organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(3,5-Di­phenyl-1H-pyrazol-1-yl)meth­yl]pyridine

aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, bDepartment of Chemistry, Maseno University, PO Box 333, Maseno 40105, Kenya, and cSchool of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa
*Correspondence e-mail: iguzei@chem.wisc.edu

(Received 27 February 2012; accepted 19 March 2012; online 24 March 2012)

The title compound, C21H17N3, crystallizes with the phenyl ring in the 3-position coplanar with the pyrazole ring within 4.04 (5)°, whereas the phenyl ring in the 5-position forms a dihedral angle of 50.22 (3)° with the pyrazole ring. There is no ambiguity regarding the position of pyridine N atom, which could have exhibited disorder between the ortho positions of the ring.

Related literature

For pyrazole coordination, see: Trofimenko (1993[Trofimenko, S. (1993). Chem. Rev. 93, 943-980.]); Mukherjee (2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]). For our investigation of pyrazolyl-based transition metal complexes as catalysts for olefin transformations, see: Ojwach et al. (2009[Ojwach, S. O., Leitia, B., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2009). Organomatellics, 28, 2127-2133.]); Ojwach & Darkwa (2010[Ojwach, S. O. & Darkwa, J. (2010). Inorg. Chim. Acta, 363, 1947-1964.]). For bond-length data, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17N3

  • Mr = 311.38

  • Monoclinic, P 21 /c

  • a = 12.5776 (8) Å

  • b = 16.531 (1) Å

  • c = 7.9421 (5) Å

  • β = 97.759 (1)°

  • V = 1636.21 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.54 × 0.43 × 0.18 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: analytical (SADABS; Bruker, 2010[Bruker (2010). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.986

  • 18826 measured reflections

  • 4075 independent reflections

  • 3711 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.02

  • 4075 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2010[Bruker (2010). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and modiCIFer (Guzei, 2011[Guzei, I. A. (2011). modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]).

Supporting information


Comment top

The coordination chemistry of pyrazolyl ligands with late transition metals has been a subject of numerous invesitigations over the past decades. This is in part due to the ability of the pyrazolyl ligands to display various coordination modes in metal complexes suitable for a wide range of applications (Trofimenko, 1993; Mukherjee, 2000). One such area where pyrazolyl metal complexes have found useful application is in their use as catalysts in various olefin transformations (Ojwach & Darkwa, 2010). As part of our investigation of pyrazolyl-based transition metal complexes as catalysts for olefin transformations (Ojwach et al., 2009 and references therein), we isolated the title compound, (I), Scheme 1, during an attempt to prepare crystals of the zinc complex of 2-(3,5-diphenylpyrazol-1-ylmethyl)pyridine. All bond distances and angles in (I) are within the expected ranges (Bruno et al., 2002). The molecules of (I) pack in columns along the crystallographic a axis forming a herring-bone pattern. In (I), the C1 phenyl ring is coplanar with the pyrazole ring within 4.04 (5)°, whereas the C10 phenyl ring forms a 50.22 (3)° dihedral angle with the pyrazole ring. The difference is undoubtedly due to steric conflict between a methylenepyridine at atom N2 and the C10 phenyl ring. A potential problem of this structural investigation was identification of the position of atom N3 which could occupy either of the ortho positions in the C17 six-membered ring. In fact when this compound serves as a bidentate ligand the pyridine N atom is on the same side with the pyrazole atom N1. This is not observed in (I). The data quality was sufficiently high to allow unequivocal identification of the position of the N atom in the pyridine ring. An incorrect placement of this atom at the C18 position results in dramatically worse numerical refinement indicators.

Related literature top

For pyrazole coordination, see: Trofimenko (1993); Mukherjee (2000). For our investigation of pyrazolyl-based transition metal complexes as catalysts for olefin transformations, see: Ojwach et al. (2009); Ojwach & Darkwa (2010). For bond-length data, see: Allen (2002); Bruno et al. (2002).

Experimental top

To a solution of 2-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (0.10 g, 0.32 mmol) in methanol (10 ml), was added a solution of Zn(Ac)2 (0.06 g, 0.32 m mol) in methanol (10 ml) at RT. The clear solution was stirred for 24 h then the solvent was slowly evaporated to afford a white solid. Yield: 0.13 g (81%). Recrystallization of this complex yielde crystals of (I).

Refinement top

All H-atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.2 times Ueq(bearing atom).

Structure description top

The coordination chemistry of pyrazolyl ligands with late transition metals has been a subject of numerous invesitigations over the past decades. This is in part due to the ability of the pyrazolyl ligands to display various coordination modes in metal complexes suitable for a wide range of applications (Trofimenko, 1993; Mukherjee, 2000). One such area where pyrazolyl metal complexes have found useful application is in their use as catalysts in various olefin transformations (Ojwach & Darkwa, 2010). As part of our investigation of pyrazolyl-based transition metal complexes as catalysts for olefin transformations (Ojwach et al., 2009 and references therein), we isolated the title compound, (I), Scheme 1, during an attempt to prepare crystals of the zinc complex of 2-(3,5-diphenylpyrazol-1-ylmethyl)pyridine. All bond distances and angles in (I) are within the expected ranges (Bruno et al., 2002). The molecules of (I) pack in columns along the crystallographic a axis forming a herring-bone pattern. In (I), the C1 phenyl ring is coplanar with the pyrazole ring within 4.04 (5)°, whereas the C10 phenyl ring forms a 50.22 (3)° dihedral angle with the pyrazole ring. The difference is undoubtedly due to steric conflict between a methylenepyridine at atom N2 and the C10 phenyl ring. A potential problem of this structural investigation was identification of the position of atom N3 which could occupy either of the ortho positions in the C17 six-membered ring. In fact when this compound serves as a bidentate ligand the pyridine N atom is on the same side with the pyrazole atom N1. This is not observed in (I). The data quality was sufficiently high to allow unequivocal identification of the position of the N atom in the pyridine ring. An incorrect placement of this atom at the C18 position results in dramatically worse numerical refinement indicators.

For pyrazole coordination, see: Trofimenko (1993); Mukherjee (2000). For our investigation of pyrazolyl-based transition metal complexes as catalysts for olefin transformations, see: Ojwach et al. (2009); Ojwach & Darkwa (2010). For bond-length data, see: Allen (2002); Bruno et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT-Plus (Bruker, 2010); data reduction: SAINT-Plus (Bruker, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2011).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). The thermal ellipsoids are shown at 50% probability level.
2-[(3,5-Diphenyl-1H-pyrazol-1-yl)methyl]pyridine top
Crystal data top
C21H17N3F(000) = 656
Mr = 311.38Dx = 1.264 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 999 reflections
a = 12.5776 (8) Åθ = 1.6–28.3°
b = 16.531 (1) ŵ = 0.08 mm1
c = 7.9421 (5) ÅT = 100 K
β = 97.759 (1)°Block, colourless
V = 1636.21 (18) Å30.54 × 0.43 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4075 independent reflections
Radiation source: fine-focus sealed tube3711 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.024
0.50° ω and 0.5° φ scansθmax = 28.3°, θmin = 1.6°
Absorption correction: analytical
(SADABS; Bruker, 2010)
h = 1616
Tmin = 0.960, Tmax = 0.986k = 2221
18826 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.5784P]
where P = (Fo2 + 2Fc2)/3
4075 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H17N3V = 1636.21 (18) Å3
Mr = 311.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5776 (8) ŵ = 0.08 mm1
b = 16.531 (1) ÅT = 100 K
c = 7.9421 (5) Å0.54 × 0.43 × 0.18 mm
β = 97.759 (1)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4075 independent reflections
Absorption correction: analytical
(SADABS; Bruker, 2010)
3711 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.986Rint = 0.024
18826 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
4075 reflectionsΔρmin = 0.21 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.56283 (6)0.11731 (5)0.87783 (10)0.01783 (16)
N20.46026 (6)0.14515 (5)0.86210 (10)0.01640 (16)
N30.21604 (7)0.03283 (6)0.77928 (11)0.02588 (19)
C10.79245 (8)0.10240 (6)0.88480 (12)0.02147 (19)
H10.75570.06000.93340.026*
C20.90248 (8)0.09663 (6)0.88094 (13)0.0253 (2)
H20.94020.05010.92690.030*
C30.95788 (8)0.15812 (6)0.81065 (13)0.0247 (2)
H31.03290.15370.80780.030*
C40.90209 (8)0.22622 (6)0.74455 (13)0.0231 (2)
H40.93930.26880.69730.028*
C50.79200 (7)0.23231 (6)0.74737 (12)0.01950 (18)
H50.75460.27890.70130.023*
C60.73581 (7)0.17054 (5)0.81721 (11)0.01686 (18)
C70.61924 (7)0.17777 (5)0.81945 (11)0.01638 (18)
C80.55255 (7)0.24429 (5)0.76702 (11)0.01741 (18)
H80.57310.29400.72090.021*
C90.45102 (7)0.22172 (5)0.79693 (11)0.01610 (17)
C100.35049 (7)0.26845 (5)0.77034 (11)0.01638 (18)
C110.34982 (8)0.34795 (6)0.83071 (12)0.02013 (19)
H110.41300.37020.89260.024*
C120.25718 (9)0.39466 (6)0.80070 (13)0.0247 (2)
H120.25720.44850.84250.030*
C130.16471 (8)0.36260 (7)0.70964 (14)0.0266 (2)
H130.10160.39460.68860.032*
C140.16455 (8)0.28366 (6)0.64930 (13)0.0236 (2)
H140.10130.26180.58690.028*
C150.25656 (7)0.23660 (6)0.67999 (11)0.01905 (18)
H150.25580.18250.63950.023*
C160.37702 (7)0.09527 (5)0.92095 (11)0.01754 (18)
H16A0.32160.13120.95790.021*
H16B0.40920.06401.02140.021*
C170.32303 (8)0.03679 (5)0.78899 (11)0.01818 (18)
C180.38216 (9)0.01146 (6)0.69164 (12)0.0251 (2)
H180.45790.00620.70070.030*
C190.32785 (10)0.06739 (6)0.58106 (14)0.0309 (2)
H190.36600.10120.51310.037*
C200.21751 (10)0.07312 (6)0.57135 (13)0.0304 (2)
H200.17840.11130.49790.036*
C210.16543 (9)0.02194 (7)0.67126 (14)0.0309 (2)
H210.08950.02570.66320.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0172 (4)0.0175 (4)0.0190 (4)0.0006 (3)0.0033 (3)0.0000 (3)
N20.0163 (4)0.0153 (4)0.0181 (3)0.0003 (3)0.0038 (3)0.0003 (3)
N30.0255 (4)0.0282 (4)0.0249 (4)0.0098 (3)0.0068 (3)0.0030 (3)
C10.0212 (4)0.0211 (4)0.0213 (4)0.0011 (3)0.0001 (3)0.0026 (3)
C20.0212 (5)0.0253 (5)0.0276 (5)0.0053 (4)0.0037 (4)0.0003 (4)
C30.0156 (4)0.0300 (5)0.0275 (5)0.0009 (4)0.0006 (3)0.0070 (4)
C40.0191 (4)0.0230 (5)0.0276 (5)0.0031 (4)0.0052 (4)0.0041 (4)
C50.0183 (4)0.0176 (4)0.0228 (4)0.0006 (3)0.0034 (3)0.0015 (3)
C60.0167 (4)0.0178 (4)0.0159 (4)0.0002 (3)0.0013 (3)0.0023 (3)
C70.0178 (4)0.0166 (4)0.0146 (4)0.0003 (3)0.0019 (3)0.0009 (3)
C80.0179 (4)0.0159 (4)0.0186 (4)0.0003 (3)0.0030 (3)0.0008 (3)
C90.0183 (4)0.0148 (4)0.0153 (4)0.0004 (3)0.0026 (3)0.0006 (3)
C100.0170 (4)0.0175 (4)0.0155 (4)0.0009 (3)0.0052 (3)0.0019 (3)
C110.0237 (4)0.0190 (4)0.0184 (4)0.0006 (3)0.0050 (3)0.0000 (3)
C120.0317 (5)0.0200 (4)0.0241 (5)0.0068 (4)0.0096 (4)0.0006 (4)
C130.0225 (5)0.0297 (5)0.0290 (5)0.0099 (4)0.0089 (4)0.0065 (4)
C140.0168 (4)0.0293 (5)0.0250 (5)0.0002 (4)0.0044 (3)0.0055 (4)
C150.0184 (4)0.0198 (4)0.0196 (4)0.0009 (3)0.0051 (3)0.0017 (3)
C160.0197 (4)0.0169 (4)0.0167 (4)0.0031 (3)0.0049 (3)0.0000 (3)
C170.0240 (4)0.0144 (4)0.0161 (4)0.0025 (3)0.0023 (3)0.0029 (3)
C180.0287 (5)0.0231 (5)0.0216 (4)0.0072 (4)0.0032 (4)0.0028 (4)
C190.0445 (6)0.0221 (5)0.0232 (5)0.0092 (4)0.0058 (4)0.0044 (4)
C200.0474 (6)0.0198 (5)0.0212 (5)0.0094 (4)0.0054 (4)0.0010 (4)
C210.0318 (5)0.0339 (6)0.0267 (5)0.0165 (4)0.0031 (4)0.0005 (4)
Geometric parameters (Å, º) top
N1—C71.3440 (12)C10—C111.3994 (13)
N1—N21.3595 (10)C10—C151.3997 (12)
N2—C91.3664 (11)C11—C121.3913 (13)
N2—C161.4584 (11)C11—H110.9500
N3—C171.3390 (13)C12—C131.3891 (16)
N3—C211.3468 (13)C12—H120.9500
C1—C21.3916 (14)C13—C141.3901 (15)
C1—C61.4005 (13)C13—H130.9500
C1—H10.9500C14—C151.3884 (13)
C2—C31.3912 (15)C14—H140.9500
C2—H20.9500C15—H150.9500
C3—C41.3914 (14)C16—C171.5172 (12)
C3—H30.9500C16—H16A0.9900
C4—C51.3916 (13)C16—H16B0.9900
C4—H40.9500C17—C181.3936 (14)
C5—C61.3985 (13)C18—C191.3895 (14)
C5—H50.9500C18—H180.9500
C6—C71.4736 (12)C19—C201.3829 (17)
C7—C81.4112 (12)C19—H190.9500
C8—C91.3814 (12)C20—C211.3838 (17)
C8—H80.9500C20—H200.9500
C9—C101.4725 (12)C21—H210.9500
C7—N1—N2104.78 (7)C12—C11—H11119.8
N1—N2—C9112.31 (7)C10—C11—H11119.8
N1—N2—C16119.51 (7)C13—C12—C11120.03 (9)
C9—N2—C16128.11 (8)C13—C12—H12120.0
C17—N3—C21117.03 (9)C11—C12—H12120.0
C2—C1—C6120.17 (9)C12—C13—C14119.99 (9)
C2—C1—H1119.9C12—C13—H13120.0
C6—C1—H1119.9C14—C13—H13120.0
C3—C2—C1120.81 (9)C15—C14—C13120.20 (9)
C3—C2—H2119.6C15—C14—H14119.9
C1—C2—H2119.6C13—C14—H14119.9
C2—C3—C4119.22 (9)C14—C15—C10120.34 (9)
C2—C3—H3120.4C14—C15—H15119.8
C4—C3—H3120.4C10—C15—H15119.8
C3—C4—C5120.31 (9)N2—C16—C17114.37 (7)
C3—C4—H4119.8N2—C16—H16A108.7
C5—C4—H4119.8C17—C16—H16A108.7
C4—C5—C6120.72 (9)N2—C16—H16B108.7
C4—C5—H5119.6C17—C16—H16B108.7
C6—C5—H5119.6H16A—C16—H16B107.6
C5—C6—C1118.76 (8)N3—C17—C18123.20 (9)
C5—C6—C7120.16 (8)N3—C17—C16115.06 (8)
C1—C6—C7121.08 (8)C18—C17—C16121.68 (9)
N1—C7—C8111.15 (8)C19—C18—C17118.54 (10)
N1—C7—C6121.08 (8)C19—C18—H18120.7
C8—C7—C6127.76 (8)C17—C18—H18120.7
C9—C8—C7105.38 (8)C20—C19—C18119.00 (10)
C9—C8—H8127.3C20—C19—H19120.5
C7—C8—H8127.3C18—C19—H19120.5
N2—C9—C8106.38 (8)C19—C20—C21118.38 (10)
N2—C9—C10124.60 (8)C19—C20—H20120.8
C8—C9—C10129.01 (8)C21—C20—H20120.8
C11—C10—C15119.03 (8)N3—C21—C20123.83 (10)
C11—C10—C9119.24 (8)N3—C21—H21118.1
C15—C10—C9121.68 (8)C20—C21—H21118.1
C12—C11—C10120.41 (9)
C7—N1—N2—C90.57 (10)N2—C9—C10—C11130.54 (9)
C7—N1—N2—C16177.56 (7)C8—C9—C10—C1148.00 (13)
C6—C1—C2—C30.13 (15)N2—C9—C10—C1552.16 (13)
C1—C2—C3—C40.37 (15)C8—C9—C10—C15129.30 (10)
C2—C3—C4—C50.61 (15)C15—C10—C11—C120.24 (13)
C3—C4—C5—C60.34 (14)C9—C10—C11—C12177.13 (8)
C4—C5—C6—C10.16 (14)C10—C11—C12—C130.30 (14)
C4—C5—C6—C7179.97 (8)C11—C12—C13—C140.37 (15)
C2—C1—C6—C50.40 (14)C12—C13—C14—C150.11 (15)
C2—C1—C6—C7179.80 (8)C13—C14—C15—C100.65 (14)
N2—N1—C7—C80.19 (10)C11—C10—C15—C140.71 (13)
N2—N1—C7—C6179.52 (7)C9—C10—C15—C14176.59 (8)
C5—C6—C7—N1176.49 (8)N1—N2—C16—C1788.21 (10)
C1—C6—C7—N13.71 (13)C9—N2—C16—C1795.33 (11)
C5—C6—C7—C84.31 (14)C21—N3—C17—C181.16 (14)
C1—C6—C7—C8175.49 (9)C21—N3—C17—C16176.00 (9)
N1—C7—C8—C90.23 (10)N2—C16—C17—N3136.02 (8)
C6—C7—C8—C9179.04 (8)N2—C16—C17—C1846.77 (12)
N1—N2—C9—C80.72 (10)N3—C17—C18—C191.10 (15)
C16—N2—C9—C8177.40 (8)C16—C17—C18—C19175.88 (9)
N1—N2—C9—C10178.10 (8)C17—C18—C19—C200.08 (15)
C16—N2—C9—C101.42 (14)C18—C19—C20—C210.77 (16)
C7—C8—C9—N20.55 (9)C17—N3—C21—C200.23 (16)
C7—C8—C9—C10178.20 (8)C19—C20—C21—N30.73 (17)

Experimental details

Crystal data
Chemical formulaC21H17N3
Mr311.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.5776 (8), 16.531 (1), 7.9421 (5)
β (°) 97.759 (1)
V3)1636.21 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.54 × 0.43 × 0.18
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionAnalytical
(SADABS; Bruker, 2010)
Tmin, Tmax0.960, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
18826, 4075, 3711
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.02
No. of reflections4075
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: APEX2 (Bruker, 2010), SAINT-Plus (Bruker, 2010), SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2011).

 

Acknowledgements

The authors thank Collins Obuah and the University of Johannesburg for the data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2010). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuzei, I. A. (2011). modiCIFer. Molecular Structure Laboratory, University of Wisconsin–Madison, Madison, Wisconsin, USA.  Google Scholar
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS Google Scholar
First citationOjwach, S. O. & Darkwa, J. (2010). Inorg. Chim. Acta, 363, 1947–1964.  Web of Science CrossRef CAS Google Scholar
First citationOjwach, S. O., Leitia, B., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2009). Organomatellics, 28, 2127–2133.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrofimenko, S. (1993). Chem. Rev. 93, 943–980.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds