organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1109-o1110

3-De­­oxy-1,2-di-O-iso­propyl­­idene-5-O-tosyl-D-threo-pento­furan­ose

aDepartamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil, bDepartamento de Farmácia, Universidade Federal do Rio Grande do Norte, 59010-180 Natal, RN, Brazil, cChemistry Department, State University of New York, College at Buffalo, 1300 Elmwood Ave, Buffalo, NY 14222-1095, USA, and dDepartment of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812-2496 USA
*Correspondence e-mail: nazareay@buffalostate.edu

(Received 10 March 2012; accepted 12 March 2012; online 17 March 2012)

In the crystal structure of the title compound, C15H20O6S, the two independent mol­ecules crystalllize in a chiral setting with two different conformations, twisted 4T3 and envelope 4E, for the furan­ose rings. Weak C—H⋯O contacts strengthen the crystal structure.

Related literature

For the syntheses of this and similar compounds, see: Cox et al. (1997[Cox, P. J., Howie, R. A., Rufino, H. & Wardell, J. L. (1997). Acta Cryst. C53, 1939-1941.]); Dahlman et al. (1986[Dahlman, O., Garegg, P. J., Mayer, H. & Schramek, S. (1986). Acta Chem. Scand. Ser. B, 40, 15-20.]); Doboszewski & Herdewijn (1996[Doboszewski, B. & Herdewijn, P. (1996). Tetrahedron, 52, 1651-1668.], 2008[Doboszewski, B. & Herdewijn, P. (2008). Tetrahedron, 64, 5551-5562.]). For conformations of five-membered rings, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Boeyens & Dobson (1987[Boeyens, J. C. A. & Dobson, S. M. (1987). Stereochemistry of Metallic Macrocycles, in Stereochemical and Stereophysical Behaviour of Macrocycles, edited by I. Bernal, pp. 2-102. Amsterdam: Elsevier.]). For weak C—H⋯O contacts, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]). For analysis of absolute structure, see: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]); Tipson (1944[Tipson, R. S. (1944). J. Org. Chem. 9, 235-241.]); Fieser & Fieser (1967[Fieser, L. F. & Fieser, M. (1967). Reagents for Organic Synthesis, Vol. 1, pp. 1179-1181. New York: Wiley.]) describe tosyl­ation reactions. For standard bond length data, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C15H20O6S

  • Mr = 328.37

  • Monoclinic, P 21

  • a = 10.9397 (1) Å

  • b = 9.4251 (1) Å

  • c = 15.4833 (10) Å

  • β = 96.414 (7)°

  • V = 1586.46 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.06 mm−1

  • T = 123 K

  • 0.2 × 0.2 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID II imaging plate diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.55, Tmax = 0.65

  • 14179 measured reflections

  • 4917 independent reflections

  • 4440 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.087

  • S = 1.04

  • 4917 reflections

  • 404 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2059 Friedel pairs

  • Flack parameter: 0.005 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O5i 1.00 2.48 3.390 (3) 152
C5—H5B⋯O3 0.99 2.56 3.196 (3) 122
C11—H11⋯O12ii 0.95 2.44 3.163 (3) 133
C24—H24⋯O15iii 1.00 2.42 3.315 (3) 148
C28—H28C⋯O6iv 0.98 2.54 3.471 (3) 159
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+2]; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) x, y-1, z-1.

Data collection: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

D- and L-arabinose are very convenient chiral-pool substrates for stereoselective synthesis since both of them are commercially available, reasonably priced, and easy to functionalize in two steps to form 5-O-t-butyldiphenylsilyl-1,2-O-isopropylidene furanose or its L-enantiomer (Dahlman et al., 1986; Doboszewski & Herdewijn, 2008). Both enantiomers have been previously used in the synthesis of degradation products of the antibiotic Batumin/Kalimantacin A (Doboszewski & Herdewijn, 2008), to obtain branched-chain pyranosyl nucleosides (Doboszewski & Herdewijn, 1996) and C-hydroxymethylpentose present in lipopolysaccharides of Coxiella brunetii (Dahlman et al., 1986), among others. Our current interest in arabinose stems from a possibility to convert it into the general substrates 3-deoxy-1,2-di-O-isopropylidene-5-O-tosyl-D-threo-pentofuranose and 3-deoxy-1,2-di-O-isopropylidene-5-O-butyldiphenylsilyl-D-threo-pentofuranose to be used in further transformations. A synthesis scheme for both these compounds is shown in Figure 1. We wanted to firmly establish their structures, due to a possibility of enolization of the ulose and concomitant inversion of configuration at the C4 position during formation of the tosylhydrazone.

A correct absolute structure of the title compound was important for the further synthetic work. Because of that, we have selected Cu Kα radiation to ensure unambigous determination of the absolute structure.

In the crystal structure of the title compound (Fig.2), there are two crystallographically independent molecules, A (C1–C15, O1–O6, S1) and B (C21–C35, O11–O16, S2), in which all bond lengths and bond angles have standard dimensions. The six-membered phenyl rings in both molecules are flat within 0.01 Å.

It is visually obvious (Fig. 3 and Fig. 4) that the conformations of the five-membered rings differs in the two independent molecules A and B. A quantitative analysis of the ring conformations was performed using the method of Cremer and Pople (Cremer & Pople, 1975; Boeyens & Dobson, 1987) for the calculation of parameters of puckering. In molecule A, the polar parameters for the furanose ring and adjacent five membered ring are Q = 0.289 (3) and 0.312 (2) Å, Φ = 122.9 (5)° and 119.7 (5)°, respectively. These suggest a twisted 4T3 conformation for the furanose ring (ideal Φ = 126°), slightly distorted towards envelope (Φ = 108°). The substituent ring also has a twisted conformation (Fig. 3).

In molecule B (Fig. 4), the polar parameters for the furanose ring and the corresponding five membered ring are Q = 0.292 (3) and 0.361 (2) Å, Φ = 142.1 (5)° and 143.9 (4)°. These suggest an envelope conformation (ideal Φ = 144°) for both rings, with atoms C(24) and C(26) in the corners of the respective envelopes (4E for the furanose ring).

In the structure of 1,2-di-O-isopropylidene-5-O-tosyl-D-xylofuranose which differs from the title compound in one hydroxy group, the polar parameters are Q = 0.352 (3) Å, Φ = 288.8 (5)°; see refcodes RUWDES and RUWDES01 (Cox et al., 1997). This makes the conformation an almost exact 3E envelope, but with a different carbon atom in the corner than in the case described here. Obviously, the furanose ring conformation is highly flexible and is easily influenced even by weak intermolecular interactions.

A short intramolecular contact is present between sulfonyl O atoms O5 and O15 and neighboring hydrogen atoms of the adjacent respective phenyl rings (see Table 1). This is quite common for aryl sulfonyls and the majority of these compounds exhibit these intramolecular interactions (mean H···O distance is 2.533 Å for more than 2500 analogous structures listed in the Cambridge Structural Database (Allen, 2002)). It may additionaly stabilize the conformation of the molecule. Only weak intermolecular C—H···O contacts (Table 1) exist between neighboring molecules.

Related literature top

For the syntheses of this and similar compounds, see: Cox et al. (1997); Dahlman et al. (1986); Doboszewski & Herdewijn (1996, 2008). For conformations of five-membered rings, see: Cremer & Pople (1975); Boeyens & Dobson (1987). For weak C—H···O contacts, see: Desiraju & Steiner (1999). For analysis of absolute structure, see: Flack (1983); Hooft et al. (2008).Tipson (1944); Fieser & Fieser (1967) describe tosylation reactions. For standard-bond length data, see: Allen (2002).

Experimental top

Title compound was obtained as a product of a multi-step synthetic procedure (Doboszewski & Herdewijn, 2008; see Fig. 1). The tosylation of the previously synthesized 3-deoxy-1,2-di-O-isopropylidene-5-O-t-butyldiphenylsilyl-D-threo-pentofuranose by tosyl chloride in dry pyridine following standard reaction conditions (Tipson, 1944; Fieser & Fieser, 1967) produced the title compound in quantitative (near 100%) yield. Crystals suitable for X-ray diffraction experiment were crystallized from a hexane - diethyl ether mixture.

Rf 0.36 in hexane- EtOAc 2:1; mp. 346–348 K (from Et2O-hexane); αD +42.8° (c 1.6 g/100mL, CHCl3); exact mass (electrospray): calc. for C15H20O6S + Na+= 351.0873, found 351.0872; 1H NMR (300 MHz, CDCl3): 7.80(d, J=8.3 Hz,2H), 7.34(d, J=8.3 Hz, 2H), 5.76(d, J=3.7 Hz, 1H), 4.69(t, J=4.6 Hz, 1H), 4.36(dddd, J=2.0 Hz, 6.5 Hz, 6.5 Hz, 8.4 Hz, 1H), 4.19(dd, J= 6.9 Hz, 9.7 Hz, 1H), 4.11(dd,J=6.6 Hz, 9.7 Hz, 1H), 2,44(s, 3H), 2.17(ddd, J=5.7 Hz, 8.5 Hz, 14.4 Hz, 1H), 2.04(dd, J=1.6 Hz, 14.5 Hz, 1H), 1.33 and 1.25(two s, 3H each); 13C NMR (75 MHz, CDCl3): 145.01, 132.96, 129.99, 128.16, 112.32, 106.94, 80.33, 77.91, 71.34, 33.68, 26.74, 25.70, 21.73. FTIR (diamond ATR): 2985, 2944, 1598, 1381, 1188, 991, 953, 705, 574 cm-1.

Refinement top

Final refinement was performed using TWIN/BASF type resulting in BASF = 0.00458. Analysis of the absolute structure using likelihood methods (Hooft et al., 2008) was performed using PLATON (Spek, 2009); 2059 Bijvoet pairs were employed. The results confirmed that the absolute structure had been correctly assigned: the probability that the structure is inverted and probability of racemic twinning being statistically zero. All H atoms were positioned geometrically with C—H =0.95–1.00 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). Rotating group refinement (AFIX 137) was employed for all methyl groups.

At data processing, a number of unobserved high angle reflections (with k from 8 to 11) of statistically zero intensity were excluded: 1 8 3, 2 8 3, 2 9 1, 3 9 0, 3 9 1, 3 9 2, 0 10 0, 0 10 1, 0 10 2, -5 10 2, -4 10 1, -4 10 2, -3 10 1, -2 10 1, -1 10 2, 1 10 0, 1 10 1, 1 10 2, 2 10 0, 3 10 0, 3 10 3, 4 10 0, 4 10 1, 4 10 2, 4 10 3, 5 10 2, -2 11 1, -3 11 1, 0 11 3.

Structure description top

D- and L-arabinose are very convenient chiral-pool substrates for stereoselective synthesis since both of them are commercially available, reasonably priced, and easy to functionalize in two steps to form 5-O-t-butyldiphenylsilyl-1,2-O-isopropylidene furanose or its L-enantiomer (Dahlman et al., 1986; Doboszewski & Herdewijn, 2008). Both enantiomers have been previously used in the synthesis of degradation products of the antibiotic Batumin/Kalimantacin A (Doboszewski & Herdewijn, 2008), to obtain branched-chain pyranosyl nucleosides (Doboszewski & Herdewijn, 1996) and C-hydroxymethylpentose present in lipopolysaccharides of Coxiella brunetii (Dahlman et al., 1986), among others. Our current interest in arabinose stems from a possibility to convert it into the general substrates 3-deoxy-1,2-di-O-isopropylidene-5-O-tosyl-D-threo-pentofuranose and 3-deoxy-1,2-di-O-isopropylidene-5-O-butyldiphenylsilyl-D-threo-pentofuranose to be used in further transformations. A synthesis scheme for both these compounds is shown in Figure 1. We wanted to firmly establish their structures, due to a possibility of enolization of the ulose and concomitant inversion of configuration at the C4 position during formation of the tosylhydrazone.

A correct absolute structure of the title compound was important for the further synthetic work. Because of that, we have selected Cu Kα radiation to ensure unambigous determination of the absolute structure.

In the crystal structure of the title compound (Fig.2), there are two crystallographically independent molecules, A (C1–C15, O1–O6, S1) and B (C21–C35, O11–O16, S2), in which all bond lengths and bond angles have standard dimensions. The six-membered phenyl rings in both molecules are flat within 0.01 Å.

It is visually obvious (Fig. 3 and Fig. 4) that the conformations of the five-membered rings differs in the two independent molecules A and B. A quantitative analysis of the ring conformations was performed using the method of Cremer and Pople (Cremer & Pople, 1975; Boeyens & Dobson, 1987) for the calculation of parameters of puckering. In molecule A, the polar parameters for the furanose ring and adjacent five membered ring are Q = 0.289 (3) and 0.312 (2) Å, Φ = 122.9 (5)° and 119.7 (5)°, respectively. These suggest a twisted 4T3 conformation for the furanose ring (ideal Φ = 126°), slightly distorted towards envelope (Φ = 108°). The substituent ring also has a twisted conformation (Fig. 3).

In molecule B (Fig. 4), the polar parameters for the furanose ring and the corresponding five membered ring are Q = 0.292 (3) and 0.361 (2) Å, Φ = 142.1 (5)° and 143.9 (4)°. These suggest an envelope conformation (ideal Φ = 144°) for both rings, with atoms C(24) and C(26) in the corners of the respective envelopes (4E for the furanose ring).

In the structure of 1,2-di-O-isopropylidene-5-O-tosyl-D-xylofuranose which differs from the title compound in one hydroxy group, the polar parameters are Q = 0.352 (3) Å, Φ = 288.8 (5)°; see refcodes RUWDES and RUWDES01 (Cox et al., 1997). This makes the conformation an almost exact 3E envelope, but with a different carbon atom in the corner than in the case described here. Obviously, the furanose ring conformation is highly flexible and is easily influenced even by weak intermolecular interactions.

A short intramolecular contact is present between sulfonyl O atoms O5 and O15 and neighboring hydrogen atoms of the adjacent respective phenyl rings (see Table 1). This is quite common for aryl sulfonyls and the majority of these compounds exhibit these intramolecular interactions (mean H···O distance is 2.533 Å for more than 2500 analogous structures listed in the Cambridge Structural Database (Allen, 2002)). It may additionaly stabilize the conformation of the molecule. Only weak intermolecular C—H···O contacts (Table 1) exist between neighboring molecules.

For the syntheses of this and similar compounds, see: Cox et al. (1997); Dahlman et al. (1986); Doboszewski & Herdewijn (1996, 2008). For conformations of five-membered rings, see: Cremer & Pople (1975); Boeyens & Dobson (1987). For weak C—H···O contacts, see: Desiraju & Steiner (1999). For analysis of absolute structure, see: Flack (1983); Hooft et al. (2008).Tipson (1944); Fieser & Fieser (1967) describe tosylation reactions. For standard-bond length data, see: Allen (2002).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: CrystalClear-SM Expert (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Scheme of the synthetic route leading to title compound.
[Figure 2] Fig. 2. ORTEP view of two independent 3-deoxy-1,2-di-O-isopropylidene-5-O-tosyl-D-threo-pentofuranose molecules (A and B) with displacement ellipsoids drawn at the 50% probability level.
[Figure 3] Fig. 3. Twisted conformations of the five-membered rings in molecule A. Planes are drawn through atoms O1, C1, and C2 (yellow) and O2, C1, and C2 (green).
[Figure 4] Fig. 4. Envelope conformations of the five-membered rings in molecule B. Mean planes through atoms O11, C1, C2, C4 (yellow) and C1, C2, O2, and O3 (green).
[Figure 5] Fig. 5. View of the title compound showing displacement ellipsoids at the 50% probability level.
3-Deoxy-1,2-di-O-isopropylidene-5-O-tosyl-D-threo- pentofuranose top
Crystal data top
C15H20O6SF(000) = 696
Mr = 328.37Dx = 1.375 Mg m3
Monoclinic, P21Melting point: 347(1) K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54187 Å
a = 10.9397 (1) ÅCell parameters from 14102 reflections
b = 9.4251 (1) Åθ = 2.9–68.3°
c = 15.4833 (10) ŵ = 2.06 mm1
β = 96.414 (7)°T = 123 K
V = 1586.46 (10) Å3Block, colourless
Z = 40.2 × 0.2 × 0.18 mm
Data collection top
Rigaku R-AXIS RAPID II imaging plate
diffractometer
4917 independent reflections
Radiation source: fine-focus sealed tube4440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 10.0 pixels mm-1θmax = 65.5°, θmin = 2.9°
ω scansh = 1212
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 811
Tmin = 0.55, Tmax = 0.65l = 1818
14179 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0495P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4917 reflectionsΔρmax = 0.30 e Å3
404 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 2059 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (12)
Crystal data top
C15H20O6SV = 1586.46 (10) Å3
Mr = 328.37Z = 4
Monoclinic, P21Cu Kα radiation
a = 10.9397 (1) ŵ = 2.06 mm1
b = 9.4251 (1) ÅT = 123 K
c = 15.4833 (10) Å0.2 × 0.2 × 0.18 mm
β = 96.414 (7)°
Data collection top
Rigaku R-AXIS RAPID II imaging plate
diffractometer
4917 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4440 reflections with I > 2σ(I)
Tmin = 0.55, Tmax = 0.65Rint = 0.037
14179 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.30 e Å3
S = 1.04Δρmin = 0.26 e Å3
4917 reflectionsAbsolute structure: Flack (1983), 2059 Friedel pairs
404 parametersAbsolute structure parameter: 0.005 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32715 (6)0.65201 (7)0.88376 (4)0.03365 (17)
O10.25715 (16)0.2054 (2)0.92121 (10)0.0390 (5)
O20.16307 (15)0.1633 (3)0.78122 (10)0.0473 (6)
O30.35387 (15)0.1347 (2)0.74148 (10)0.0349 (4)
O40.32552 (16)0.49623 (19)0.92025 (10)0.0328 (4)
O50.45192 (17)0.6937 (2)0.87784 (11)0.0427 (5)
O60.25396 (18)0.7302 (2)0.93686 (11)0.0473 (5)
C10.2332 (2)0.1040 (3)0.85455 (16)0.0366 (7)
H10.19140.01860.87600.044*
C20.3566 (2)0.0634 (3)0.82292 (16)0.0367 (7)
H20.36730.04150.81780.044*
C30.4515 (2)0.1298 (3)0.88914 (16)0.0396 (7)
H3A0.52270.16510.86120.048*
H3B0.48090.06070.93500.048*
C40.3831 (2)0.2518 (3)0.92672 (15)0.0349 (7)
H40.41550.26530.98920.042*
C50.3957 (2)0.3885 (3)0.87844 (16)0.0344 (6)
H5A0.48330.41640.88140.041*
H5B0.36280.37750.81660.041*
C60.2273 (2)0.1439 (3)0.70647 (15)0.0316 (6)
C70.2104 (3)0.2734 (3)0.64975 (17)0.0452 (7)
H7A0.25840.26300.60040.068*
H7B0.23850.35740.68350.068*
H7C0.12310.28410.62830.068*
C80.1844 (3)0.0099 (3)0.65937 (18)0.0473 (8)
H8A0.09720.01900.63730.071*
H8B0.19520.07070.69950.071*
H8C0.23270.00590.61060.071*
C90.2509 (2)0.6412 (3)0.77785 (14)0.0286 (6)
C100.1249 (2)0.6169 (3)0.76511 (16)0.0339 (7)
H100.07970.60310.81330.041*
C110.0667 (2)0.6132 (3)0.68185 (16)0.0346 (7)
H110.01940.59680.67310.042*
C120.1305 (2)0.6327 (3)0.61033 (15)0.0314 (6)
C130.2563 (2)0.6543 (3)0.62421 (14)0.0304 (6)
H130.30160.66660.57590.037*
C140.3168 (2)0.6582 (3)0.70733 (14)0.0293 (6)
H140.40330.67250.71610.035*
C150.0639 (3)0.6296 (4)0.51920 (16)0.0457 (8)
H15A0.10560.56340.48340.069*
H15B0.06430.72480.49380.069*
H15C0.02120.59850.52140.069*
S20.37237 (6)0.33823 (7)0.40722 (4)0.03353 (17)
O110.20451 (16)0.0793 (2)0.39873 (10)0.0370 (5)
O120.15723 (16)0.0483 (2)0.25011 (10)0.0363 (5)
O130.32440 (15)0.1684 (2)0.22108 (10)0.0369 (5)
O140.33657 (14)0.1829 (2)0.43291 (10)0.0350 (4)
O150.50001 (15)0.3417 (2)0.39625 (11)0.0383 (5)
O160.32592 (17)0.4259 (2)0.47060 (11)0.0433 (5)
C210.1763 (2)0.1485 (3)0.31885 (15)0.0373 (7)
H210.10380.21270.31990.045*
C220.2916 (2)0.2316 (3)0.29894 (15)0.0356 (7)
H220.27470.33540.29160.043*
C230.3858 (2)0.2014 (3)0.37619 (16)0.0397 (7)
H23A0.46770.18260.35710.048*
H23B0.39250.28240.41720.048*
C240.3365 (2)0.0699 (3)0.41833 (16)0.0328 (6)
H240.35810.07590.48270.039*
C250.3872 (2)0.0657 (3)0.38602 (15)0.0333 (6)
H25A0.47820.06570.39680.040*
H25B0.36330.07590.32280.040*
C260.2142 (2)0.1047 (3)0.17900 (15)0.0352 (7)
C270.2475 (3)0.0131 (4)0.12171 (16)0.0458 (8)
H27A0.28350.02640.07170.069*
H27B0.30750.07560.15450.069*
H27C0.17360.06750.10130.069*
C280.1314 (3)0.2140 (4)0.13137 (17)0.0484 (8)
H28A0.05410.16910.10760.073*
H28B0.11410.28970.17170.073*
H28C0.17230.25440.08380.073*
C290.2868 (2)0.3655 (3)0.30546 (15)0.0299 (6)
C300.1609 (2)0.3732 (3)0.30083 (16)0.0380 (7)
H300.12080.36550.35200.046*
C310.0930 (3)0.3923 (3)0.22034 (17)0.0423 (8)
H310.00580.39800.21680.051*
C320.1503 (3)0.4034 (3)0.14480 (17)0.0363 (7)
C330.2781 (3)0.3983 (3)0.15257 (17)0.0397 (7)
H330.31900.40750.10190.048*
C340.3470 (2)0.3801 (3)0.23193 (16)0.0351 (7)
H340.43430.37760.23610.042*
C350.0762 (3)0.4189 (4)0.05773 (18)0.0514 (8)
H35A0.12290.38080.01250.077*
H35B0.05840.51950.04620.077*
H35C0.00120.36650.05760.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0464 (4)0.0303 (4)0.0239 (3)0.0009 (3)0.0023 (3)0.0021 (3)
O10.0468 (11)0.0378 (13)0.0338 (9)0.0049 (9)0.0105 (8)0.0022 (8)
O20.0328 (10)0.0770 (17)0.0323 (9)0.0110 (11)0.0043 (8)0.0023 (10)
O30.0337 (10)0.0388 (13)0.0325 (8)0.0022 (9)0.0055 (7)0.0022 (9)
O40.0467 (11)0.0256 (11)0.0260 (8)0.0015 (9)0.0046 (7)0.0009 (8)
O50.0482 (11)0.0449 (14)0.0326 (9)0.0158 (10)0.0064 (8)0.0009 (9)
O60.0734 (14)0.0392 (14)0.0306 (9)0.0083 (11)0.0120 (9)0.0024 (9)
C10.0457 (16)0.0346 (19)0.0308 (13)0.0058 (13)0.0107 (11)0.0011 (12)
C20.0454 (16)0.0284 (17)0.0363 (14)0.0088 (14)0.0040 (12)0.0046 (12)
C30.0431 (16)0.035 (2)0.0391 (14)0.0106 (13)0.0041 (12)0.0048 (14)
C40.0370 (16)0.0387 (19)0.0274 (12)0.0031 (13)0.0039 (10)0.0014 (12)
C50.0353 (15)0.0362 (19)0.0323 (13)0.0046 (12)0.0059 (11)0.0011 (12)
C60.0322 (14)0.0336 (18)0.0289 (12)0.0010 (13)0.0024 (10)0.0034 (12)
C70.0558 (19)0.0331 (18)0.0430 (15)0.0011 (15)0.0107 (13)0.0017 (14)
C80.058 (2)0.038 (2)0.0438 (15)0.0073 (15)0.0057 (14)0.0009 (14)
C90.0312 (13)0.0279 (16)0.0266 (11)0.0024 (12)0.0031 (10)0.0003 (12)
C100.0319 (14)0.038 (2)0.0336 (13)0.0029 (12)0.0112 (11)0.0061 (12)
C110.0233 (13)0.0341 (19)0.0465 (15)0.0006 (12)0.0040 (11)0.0063 (13)
C120.0344 (14)0.0265 (17)0.0319 (12)0.0018 (12)0.0028 (11)0.0013 (12)
C130.0310 (13)0.0318 (17)0.0291 (12)0.0029 (12)0.0061 (10)0.0002 (12)
C140.0250 (13)0.0357 (17)0.0273 (11)0.0042 (12)0.0035 (10)0.0028 (12)
C150.0442 (17)0.053 (2)0.0378 (14)0.0004 (15)0.0052 (12)0.0010 (15)
S20.0354 (4)0.0359 (4)0.0286 (3)0.0021 (3)0.0008 (3)0.0048 (3)
O110.0358 (10)0.0478 (14)0.0283 (9)0.0019 (9)0.0081 (7)0.0012 (9)
O120.0372 (10)0.0429 (13)0.0289 (9)0.0126 (9)0.0035 (7)0.0006 (8)
O130.0364 (10)0.0445 (13)0.0307 (9)0.0112 (9)0.0084 (7)0.0056 (9)
O140.0402 (10)0.0365 (13)0.0288 (9)0.0065 (9)0.0056 (7)0.0015 (8)
O150.0312 (10)0.0436 (13)0.0390 (10)0.0023 (9)0.0008 (8)0.0065 (9)
O160.0512 (12)0.0435 (14)0.0352 (10)0.0072 (10)0.0049 (8)0.0097 (9)
C210.0406 (16)0.0427 (19)0.0290 (13)0.0028 (14)0.0051 (11)0.0005 (13)
C220.0446 (17)0.0300 (17)0.0331 (13)0.0048 (13)0.0084 (11)0.0057 (12)
C230.0458 (17)0.037 (2)0.0356 (14)0.0102 (14)0.0035 (12)0.0081 (13)
C240.0302 (14)0.0377 (19)0.0297 (13)0.0072 (12)0.0002 (10)0.0043 (12)
C250.0329 (14)0.0381 (18)0.0290 (13)0.0079 (13)0.0037 (10)0.0046 (12)
C260.0366 (15)0.0432 (19)0.0261 (13)0.0090 (13)0.0047 (11)0.0014 (12)
C270.0513 (18)0.051 (2)0.0343 (14)0.0006 (15)0.0020 (12)0.0087 (14)
C280.0561 (19)0.055 (2)0.0329 (14)0.0021 (16)0.0018 (13)0.0016 (15)
C290.0343 (14)0.0232 (17)0.0316 (12)0.0012 (12)0.0008 (11)0.0029 (11)
C300.0312 (15)0.048 (2)0.0356 (14)0.0004 (13)0.0085 (11)0.0047 (13)
C310.0286 (15)0.054 (2)0.0440 (16)0.0002 (14)0.0036 (12)0.0079 (14)
C320.0405 (15)0.0320 (18)0.0355 (14)0.0001 (13)0.0002 (12)0.0003 (12)
C330.0420 (17)0.046 (2)0.0324 (14)0.0016 (14)0.0098 (12)0.0005 (13)
C340.0275 (14)0.042 (2)0.0368 (14)0.0018 (12)0.0059 (11)0.0005 (12)
C350.055 (2)0.055 (2)0.0416 (16)0.0039 (17)0.0059 (13)0.0018 (15)
Geometric parameters (Å, º) top
S1—O61.4167 (18)S2—O161.4201 (18)
S1—O51.4332 (19)S2—O151.4257 (17)
S1—O41.5740 (19)S2—O141.578 (2)
S1—C91.758 (2)S2—C291.760 (2)
O1—C11.410 (3)O11—C211.402 (3)
O1—C41.439 (3)O11—C241.445 (3)
O2—C11.413 (3)O12—C211.421 (3)
O2—C61.431 (3)O12—C261.427 (3)
O3—C21.426 (3)O13—C221.426 (3)
O3—C61.432 (3)O13—C261.436 (3)
O4—C51.467 (3)O14—C251.464 (3)
C1—C21.535 (3)C21—C221.544 (4)
C1—H11.0000C21—H211.0000
C2—C31.510 (4)C22—C231.516 (4)
C2—H21.0000C22—H221.0000
C3—C41.522 (4)C23—C241.526 (4)
C3—H3A0.9900C23—H23A0.9900
C3—H3B0.9900C23—H23B0.9900
C4—C51.503 (4)C24—C251.501 (4)
C4—H41.0000C24—H241.0000
C5—H5A0.9900C25—H25A0.9900
C5—H5B0.9900C25—H25B0.9900
C6—C71.502 (4)C26—C271.492 (4)
C6—C81.508 (4)C26—C281.509 (4)
C7—H7A0.9800C27—H27A0.9800
C7—H7B0.9800C27—H27B0.9800
C7—H7C0.9800C27—H27C0.9800
C8—H8A0.9800C28—H28A0.9800
C8—H8B0.9800C28—H28B0.9800
C8—H8C0.9800C28—H28C0.9800
C9—C141.383 (3)C29—C301.372 (3)
C9—C101.390 (3)C29—C341.385 (3)
C10—C111.373 (3)C30—C311.390 (4)
C10—H100.9500C30—H300.9500
C11—C121.385 (3)C31—C321.392 (3)
C11—H110.9500C31—H310.9500
C12—C131.384 (3)C32—C331.391 (4)
C12—C151.514 (3)C32—C351.501 (4)
C13—C141.380 (3)C33—C341.378 (4)
C13—H130.9500C33—H330.9500
C14—H140.9500C34—H340.9500
C15—H15A0.9800C35—H35A0.9800
C15—H15B0.9800C35—H35B0.9800
C15—H15C0.9800C35—H35C0.9800
O6—S1—O5119.90 (13)O16—S2—O15119.98 (12)
O6—S1—O4104.30 (11)O16—S2—O14104.35 (11)
O5—S1—O4109.14 (11)O15—S2—O14108.99 (11)
O6—S1—C9109.36 (12)O16—S2—C29109.76 (12)
O5—S1—C9108.18 (11)O15—S2—C29108.69 (11)
O4—S1—C9104.94 (11)O14—S2—C29103.82 (11)
C1—O1—C4110.36 (19)C21—O11—C24109.26 (19)
C1—O2—C6109.11 (18)C21—O12—C26106.85 (19)
C2—O3—C6106.69 (18)C22—O13—C26106.29 (18)
C5—O4—S1117.38 (15)C25—O14—S2117.15 (15)
O1—C1—O2111.1 (2)O11—C21—O12110.5 (2)
O1—C1—C2107.7 (2)O11—C21—C22108.0 (2)
O2—C1—C2105.09 (18)O12—C21—C22104.04 (18)
O1—C1—H1110.9O11—C21—H21111.3
O2—C1—H1110.9O12—C21—H21111.3
C2—C1—H1110.9C22—C21—H21111.3
O3—C2—C3110.5 (2)O13—C22—C23112.1 (2)
O3—C2—C1103.4 (2)O13—C22—C21104.2 (2)
C3—C2—C1104.0 (2)C23—C22—C21104.2 (2)
O3—C2—H2112.7O13—C22—H22112.0
C3—C2—H2112.7C23—C22—H22112.0
C1—C2—H2112.7C21—C22—H22112.0
C2—C3—C4104.0 (2)C22—C23—C24104.4 (2)
C2—C3—H3A110.9C22—C23—H23A110.9
C4—C3—H3A110.9C24—C23—H23A110.9
C2—C3—H3B110.9C22—C23—H23B110.9
C4—C3—H3B110.9C24—C23—H23B110.9
H3A—C3—H3B109.0H23A—C23—H23B108.9
O1—C4—C5111.8 (2)O11—C24—C25112.3 (2)
O1—C4—C3104.8 (2)O11—C24—C23104.6 (2)
C5—C4—C3112.4 (2)C25—C24—C23112.8 (2)
O1—C4—H4109.2O11—C24—H24109.0
C5—C4—H4109.2C25—C24—H24109.0
C3—C4—H4109.2C23—C24—H24109.0
O4—C5—C4106.98 (19)O14—C25—C24107.61 (19)
O4—C5—H5A110.3O14—C25—H25A110.2
C4—C5—H5A110.3C24—C25—H25A110.2
O4—C5—H5B110.3O14—C25—H25B110.2
C4—C5—H5B110.3C24—C25—H25B110.2
H5A—C5—H5B108.6H25A—C25—H25B108.5
O3—C6—O2104.07 (17)O12—C26—O13102.86 (18)
O3—C6—C7108.8 (2)O12—C26—C27109.8 (2)
O2—C6—C7109.2 (2)O13—C26—C27109.4 (2)
O3—C6—C8111.6 (2)O12—C26—C28110.0 (2)
O2—C6—C8110.1 (2)O13—C26—C28111.3 (3)
C7—C6—C8112.7 (2)C27—C26—C28113.0 (2)
C6—C7—H7A109.5C26—C27—H27A109.5
C6—C7—H7B109.5C26—C27—H27B109.5
H7A—C7—H7B109.5H27A—C27—H27B109.5
C6—C7—H7C109.5C26—C27—H27C109.5
H7A—C7—H7C109.5H27A—C27—H27C109.5
H7B—C7—H7C109.5H27B—C27—H27C109.5
C6—C8—H8A109.5C26—C28—H28A109.5
C6—C8—H8B109.5C26—C28—H28B109.5
H8A—C8—H8B109.5H28A—C28—H28B109.5
C6—C8—H8C109.5C26—C28—H28C109.5
H8A—C8—H8C109.5H28A—C28—H28C109.5
H8B—C8—H8C109.5H28B—C28—H28C109.5
C14—C9—C10120.2 (2)C30—C29—C34121.2 (2)
C14—C9—S1119.69 (18)C30—C29—S2119.01 (19)
C10—C9—S1120.11 (18)C34—C29—S2119.74 (19)
C11—C10—C9119.1 (2)C29—C30—C31119.1 (2)
C11—C10—H10120.5C29—C30—H30120.4
C9—C10—H10120.5C31—C30—H30120.4
C10—C11—C12121.7 (2)C30—C31—C32121.1 (2)
C10—C11—H11119.2C30—C31—H31119.4
C12—C11—H11119.2C32—C31—H31119.4
C13—C12—C11118.4 (2)C33—C32—C31117.9 (2)
C13—C12—C15120.9 (2)C33—C32—C35121.2 (2)
C11—C12—C15120.7 (2)C31—C32—C35120.9 (3)
C14—C13—C12120.9 (2)C34—C33—C32121.7 (2)
C14—C13—H13119.6C34—C33—H33119.1
C12—C13—H13119.6C32—C33—H33119.1
C13—C14—C9119.7 (2)C33—C34—C29118.8 (2)
C13—C14—H14120.2C33—C34—H34120.6
C9—C14—H14120.2C29—C34—H34120.6
C12—C15—H15A109.5C32—C35—H35A109.5
C12—C15—H15B109.5C32—C35—H35B109.5
H15A—C15—H15B109.5H35A—C35—H35B109.5
C12—C15—H15C109.5C32—C35—H35C109.5
H15A—C15—H15C109.5H35A—C35—H35C109.5
H15B—C15—H15C109.5H35B—C35—H35C109.5
O6—S1—O4—C5179.34 (17)O16—S2—O14—C25171.83 (16)
O5—S1—O4—C550.06 (19)O15—S2—O14—C2542.51 (17)
C9—S1—O4—C565.69 (18)C29—S2—O14—C2573.20 (17)
C4—O1—C1—O2105.4 (2)C24—O11—C21—O1294.0 (2)
C4—O1—C1—C29.2 (3)C24—O11—C21—C2219.2 (3)
C6—O2—C1—O1124.0 (2)C26—O12—C21—O11139.4 (2)
C6—O2—C1—C27.8 (3)C26—O12—C21—C2223.7 (3)
C6—O3—C2—C3140.6 (2)C26—O13—C22—C23135.6 (2)
C6—O3—C2—C129.8 (3)C26—O13—C22—C2123.6 (3)
O1—C1—C2—O3105.1 (2)O11—C21—C22—O13117.4 (2)
O2—C1—C2—O313.4 (3)O12—C21—C22—O130.1 (3)
O1—C1—C2—C310.4 (3)O11—C21—C22—C230.2 (3)
O2—C1—C2—C3128.9 (2)O12—C21—C22—C23117.7 (2)
O3—C2—C3—C485.9 (2)O13—C22—C23—C2494.0 (2)
C1—C2—C3—C424.6 (3)C21—C22—C23—C2418.0 (3)
C1—O1—C4—C597.1 (2)C21—O11—C24—C2592.0 (3)
C1—O1—C4—C324.9 (2)C21—O11—C24—C2330.7 (3)
C2—C3—C4—O130.4 (3)C22—C23—C24—O1129.6 (3)
C2—C3—C4—C591.2 (3)C22—C23—C24—C2592.8 (3)
S1—O4—C5—C4178.03 (15)S2—O14—C25—C24177.50 (16)
O1—C4—C5—O462.0 (3)O11—C24—C25—O1463.8 (2)
C3—C4—C5—O4179.55 (19)C23—C24—C25—O14178.25 (19)
C2—O3—C6—O235.0 (3)C21—O12—C26—O1338.7 (3)
C2—O3—C6—C7151.4 (2)C21—O12—C26—C27155.1 (2)
C2—O3—C6—C883.7 (3)C21—O12—C26—C2879.9 (3)
C1—O2—C6—O326.1 (3)C22—O13—C26—O1238.6 (3)
C1—O2—C6—C7142.1 (2)C22—O13—C26—C27155.2 (2)
C1—O2—C6—C893.7 (3)C22—O13—C26—C2879.2 (2)
O6—S1—C9—C14138.3 (2)O16—S2—C29—C3043.9 (3)
O5—S1—C9—C146.1 (3)O15—S2—C29—C30176.9 (2)
O4—S1—C9—C14110.3 (2)O14—S2—C29—C3067.2 (2)
O6—S1—C9—C1041.2 (3)O16—S2—C29—C34135.5 (2)
O5—S1—C9—C10173.4 (2)O15—S2—C29—C342.5 (3)
O4—S1—C9—C1070.2 (2)O14—S2—C29—C34113.4 (2)
C14—C9—C10—C111.4 (4)C34—C29—C30—C311.7 (4)
S1—C9—C10—C11178.1 (2)S2—C29—C30—C31178.9 (2)
C9—C10—C11—C120.1 (4)C29—C30—C31—C320.2 (5)
C10—C11—C12—C131.0 (4)C30—C31—C32—C331.6 (5)
C10—C11—C12—C15179.3 (3)C30—C31—C32—C35177.8 (3)
C11—C12—C13—C140.8 (4)C31—C32—C33—C341.2 (5)
C15—C12—C13—C14179.5 (3)C35—C32—C33—C34178.1 (3)
C12—C13—C14—C90.4 (4)C32—C33—C34—C290.5 (4)
C10—C9—C14—C131.6 (4)C30—C29—C34—C332.0 (4)
S1—C9—C14—C13177.9 (2)S2—C29—C34—C33178.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O5i1.002.483.390 (3)152
C5—H5B···O30.992.563.196 (3)122
C11—H11···O12ii0.952.443.163 (3)133
C14—H14···O50.952.512.897 (3)105
C24—H24···O15iii1.002.423.315 (3)148
C28—H28C···O6iv0.982.543.471 (3)159
C34—H34···O150.952.532.908 (3)104
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x, y+1/2, z+1; (iii) x+1, y1/2, z+1; (iv) x, y1, z1.

Experimental details

Crystal data
Chemical formulaC15H20O6S
Mr328.37
Crystal system, space groupMonoclinic, P21
Temperature (K)123
a, b, c (Å)10.9397 (1), 9.4251 (1), 15.4833 (10)
β (°) 96.414 (7)
V3)1586.46 (10)
Z4
Radiation typeCu Kα
µ (mm1)2.06
Crystal size (mm)0.2 × 0.2 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID II imaging plate
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.55, 0.65
No. of measured, independent and
observed [I > 2σ(I)] reflections
14179, 4917, 4440
Rint0.037
(sin θ/λ)max1)0.590
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.04
No. of reflections4917
No. of parameters404
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.26
Absolute structureFlack (1983), 2059 Friedel pairs
Absolute structure parameter0.005 (12)

Computer programs: CrystalClear-SM Expert (Rigaku, 2009), HKL-2000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O5i1.002.483.390 (3)152
C5—H5B···O30.992.563.196 (3)122
C11—H11···O12ii0.952.443.163 (3)133
C24—H24···O15iii1.002.423.315 (3)148
C28—H28C···O6iv0.982.543.471 (3)159
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x, y+1/2, z+1; (iii) x+1, y1/2, z+1; (iv) x, y1, z1.
 

Acknowledgements

This study was supported by the NSF (grant CHE-0922366 for X-ray diffractometer) and by SUNY (grant No 1073053).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoeyens, J. C. A. & Dobson, S. M. (1987). Stereochemistry of Metallic Macrocycles, in Stereochemical and Stereophysical Behaviour of Macrocycles, edited by I. Bernal, pp. 2–102. Amsterdam: Elsevier.  Google Scholar
First citationCox, P. J., Howie, R. A., Rufino, H. & Wardell, J. L. (1997). Acta Cryst. C53, 1939–1941.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDahlman, O., Garegg, P. J., Mayer, H. & Schramek, S. (1986). Acta Chem. Scand. Ser. B, 40, 15–20.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationDoboszewski, B. & Herdewijn, P. (1996). Tetrahedron, 52, 1651–1668.  CrossRef CAS Web of Science Google Scholar
First citationDoboszewski, B. & Herdewijn, P. (2008). Tetrahedron, 64, 5551–5562.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFieser, L. F. & Fieser, M. (1967). Reagents for Organic Synthesis, Vol. 1, pp. 1179–1181. New York: Wiley.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTipson, R. S. (1944). J. Org. Chem. 9, 235-241.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1109-o1110
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds