organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[Bis(4-fluoro­phen­yl)meth­yl]piperazin-1-ium bis­­(tri­chloro­acetate) 0.4-hydrate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstr. 100, D-33098 Paderborn, Germany
*Correspondence e-mail: ulrich.floerke@upb.de

(Received 15 February 2012; accepted 1 March 2012; online 7 March 2012)

The title compound, C17H20F2N22+·2C2Cl3O2·0.4H2O, has twofold protonated N atoms. The trichloro­acetate anions each show one disordered Cl atom with site occupation factors of 0.945 (7):0.055 (7) 0.945 (8):0.055 (8). In the crystal, N—H⋯O, O(water)—H⋯O and O(water)—H⋯F inter­actions connect the components into a three-dimensional network.

Related literature

For the biological activity of piperazines, see: Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]); Brockunier et al. (2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]). For a review pharmacological and toxicological information for piperazine derivatives, see: Elliott, (2011[Elliott, S. (2011). Drug Test Anal. 3, 430-438.]). For related structures, see: Betz et al. (2011[Betz, R., Gerber, T., Hosten, E., Dayananda, A. S. & Yathirajan, H. S. (2011). Acta Cryst. E67, o2783-o2784.], 2011a[Betz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2587-o2588.]); Perpétuo & Janczak (2006[Perpétuo, G. J. & Janczak, J. (2006). Acta Cryst. C62, o372-o375.]). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20F2N22+·2C2Cl3O2·0.4H2O

  • Mr = 622.30

  • Monoclinic, P 21 /c

  • a = 8.8101 (7) Å

  • b = 33.555 (3) Å

  • c = 9.4453 (7) Å

  • β = 108.723 (2)°

  • V = 2644.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 130 K

  • 0.43 × 0.25 × 0.23 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.754, Tmax = 0.856

  • 25025 measured reflections

  • 6309 independent reflections

  • 5475 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.094

  • S = 1.12

  • 6309 reflections

  • 343 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O3i 0.93 1.75 2.6756 (19) 172
N2—H2A⋯O4ii 0.92 1.88 2.7735 (19) 162
N2—H2B⋯O2iii 0.92 1.84 2.7487 (19) 168
O100—H102⋯F2iv 0.84 (1) 2.32 (8) 2.878 (4) 125 (8)
O100—H101⋯O1 0.84 (1) 1.94 (4) 2.733 (4) 158 (9)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z; (iii) x, y, z-1; (iv) [x+1, -y+{\script{1\over 2}}, z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

A review on the current pharmacological and toxicological information for piperazine derivatives is described (Elliott, 2011). 4,4'-Difluorobenzhydryl piperazine is an intermediate for the preparation of flunarizine which is a calcium channel blocker. Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006). Recently, we have reported the crystal structures of 4-[bis(4-fluorophenyl)methyl]piperazin-1-ium 2-(2-phenylethyl)benzoate (Betz et al., 2011) and 4-[bis(4-fluorophenyl) methyl]piperazin-1-ium picrate (Betz et al., 2011a). The crystal structures of melaminium bis(trifluoroacetate) trihydrate and melaminium bis(trichloroacetate) dihydrate have been reported (Perpétuo & Janczak, 2006). In the course of our studies on the salts of piperazines and in view of the importance of piperazines, we now report the crystal and molecular structure of the title salt. The presence of water in the crystal may be due to moisture from trichloroacetic acid. The water is part of intermolecular N—H···O, O(water)—H···O and O(water)—H···F interactions of the crystal packing (Figure 2 and Table 1). The molecular structure exhibits no unusual geometries. Both fluoro-phenyl rings form a dihedral angle of 68.64 (6)°, and each one chloro ligand of the two anions is disordered over two positions Cl31/Cl32 and Cl51/Cl52 with 0.945 (8)/0.055 (8) occupation.

Related literature top

For the biological activity of piperazines, see: Bogatcheva et al. (2006); Brockunier et al. (2004). For a review pharmacological and toxicological information for piperazine derivatives, see: Elliott, (2011). For related structures, see: Betz et al. (2011, 2011a); Perpétuo & Janczak (2006). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995); Etter et al. (1990). For puckering analysis, see: Cremer & Pople (1975).

Experimental top

4,4'-Difluorobenzhydryl piperazine was obtained from R. L. Fine Chem., Bengaluru, India. 4,4'-Difluorobenzhydryl piperazine (2.88 g, 0.01 mol) and trichloroacetic acid (1.63 g, 0.01 mol) were dissolved in hot ethanol solution and stirred over a heating magnetic stirrer for few minutes (330 K). The resulting solution was allowed to cool slowly at room temperature. X-ray quality crystals of the title compound were obtained by the slow evaporation of ethanol (m.p.: 388–393 K).

Refinement top

H atoms were clearly identified in difference syntheses, idealized and refined riding on the carbon atoms with C—H = 0.95 (aromatic) - 1.00 Å, N—H = 0.92 - 0.93 Å and with isotropic displacement parameters Uiso(H) = 1.2U(C/Neq). Water H atoms were refined freely with DFIX O—H 0.84 (1) and DFIX H···H 1.4 (1) Å.

Structure description top

A review on the current pharmacological and toxicological information for piperazine derivatives is described (Elliott, 2011). 4,4'-Difluorobenzhydryl piperazine is an intermediate for the preparation of flunarizine which is a calcium channel blocker. Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006). Recently, we have reported the crystal structures of 4-[bis(4-fluorophenyl)methyl]piperazin-1-ium 2-(2-phenylethyl)benzoate (Betz et al., 2011) and 4-[bis(4-fluorophenyl) methyl]piperazin-1-ium picrate (Betz et al., 2011a). The crystal structures of melaminium bis(trifluoroacetate) trihydrate and melaminium bis(trichloroacetate) dihydrate have been reported (Perpétuo & Janczak, 2006). In the course of our studies on the salts of piperazines and in view of the importance of piperazines, we now report the crystal and molecular structure of the title salt. The presence of water in the crystal may be due to moisture from trichloroacetic acid. The water is part of intermolecular N—H···O, O(water)—H···O and O(water)—H···F interactions of the crystal packing (Figure 2 and Table 1). The molecular structure exhibits no unusual geometries. Both fluoro-phenyl rings form a dihedral angle of 68.64 (6)°, and each one chloro ligand of the two anions is disordered over two positions Cl31/Cl32 and Cl51/Cl52 with 0.945 (8)/0.055 (8) occupation.

For the biological activity of piperazines, see: Bogatcheva et al. (2006); Brockunier et al. (2004). For a review pharmacological and toxicological information for piperazine derivatives, see: Elliott, (2011). For related structures, see: Betz et al. (2011, 2011a); Perpétuo & Janczak (2006). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995); Etter et al. (1990). For puckering analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along [001] with H bonding as dotted lines. Hydrogen atoms not involved are omitted.
4-[Bis(4-fluorophenyl)methyl]piperazin-1-ium bis(trichloroacetate) 0.4-hydrate top
Crystal data top
C17H20F2N22+·2C2Cl3O2·0.4H2OF(000) = 1264
Mr = 622.30Dx = 1.563 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6364 reflections
a = 8.8101 (7) Åθ = 2.4–28.1°
b = 33.555 (3) ŵ = 0.70 mm1
c = 9.4453 (7) ÅT = 130 K
β = 108.723 (2)°Block, colourless
V = 2644.5 (3) Å30.43 × 0.25 × 0.23 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
6309 independent reflections
Radiation source: sealed tube5475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.754, Tmax = 0.856k = 4435
25025 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0376P)2 + 1.238P]
where P = (Fo2 + 2Fc2)/3
6309 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.44 e Å3
5 restraintsΔρmin = 0.33 e Å3
Crystal data top
C17H20F2N22+·2C2Cl3O2·0.4H2OV = 2644.5 (3) Å3
Mr = 622.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8101 (7) ŵ = 0.70 mm1
b = 33.555 (3) ÅT = 130 K
c = 9.4453 (7) Å0.43 × 0.25 × 0.23 mm
β = 108.723 (2)°
Data collection top
Bruker SMART APEX
diffractometer
6309 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
5475 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.856Rint = 0.033
25025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0405 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.44 e Å3
6309 reflectionsΔρmin = 0.33 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.42896 (7)0.08738 (2)0.57017 (6)0.04709 (17)
Cl20.73291 (7)0.122760 (16)0.73174 (6)0.03824 (14)
Cl310.7180 (2)0.039699 (19)0.66377 (16)0.0288 (3)0.945 (7)
Cl320.655 (3)0.0375 (3)0.625 (2)0.030 (3)*0.055 (7)
O10.57723 (16)0.09907 (4)0.94355 (15)0.0257 (3)
O20.51880 (15)0.03603 (4)0.86531 (14)0.0218 (3)
C10.6146 (2)0.07955 (6)0.71377 (19)0.0210 (4)
C20.5687 (2)0.07066 (5)0.85888 (19)0.0183 (3)
Cl41.04646 (6)0.05481 (2)0.43723 (6)0.04426 (16)
Cl510.7926 (3)0.11414 (3)0.3445 (2)0.0353 (4)0.945 (9)
Cl520.852 (3)0.1118 (3)0.385 (2)0.030 (4)*0.055 (9)
Cl60.72048 (5)0.031251 (14)0.28437 (5)0.02344 (11)
O30.97280 (16)0.10468 (4)0.13520 (15)0.0243 (3)
O40.89212 (15)0.04212 (4)0.06973 (14)0.0210 (3)
C30.8647 (2)0.06867 (6)0.29606 (19)0.0209 (4)
C40.9108 (2)0.07214 (5)0.14910 (19)0.0175 (3)
F10.47404 (19)0.21857 (4)0.64013 (15)0.0531 (4)
F20.14523 (17)0.26032 (4)0.34231 (15)0.0443 (3)
N10.22837 (17)0.11350 (4)0.04351 (15)0.0163 (3)
H1B0.13560.11250.07010.020*
N20.26897 (17)0.03018 (4)0.02096 (16)0.0176 (3)
H2A0.23690.00400.02860.021*
H2B0.36170.03180.04570.021*
C100.2875 (2)0.15637 (5)0.05572 (19)0.0193 (4)
H1A0.38670.15650.02600.023*
C110.3345 (2)0.17165 (5)0.2157 (2)0.0224 (4)
C120.2363 (3)0.16824 (6)0.3048 (2)0.0265 (4)
H12A0.13570.15510.26690.032*
C130.2841 (3)0.18384 (6)0.4487 (2)0.0328 (5)
H13A0.21800.18120.51030.039*
C140.4278 (3)0.20306 (6)0.4998 (2)0.0353 (5)
C150.5268 (3)0.20753 (7)0.4159 (2)0.0399 (5)
H15A0.62570.22130.45430.048*
C160.4798 (3)0.19138 (6)0.2723 (2)0.0325 (5)
H16A0.54800.19390.21270.039*
C210.1666 (2)0.18308 (5)0.05342 (19)0.0205 (4)
C220.0095 (2)0.18688 (6)0.0532 (2)0.0242 (4)
H22A0.02560.17160.01510.029*
C230.0966 (2)0.21262 (6)0.1512 (2)0.0282 (4)
H23A0.20400.21520.15130.034*
C240.0419 (3)0.23440 (6)0.2483 (2)0.0294 (4)
C250.1114 (3)0.23131 (6)0.2544 (2)0.0321 (5)
H25A0.14490.24660.32370.039*
C260.2160 (2)0.20519 (6)0.1560 (2)0.0270 (4)
H26A0.32230.20230.15860.032*
C320.1905 (2)0.09844 (5)0.11400 (18)0.0185 (3)
H32A0.28580.10170.14680.022*
H32B0.10230.11450.18120.022*
C330.1419 (2)0.05501 (5)0.12607 (19)0.0192 (4)
H33A0.04070.05200.10280.023*
H33B0.12300.04570.22970.023*
C350.3000 (2)0.04431 (5)0.13512 (19)0.0179 (3)
H35A0.38420.02760.20450.022*
H35B0.20120.04180.16280.022*
C360.3534 (2)0.08726 (5)0.14877 (18)0.0175 (3)
H36A0.37330.09640.25280.021*
H36B0.45510.08950.12580.021*
O1000.6383 (5)0.17843 (13)0.9984 (5)0.0411 (15)0.398 (5)
H1010.636 (11)0.1549 (10)0.968 (10)0.10 (3)*0.398 (5)
H1020.720 (7)0.181 (3)1.075 (6)0.10 (3)*0.398 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0302 (3)0.0767 (5)0.0258 (3)0.0066 (3)0.0029 (2)0.0160 (3)
Cl20.0497 (3)0.0321 (3)0.0420 (3)0.0160 (2)0.0275 (3)0.0024 (2)
Cl310.0361 (8)0.0300 (3)0.0275 (5)0.0028 (3)0.0201 (5)0.0011 (2)
O10.0276 (7)0.0258 (7)0.0278 (7)0.0033 (6)0.0146 (6)0.0041 (6)
O20.0204 (6)0.0216 (7)0.0260 (7)0.0008 (5)0.0112 (5)0.0021 (5)
C10.0198 (9)0.0241 (9)0.0185 (8)0.0009 (7)0.0054 (7)0.0033 (7)
C20.0113 (8)0.0248 (9)0.0187 (8)0.0028 (7)0.0046 (6)0.0042 (7)
Cl40.0244 (3)0.0773 (5)0.0237 (3)0.0059 (3)0.0027 (2)0.0090 (3)
Cl510.0431 (9)0.0314 (3)0.0402 (7)0.0065 (4)0.0258 (7)0.0164 (3)
Cl60.0226 (2)0.0282 (2)0.0228 (2)0.00551 (18)0.01187 (17)0.00174 (17)
O30.0247 (7)0.0210 (7)0.0316 (7)0.0053 (5)0.0150 (6)0.0038 (5)
O40.0218 (6)0.0214 (7)0.0223 (6)0.0044 (5)0.0105 (5)0.0046 (5)
C30.0182 (9)0.0271 (10)0.0181 (8)0.0036 (7)0.0066 (7)0.0044 (7)
C40.0114 (8)0.0224 (9)0.0190 (8)0.0009 (6)0.0054 (6)0.0009 (7)
F10.0701 (10)0.0504 (9)0.0271 (7)0.0105 (7)0.0008 (7)0.0165 (6)
F20.0456 (8)0.0331 (7)0.0419 (8)0.0057 (6)0.0030 (6)0.0182 (6)
N10.0174 (7)0.0155 (7)0.0165 (7)0.0002 (6)0.0064 (6)0.0003 (5)
N20.0179 (7)0.0153 (7)0.0208 (7)0.0008 (6)0.0079 (6)0.0005 (6)
C100.0200 (9)0.0169 (9)0.0204 (8)0.0036 (7)0.0056 (7)0.0006 (7)
C110.0269 (10)0.0155 (9)0.0202 (9)0.0002 (7)0.0010 (7)0.0013 (7)
C120.0321 (11)0.0215 (10)0.0237 (9)0.0024 (8)0.0056 (8)0.0034 (7)
C130.0456 (13)0.0256 (11)0.0258 (10)0.0017 (9)0.0093 (9)0.0031 (8)
C140.0500 (14)0.0236 (10)0.0224 (10)0.0005 (9)0.0022 (9)0.0050 (8)
C150.0400 (13)0.0356 (13)0.0322 (11)0.0140 (10)0.0048 (10)0.0046 (9)
C160.0317 (11)0.0310 (11)0.0302 (11)0.0079 (9)0.0036 (9)0.0012 (8)
C210.0254 (9)0.0156 (9)0.0185 (8)0.0034 (7)0.0042 (7)0.0020 (7)
C220.0277 (10)0.0205 (9)0.0238 (9)0.0005 (8)0.0072 (8)0.0033 (7)
C230.0282 (10)0.0241 (10)0.0288 (10)0.0016 (8)0.0042 (8)0.0002 (8)
C240.0374 (12)0.0177 (9)0.0244 (9)0.0003 (8)0.0023 (8)0.0039 (7)
C250.0421 (12)0.0237 (10)0.0282 (10)0.0063 (9)0.0082 (9)0.0074 (8)
C260.0306 (11)0.0232 (10)0.0257 (10)0.0050 (8)0.0068 (8)0.0029 (8)
C320.0201 (9)0.0208 (9)0.0144 (8)0.0016 (7)0.0053 (7)0.0001 (6)
C330.0171 (8)0.0212 (9)0.0184 (8)0.0002 (7)0.0047 (7)0.0010 (7)
C350.0179 (8)0.0189 (9)0.0183 (8)0.0011 (7)0.0076 (7)0.0006 (6)
C360.0176 (8)0.0183 (9)0.0158 (8)0.0019 (7)0.0041 (7)0.0011 (6)
O1000.045 (3)0.034 (2)0.051 (3)0.0121 (19)0.025 (2)0.0149 (19)
Geometric parameters (Å, º) top
Cl1—C11.7777 (19)C12—C131.390 (3)
Cl2—C11.7616 (19)C12—H12A0.9500
Cl31—Cl320.56 (3)C13—C141.364 (3)
Cl31—C11.766 (2)C13—H13A0.9500
Cl32—C11.733 (11)C14—C151.362 (3)
O1—C21.231 (2)C15—C161.394 (3)
O2—C21.251 (2)C15—H15A0.9500
C1—C21.577 (2)C16—H16A0.9500
Cl4—C31.7852 (19)C21—C221.391 (3)
Cl51—Cl520.55 (3)C21—C261.396 (3)
Cl51—C31.768 (2)C22—C231.386 (3)
Cl52—C31.696 (11)C22—H22A0.9500
Cl6—C31.7646 (19)C23—C241.375 (3)
O3—C41.246 (2)C23—H23A0.9500
O4—C41.235 (2)C24—C251.373 (3)
C3—C41.571 (2)C25—C261.389 (3)
F1—C141.359 (2)C25—H25A0.9500
F2—C241.362 (2)C26—H26A0.9500
N1—C321.504 (2)C32—C331.513 (2)
N1—C361.508 (2)C32—H32A0.9900
N1—C101.522 (2)C32—H32B0.9900
N1—H1B0.9300C33—H33A0.9900
N2—C351.488 (2)C33—H33B0.9900
N2—C331.490 (2)C35—C361.508 (2)
N2—H2A0.9200C35—H35A0.9900
N2—H2B0.9200C35—H35B0.9900
C10—C211.515 (2)C36—H36A0.9900
C10—C111.522 (2)C36—H36B0.9900
C10—H1A1.0000O100—H1010.840 (10)
C11—C161.387 (3)O100—H1020.839 (10)
C11—C121.392 (3)
Cl32—Cl31—C177.4 (11)C14—C13—H13A120.7
Cl31—Cl32—C184.0 (13)C12—C13—H13A120.7
C2—C1—Cl32114.5 (4)F1—C14—C15118.6 (2)
C2—C1—Cl2112.39 (12)F1—C14—C13118.6 (2)
Cl32—C1—Cl2120.7 (7)C15—C14—C13122.8 (2)
C2—C1—Cl31112.80 (12)C14—C15—C16118.5 (2)
Cl32—C1—Cl3118.5 (9)C14—C15—H15A120.7
Cl2—C1—Cl31108.00 (11)C16—C15—H15A120.7
C2—C1—Cl1105.13 (12)C11—C16—C15120.7 (2)
Cl32—C1—Cl191.9 (10)C11—C16—H16A119.7
Cl2—C1—Cl1108.84 (10)C15—C16—H16A119.7
Cl31—C1—Cl1109.59 (12)C22—C21—C26118.96 (17)
O1—C2—O2129.59 (16)C22—C21—C10122.39 (16)
O1—C2—C1116.02 (16)C26—C21—C10118.64 (17)
O2—C2—C1114.21 (15)C23—C22—C21120.93 (18)
Cl52—Cl51—C373.5 (12)C23—C22—H22A119.5
Cl51—Cl52—C388.5 (16)C21—C22—H22A119.5
C4—C3—Cl52116.9 (5)C24—C23—C22118.10 (19)
C4—C3—Cl6112.51 (12)C24—C23—H23A120.9
Cl52—C3—Cl6118.4 (7)C22—C23—H23A120.9
C4—C3—Cl51112.38 (13)F2—C24—C25118.79 (18)
Cl52—C3—Cl5118.0 (9)F2—C24—C23118.0 (2)
Cl6—C3—Cl51108.59 (11)C25—C24—C23123.19 (18)
C4—C3—Cl4104.78 (12)C24—C25—C26117.99 (19)
Cl52—C3—Cl492.2 (10)C24—C25—H25A121.0
Cl6—C3—Cl4108.46 (10)C26—C25—H25A121.0
Cl51—C3—Cl4110.00 (13)C25—C26—C21120.81 (19)
O4—C4—O3128.92 (16)C25—C26—H26A119.6
O4—C4—C3117.01 (15)C21—C26—H26A119.6
O3—C4—C3113.85 (15)N1—C32—C33111.45 (14)
C32—N1—C36109.84 (13)N1—C32—H32A109.3
C32—N1—C10110.76 (13)C33—C32—H32A109.3
C36—N1—C10110.02 (13)N1—C32—H32B109.3
C32—N1—H1B108.7C33—C32—H32B109.3
C36—N1—H1B108.7H32A—C32—H32B108.0
C10—N1—H1B108.7N2—C33—C32110.77 (14)
C35—N2—C33110.00 (13)N2—C33—H33A109.5
C35—N2—H2A109.7C32—C33—H33A109.5
C33—N2—H2A109.7N2—C33—H33B109.5
C35—N2—H2B109.7C32—C33—H33B109.5
C33—N2—H2B109.7H33A—C33—H33B108.1
H2A—N2—H2B108.2N2—C35—C36110.01 (13)
C21—C10—N1111.04 (14)N2—C35—H35A109.7
C21—C10—C11112.61 (15)C36—C35—H35A109.7
N1—C10—C11111.79 (14)N2—C35—H35B109.7
C21—C10—H1A107.0C36—C35—H35B109.7
N1—C10—H1A107.0H35A—C35—H35B108.2
C11—C10—H1A107.0N1—C36—C35111.11 (14)
C16—C11—C12118.84 (18)N1—C36—H36A109.4
C16—C11—C10117.85 (18)C35—C36—H36A109.4
C12—C11—C10123.26 (17)N1—C36—H36B109.4
C13—C12—C11120.55 (19)C35—C36—H36B109.4
C13—C12—H12A119.7H36A—C36—H36B108.0
C11—C12—H12A119.7H101—O100—H102107 (7)
C14—C13—C12118.6 (2)
Cl31—Cl32—C1—C288.9 (13)C21—C10—C11—C1275.9 (2)
Cl31—Cl32—C1—Cl250.3 (14)N1—C10—C11—C1250.0 (2)
Cl31—Cl32—C1—Cl1163.5 (12)C16—C11—C12—C130.9 (3)
Cl32—Cl31—C1—C299.2 (13)C10—C11—C12—C13178.09 (18)
Cl32—Cl31—C1—Cl2135.9 (13)C11—C12—C13—C141.0 (3)
Cl32—Cl31—C1—Cl117.5 (13)C12—C13—C14—F1179.54 (19)
Cl32—C1—C2—O1163.1 (11)C12—C13—C14—C150.2 (3)
Cl2—C1—C2—O120.5 (2)F1—C14—C15—C16179.6 (2)
Cl31—C1—C2—O1142.94 (16)C13—C14—C15—C160.7 (4)
Cl1—C1—C2—O197.70 (16)C12—C11—C16—C150.0 (3)
Cl32—C1—C2—O221.3 (11)C10—C11—C16—C15177.33 (19)
Cl2—C1—C2—O2163.85 (13)C14—C15—C16—C110.8 (3)
Cl31—C1—C2—O241.5 (2)N1—C10—C21—C2257.6 (2)
Cl1—C1—C2—O277.91 (16)C11—C10—C21—C2268.6 (2)
Cl51—Cl52—C3—C479.5 (17)N1—C10—C21—C26123.58 (17)
Cl51—Cl52—C3—Cl660.3 (15)C11—C10—C21—C26110.19 (19)
Cl51—Cl52—C3—Cl4172.7 (14)C26—C21—C22—C231.0 (3)
Cl52—Cl51—C3—C4108.6 (16)C10—C21—C22—C23177.77 (17)
Cl52—Cl51—C3—Cl6126.3 (15)C21—C22—C23—C240.2 (3)
Cl52—Cl51—C3—Cl47.8 (15)C22—C23—C24—F2178.57 (17)
Cl52—C3—C4—O4167.2 (11)C22—C23—C24—C251.2 (3)
Cl6—C3—C4—O425.1 (2)F2—C24—C25—C26178.97 (18)
Cl51—C3—C4—O4148.05 (16)C23—C24—C25—C260.8 (3)
Cl4—C3—C4—O492.53 (16)C24—C25—C26—C210.6 (3)
Cl52—C3—C4—O317.7 (12)C22—C21—C26—C251.4 (3)
Cl6—C3—C4—O3159.81 (13)C10—C21—C26—C25177.41 (17)
Cl51—C3—C4—O336.9 (2)C36—N1—C32—C3354.54 (18)
Cl4—C3—C4—O382.56 (16)C10—N1—C32—C33176.28 (14)
C32—N1—C10—C2156.15 (18)C35—N2—C33—C3258.39 (18)
C36—N1—C10—C21177.78 (14)N1—C32—C33—N256.38 (18)
C32—N1—C10—C11177.16 (14)C33—N2—C35—C3659.54 (17)
C36—N1—C10—C1155.53 (18)C32—N1—C36—C3555.92 (17)
C21—C10—C11—C16101.3 (2)C10—N1—C36—C35178.09 (13)
N1—C10—C11—C16132.84 (18)N2—C35—C36—N158.83 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O3i0.931.752.6756 (19)172
N2—H2A···O4ii0.921.882.7735 (19)162
N2—H2B···O2iii0.921.842.7487 (19)168
O100—H102···F2iv0.84 (1)2.32 (8)2.878 (4)125 (8)
O100—H101···O10.84 (1)1.94 (4)2.733 (4)158 (9)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y, z1; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H20F2N22+·2C2Cl3O2·0.4H2O
Mr622.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)130
a, b, c (Å)8.8101 (7), 33.555 (3), 9.4453 (7)
β (°) 108.723 (2)
V3)2644.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.43 × 0.25 × 0.23
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.754, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
25025, 6309, 5475
Rint0.033
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.094, 1.12
No. of reflections6309
No. of parameters343
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.33

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O3i0.931.752.6756 (19)171.8
N2—H2A···O4ii0.921.882.7735 (19)162.0
N2—H2B···O2iii0.921.842.7487 (19)168.2
O100—H102···F2iv0.839 (10)2.32 (8)2.878 (4)125 (8)
O100—H101···O10.840 (10)1.94 (4)2.733 (4)158 (9)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y, z1; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

ASD thanks the University of Mysore for research facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Dayananda, A. S. & Yathirajan, H. S. (2011). Acta Cryst. E67, o2783–o2784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2587–o2588.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationElliott, S. (2011). Drug Test Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerpétuo, G. J. & Janczak, J. (2006). Acta Cryst. C62, o372–o375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds