—H210.9300
C2—H20.9300C22—H220.9300
C3—C41.367 (5)C23—C6i1.493 (5)
C3—H30.9300O5—C271.323 (12)
C4—C51.370 (5)O5—C241.355 (12)
C4—H40.9300C24—C251.413 (14)
C5—C61.388 (5)C24—H24A0.9700
C5—H50.9300C24—H24B0.9700
C6—C23i1.493 (5)C25—C261.369 (13)
C8—C91.348 (5)C25—H25A0.9700
C8—C131.364 (5)C25—H25B0.9700
C9—C101.391 (5)C26—C271.619 (14)
C9—H90.9300C26—H26A0.9700
C10—C111.370 (4)C26—H26B0.9700
C10—H100.9300C27—H27A0.9700
C11—C121.396 (5)C27—H27B0.9700
C7—O1—C8119.6 (3)F5—C16—F6106.9 (4)
C23—O3—C20123.7 (3)F5—C16—F4106.5 (4)
C6—C1—C2119.5 (3)F6—C16—F4106.1 (3)
C6—C1—C7119.1 (3)F5—C16—C14111.4 (3)
C2—C1—C7121.4 (4)F6—C16—C14114.8 (3)
C3—C2—C1121.6 (4)F4—C16—C14110.8 (4)
C3—C2—H2119.2C22—C17—C18117.1 (3)
C1—C2—H2119.2C22—C17—C14119.3 (3)
C4—C3—C2118.8 (4)C18—C17—C14123.5 (3)
C4—C3—H3120.6C19—C18—C17120.7 (3)
C2—C3—H3120.6C19—C18—H18119.6
C3—C4—C5120.5 (4)C17—C18—H18119.6
C3—C4—H4119.7C20—C19—C18120.1 (3)
C5—C4—H4119.7C20—C19—H19120.0
C4—C5—C6120.3 (4)C18—C19—H19120.0
C4—C5—H5119.8C19—C20—C21120.6 (3)
C6—C5—H5119.8C19—C20—O3123.6 (3)
C1—C6—C5119.2 (3)C21—C20—O3115.6 (3)
C1—C6—C23i124.0 (3)C22—C21—C20119.2 (3)
C5—C6—C23i116.8 (3)C22—C21—H21120.4
O2—C7—O1122.7 (4)C20—C21—H21120.4
O2—C7—C1123.6 (4)C21—C22—C17122.2 (3)
O1—C7—C1113.6 (3)C21—C22—H22118.9
C9—C8—C13122.5 (3)C17—C22—H22118.9
C9—C8—O1117.6 (3)O4—C23—O3124.5 (4)
C13—C8—O1119.5 (4)O4—C23—C6i124.3 (4)
C8—C9—C10118.8 (4)O3—C23—C6i111.0 (4)
C8—C9—H9120.6C27—O5—C24107.4 (9)
C10—C9—H9120.6O5—C24—C25107.4 (9)
C11—C10—C9120.7 (3)O5—C24—H24A110.2
C11—C10—H10119.6C25—C24—H24A110.2
C9—C10—H10119.6O5—C24—H24B110.2
C10—C11—C12118.2 (3)C25—C24—H24B110.2
C10—C11—C14123.3 (3)H24A—C24—H24B108.5
C12—C11—C14118.4 (3)C26—C25—C24104.2 (9)
C13—C12—C11121.2 (3)C26—C25—H25A110.9
C13—C12—H12119.4C24—C25—H25A110.9
C11—C12—H12119.4C26—C25—H25B110.9
C8—C13—C12118.5 (4)C24—C25—H25B110.9
C8—C13—H13120.7H25A—C25—H25B108.9
C12—C13—H13120.7C25—C26—C27103.4 (7)
C17—C14—C16106.5 (3)C25—C26—H26A111.1
C17—C14—C15112.8 (3)C27—C26—H26A111.1
C16—C14—C15108.8 (3)C25—C26—H26B111.1
C17—C14—C11111.8 (3)C27—C26—H26B111.1
C16—C14—C11111.9 (3)H26A—C26—H26B109.0
C15—C14—C11105.2 (3)O5—C27—C26102.8 (7)
F3—C15—F2107.9 (4)O5—C27—H27A111.2
F3—C15—F1107.9 (4)C26—C27—H27A111.2
F2—C15—F1105.3 (3)O5—C27—H27B111.2
F3—C15—C14111.4 (3)C26—C27—H27B111.2
F2—C15—C14111.4 (3)H27A—C27—H27B109.1
F1—C15—C14112.6 (3)
Symmetry code: (i) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaC46H24F12O8·C4H8O
Mr1004.76
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.3857 (17), 11.2748 (17), 12.615 (2)
α, β, γ (°)105.715 (14), 97.969 (14), 103.167 (14)
V3)1222.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.43 × 0.33 × 0.30
Data collection
DiffractometerSiemens P4
Absorption correctionψ scan
(XSCANS; Bruker, 2001)
Tmin, Tmax0.950, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
5660, 4684, 1916
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.158, 1.00
No. of reflections4684
No. of parameters344
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.20

Computer programs: XSCANS (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (NSFC 20904045) and the Natural Science Foundation of Hubei Province (No. 2009CDB355).

References

First citationBruker (2001). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrunelle, D. J. (2008). J. Polym. Sci. Part A, 46, 1151–1164.  Web of Science CrossRef CAS Google Scholar
First citationBrunelle, D. J., Boden, E. P. & Shannon, T. G. (1990). J. Am. Chem. Soc. 112, 2399–2402.  CrossRef CAS Web of Science Google Scholar
First citationChan, K. P., Wang, Y. & Hay, A. S. (1995). Macromolecules, 28, 653–655.  CrossRef CAS Web of Science Google Scholar
First citationCoulter, P. & Windle, A. H. (1989). Macromolecules, 22, 1129–1136.  CrossRef CAS Web of Science Google Scholar
First citationGuo, Q. Z., Wang, H. H. & Chen, T. L. (2003). Chin. J. Chem. 21, 369–371.  CAS Google Scholar
First citationJiang, H. Y., Chen, T. L. & Xu, J. P. (1997a). Macromol. Rapid Commun. 18, 401–409.  CrossRef CAS Web of Science Google Scholar
First citationJiang, H. Y., Chen, T. L. & Xu, J. P. (1997b). Macromolecules, 30, 2839–2842.  CrossRef CAS Web of Science Google Scholar
First citationQi, Y. H., Chen, T. L., Jiang, H. Y. & Xu, J. P. (1999). Macromol. Chem. Phys. 200, 2407–2410.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeasley, M. F., Wu, D. Q. & Harlow, R. L. (1998). Macromolecules, 31, 2064–2074.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds