organic compounds
3-Deoxy-1,2-di-O-isopropylidene-5-O-tosyl-D-threo-pentofuranose
aDepartamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil, bDepartamento de Farmácia, Universidade Federal do Rio Grande do Norte, 59010-180 Natal, RN, Brazil, cChemistry Department, State University of New York, College at Buffalo, 1300 Elmwood Ave, Buffalo, NY 14222-1095, USA, and dDepartment of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812-2496 USA
*Correspondence e-mail: nazareay@buffalostate.edu
In the 15H20O6S, the two independent molecules crystalllize in a chiral setting with two different conformations, twisted 4T3 and envelope 4E, for the furanose rings. Weak C—H⋯O contacts strengthen the crystal structure.
of the title compound, CRelated literature
For the syntheses of this and similar compounds, see: Cox et al. (1997); Dahlman et al. (1986); Doboszewski & Herdewijn (1996, 2008). For conformations of five-membered rings, see: Cremer & Pople (1975); Boeyens & Dobson (1987). For weak C—H⋯O contacts, see: Desiraju & Steiner (1999). For analysis of see: Flack (1983); Hooft et al. (2008); Tipson (1944); Fieser & Fieser (1967) describe tosylation reactions. For standard bond length data, see: Allen (2002).
Experimental
Crystal data
|
Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell HKL-2000 (Otwinowski & Minor, 1997); data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812010884/zl2463sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812010884/zl2463Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812010884/zl2463Isup3.cdx
Title compound was obtained as a product of a multi-step synthetic procedure (Doboszewski & Herdewijn, 2008; see Fig. 1). The tosylation of the previously synthesized 3-deoxy-1,2-di-O-isopropylidene-5-O-t-butyldiphenylsilyl-D-threo-pentofuranose by tosyl chloride in dry pyridine following standard reaction conditions (Tipson, 1944; Fieser & Fieser, 1967) produced the title compound in quantitative (near 100%) yield. Crystals suitable for X-ray diffraction experiment were crystallized from a hexane - diethyl ether mixture.
Rf 0.36 in hexane- EtOAc 2:1; mp. 346–348 K (from Et2O-hexane); αD +42.8° (c 1.6 g/100mL, CHCl3); exact mass (electrospray): calc. for C15H20O6S + Na+= 351.0873, found 351.0872; 1H NMR (300 MHz, CDCl3): 7.80(d, J=8.3 Hz,2H), 7.34(d, J=8.3 Hz, 2H), 5.76(d, J=3.7 Hz, 1H), 4.69(t, J=4.6 Hz, 1H), 4.36(dddd, J=2.0 Hz, 6.5 Hz, 6.5 Hz, 8.4 Hz, 1H), 4.19(dd, J= 6.9 Hz, 9.7 Hz, 1H), 4.11(dd,J=6.6 Hz, 9.7 Hz, 1H), 2,44(s, 3H), 2.17(ddd, J=5.7 Hz, 8.5 Hz, 14.4 Hz, 1H), 2.04(dd, J=1.6 Hz, 14.5 Hz, 1H), 1.33 and 1.25(two s, 3H each); 13C NMR (75 MHz, CDCl3): 145.01, 132.96, 129.99, 128.16, 112.32, 106.94, 80.33, 77.91, 71.34, 33.68, 26.74, 25.70, 21.73. FTIR (diamond ATR): 2985, 2944, 1598, 1381, 1188, 991, 953, 705, 574 cm-1.
Final
was performed using TWIN/BASF type resulting in BASF = 0.00458. Analysis of the using likelihood methods (Hooft et al., 2008) was performed using PLATON (Spek, 2009); 2059 Bijvoet pairs were employed. The results confirmed that the had been correctly assigned: the probability that the structure is inverted and probability of racemic being statistically zero. All H atoms were positioned geometrically with C—H =0.95–1.00 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). Rotating group (AFIX 137) was employed for all methyl groups.At data processing, a number of unobserved high angle reflections (with k from 8 to 11) of statistically zero intensity were excluded: 1 8 3, 2 8 3, 2 9 1, 3 9 0, 3 9 1, 3 9 2, 0 10 0, 0 10 1, 0 10 2, -5 10 2, -4 10 1, -4 10 2, -3 10 1, -2 10 1, -1 10 2, 1 10 0, 1 10 1, 1 10 2, 2 10 0, 3 10 0, 3 10 3, 4 10 0, 4 10 1, 4 10 2, 4 10 3, 5 10 2, -2 11 1, -3 11 1, 0 11 3.
D- and L-arabinose are very convenient chiral-pool substrates for
since both of them are commercially available, reasonably priced, and easy to functionalize in two steps to form 5-O-t-butyldiphenylsilyl-1,2-O-isopropylidene furanose or its L-enantiomer (Dahlman et al., 1986; Doboszewski & Herdewijn, 2008). Both enantiomers have been previously used in the synthesis of degradation products of the antibiotic Batumin/Kalimantacin A (Doboszewski & Herdewijn, 2008), to obtain branched-chain pyranosyl (Doboszewski & Herdewijn, 1996) and C-hydroxymethylpentose present in of Coxiella brunetii (Dahlman et al., 1986), among others. Our current interest in arabinose stems from a possibility to convert it into the general substrates 3-deoxy-1,2-di-O-isopropylidene-5-O-tosyl-D-threo-pentofuranose and 3-deoxy-1,2-di-O-isopropylidene-5-O-butyldiphenylsilyl-D-threo-pentofuranose to be used in further transformations. A synthesis scheme for both these compounds is shown in Figure 1. We wanted to firmly establish their structures, due to a possibility of enolization of the ulose and concomitant inversion of configuration at the C4 position during formation of the tosylhydrazone.A correct α radiation to ensure unambigous determination of the absolute structure.
of the title compound was important for the further synthetic work. Because of that, we have selected Cu KIn the
of the title compound (Fig.2), there are two crystallographically independent molecules, A (C1–C15, O1–O6, S1) and B (C21–C35, O11–O16, S2), in which all bond lengths and bond angles have standard dimensions. The six-membered phenyl rings in both molecules are flat within 0.01 Å.It is visually obvious (Fig. 3 and Fig. 4) that the conformations of the five-membered rings differs in the two independent molecules A and B. A quantitative analysis of the ring conformations was performed using the method of Cremer and Pople (Cremer & Pople, 1975; Boeyens & Dobson, 1987) for the calculation of parameters of puckering. In molecule A, the polar parameters for the furanose ring and adjacent five membered ring are Q = 0.289 (3) and 0.312 (2) Å, Φ = 122.9 (5)° and 119.7 (5)°, respectively. These suggest a twisted 4T3 conformation for the furanose ring (ideal Φ = 126°), slightly distorted towards envelope (Φ = 108°). The substituent ring also has a twisted conformation (Fig. 3).
In molecule B (Fig. 4), the polar parameters for the furanose ring and the corresponding five membered ring are Q = 0.292 (3) and 0.361 (2) Å, Φ = 142.1 (5)° and 143.9 (4)°. These suggest an (ideal Φ = 144°) for both rings, with atoms C(24) and C(26) in the corners of the respective envelopes (4E for the furanose ring).
In the structure of 1,2-di-O-isopropylidene-5-O-tosyl-D-xylofuranose which differs from the title compound in one hydroxy group, the polar parameters are Q = 0.352 (3) Å, Φ = 288.8 (5)°; see refcodes RUWDES and RUWDES01 (Cox et al., 1997). This makes the conformation an almost exact 3E envelope, but with a different carbon atom in the corner than in the case described here. Obviously, the furanose ring conformation is highly flexible and is easily influenced even by weak intermolecular interactions.
A short intramolecular contact is present between sulfonyl O atoms O5 and O15 and neighboring hydrogen atoms of the adjacent respective phenyl rings (see Table 1). This is quite common for aryl sulfonyls and the majority of these compounds exhibit these intramolecular interactions (mean H···O distance is 2.533 Å for more than 2500 analogous structures listed in the Cambridge Structural Database (Allen, 2002)). It may additionaly stabilize the conformation of the molecule. Only weak intermolecular C—H···O contacts (Table 1) exist between neighboring molecules.
For the syntheses of this and similar compounds, see: Cox et al. (1997); Dahlman et al. (1986); Doboszewski & Herdewijn (1996, 2008). For conformations of five-membered rings, see: Cremer & Pople (1975); Boeyens & Dobson (1987). For weak C—H···O contacts, see: Desiraju & Steiner (1999). For analysis of
see: Flack (1983); Hooft et al. (2008).Tipson (1944); Fieser & Fieser (1967) describe tosylation reactions. For standard-bond length data, see: Allen (2002).Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell
HKL-2000 (Otwinowski & Minor, 1997); data reduction: CrystalClear-SM Expert (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).C15H20O6S | F(000) = 696 |
Mr = 328.37 | Dx = 1.375 Mg m−3 |
Monoclinic, P21 | Melting point: 347(1) K |
Hall symbol: P 2yb | Cu Kα radiation, λ = 1.54187 Å |
a = 10.9397 (1) Å | Cell parameters from 14102 reflections |
b = 9.4251 (1) Å | θ = 2.9–68.3° |
c = 15.4833 (10) Å | µ = 2.06 mm−1 |
β = 96.414 (7)° | T = 123 K |
V = 1586.46 (10) Å3 | Block, colourless |
Z = 4 | 0.2 × 0.2 × 0.18 mm |
Rigaku R-AXIS RAPID II imaging plate diffractometer | 4917 independent reflections |
Radiation source: fine-focus sealed tube | 4440 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 10.0 pixels mm-1 | θmax = 65.5°, θmin = 2.9° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −8→11 |
Tmin = 0.55, Tmax = 0.65 | l = −18→18 |
14179 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0495P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
4917 reflections | Δρmax = 0.30 e Å−3 |
404 parameters | Δρmin = −0.26 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 2059 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.005 (12) |
C15H20O6S | V = 1586.46 (10) Å3 |
Mr = 328.37 | Z = 4 |
Monoclinic, P21 | Cu Kα radiation |
a = 10.9397 (1) Å | µ = 2.06 mm−1 |
b = 9.4251 (1) Å | T = 123 K |
c = 15.4833 (10) Å | 0.2 × 0.2 × 0.18 mm |
β = 96.414 (7)° |
Rigaku R-AXIS RAPID II imaging plate diffractometer | 4917 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 4440 reflections with I > 2σ(I) |
Tmin = 0.55, Tmax = 0.65 | Rint = 0.037 |
14179 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.087 | Δρmax = 0.30 e Å−3 |
S = 1.04 | Δρmin = −0.26 e Å−3 |
4917 reflections | Absolute structure: Flack (1983), 2059 Friedel pairs |
404 parameters | Absolute structure parameter: 0.005 (12) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.32715 (6) | 0.65201 (7) | 0.88376 (4) | 0.03365 (17) | |
O1 | 0.25715 (16) | 0.2054 (2) | 0.92121 (10) | 0.0390 (5) | |
O2 | 0.16307 (15) | 0.1633 (3) | 0.78122 (10) | 0.0473 (6) | |
O3 | 0.35387 (15) | 0.1347 (2) | 0.74148 (10) | 0.0349 (4) | |
O4 | 0.32552 (16) | 0.49623 (19) | 0.92025 (10) | 0.0328 (4) | |
O5 | 0.45192 (17) | 0.6937 (2) | 0.87784 (11) | 0.0427 (5) | |
O6 | 0.25396 (18) | 0.7302 (2) | 0.93686 (11) | 0.0473 (5) | |
C1 | 0.2332 (2) | 0.1040 (3) | 0.85455 (16) | 0.0366 (7) | |
H1 | 0.1914 | 0.0186 | 0.8760 | 0.044* | |
C2 | 0.3566 (2) | 0.0634 (3) | 0.82292 (16) | 0.0367 (7) | |
H2 | 0.3673 | −0.0415 | 0.8178 | 0.044* | |
C3 | 0.4515 (2) | 0.1298 (3) | 0.88914 (16) | 0.0396 (7) | |
H3A | 0.5227 | 0.1651 | 0.8612 | 0.048* | |
H3B | 0.4809 | 0.0607 | 0.9350 | 0.048* | |
C4 | 0.3831 (2) | 0.2518 (3) | 0.92672 (15) | 0.0349 (7) | |
H4 | 0.4155 | 0.2653 | 0.9892 | 0.042* | |
C5 | 0.3957 (2) | 0.3885 (3) | 0.87844 (16) | 0.0344 (6) | |
H5A | 0.4833 | 0.4164 | 0.8814 | 0.041* | |
H5B | 0.3628 | 0.3775 | 0.8166 | 0.041* | |
C6 | 0.2273 (2) | 0.1439 (3) | 0.70647 (15) | 0.0316 (6) | |
C7 | 0.2104 (3) | 0.2734 (3) | 0.64975 (17) | 0.0452 (7) | |
H7A | 0.2584 | 0.2630 | 0.6004 | 0.068* | |
H7B | 0.2385 | 0.3574 | 0.6835 | 0.068* | |
H7C | 0.1231 | 0.2841 | 0.6283 | 0.068* | |
C8 | 0.1844 (3) | 0.0099 (3) | 0.65937 (18) | 0.0473 (8) | |
H8A | 0.0972 | 0.0190 | 0.6373 | 0.071* | |
H8B | 0.1952 | −0.0707 | 0.6995 | 0.071* | |
H8C | 0.2327 | −0.0059 | 0.6106 | 0.071* | |
C9 | 0.2509 (2) | 0.6412 (3) | 0.77785 (14) | 0.0286 (6) | |
C10 | 0.1249 (2) | 0.6169 (3) | 0.76511 (16) | 0.0339 (7) | |
H10 | 0.0797 | 0.6031 | 0.8133 | 0.041* | |
C11 | 0.0667 (2) | 0.6132 (3) | 0.68185 (16) | 0.0346 (7) | |
H11 | −0.0194 | 0.5968 | 0.6731 | 0.042* | |
C12 | 0.1305 (2) | 0.6327 (3) | 0.61033 (15) | 0.0314 (6) | |
C13 | 0.2563 (2) | 0.6543 (3) | 0.62421 (14) | 0.0304 (6) | |
H13 | 0.3016 | 0.6666 | 0.5759 | 0.037* | |
C14 | 0.3168 (2) | 0.6582 (3) | 0.70733 (14) | 0.0293 (6) | |
H14 | 0.4033 | 0.6725 | 0.7161 | 0.035* | |
C15 | 0.0639 (3) | 0.6296 (4) | 0.51920 (16) | 0.0457 (8) | |
H15A | 0.1056 | 0.5634 | 0.4834 | 0.069* | |
H15B | 0.0643 | 0.7248 | 0.4938 | 0.069* | |
H15C | −0.0212 | 0.5985 | 0.5214 | 0.069* | |
S2 | 0.37237 (6) | 0.33823 (7) | 0.40722 (4) | 0.03353 (17) | |
O11 | 0.20451 (16) | −0.0793 (2) | 0.39873 (10) | 0.0370 (5) | |
O12 | 0.15723 (16) | −0.0483 (2) | 0.25011 (10) | 0.0363 (5) | |
O13 | 0.32440 (15) | −0.1684 (2) | 0.22108 (10) | 0.0369 (5) | |
O14 | 0.33657 (14) | 0.1829 (2) | 0.43291 (10) | 0.0350 (4) | |
O15 | 0.50001 (15) | 0.3417 (2) | 0.39625 (11) | 0.0383 (5) | |
O16 | 0.32592 (17) | 0.4259 (2) | 0.47060 (11) | 0.0433 (5) | |
C21 | 0.1763 (2) | −0.1485 (3) | 0.31885 (15) | 0.0373 (7) | |
H21 | 0.1038 | −0.2127 | 0.3199 | 0.045* | |
C22 | 0.2916 (2) | −0.2316 (3) | 0.29894 (15) | 0.0356 (7) | |
H22 | 0.2747 | −0.3354 | 0.2916 | 0.043* | |
C23 | 0.3858 (2) | −0.2014 (3) | 0.37619 (16) | 0.0397 (7) | |
H23A | 0.4677 | −0.1826 | 0.3571 | 0.048* | |
H23B | 0.3925 | −0.2824 | 0.4172 | 0.048* | |
C24 | 0.3365 (2) | −0.0699 (3) | 0.41833 (16) | 0.0328 (6) | |
H24 | 0.3581 | −0.0759 | 0.4827 | 0.039* | |
C25 | 0.3872 (2) | 0.0657 (3) | 0.38602 (15) | 0.0333 (6) | |
H25A | 0.4782 | 0.0657 | 0.3968 | 0.040* | |
H25B | 0.3633 | 0.0759 | 0.3228 | 0.040* | |
C26 | 0.2142 (2) | −0.1047 (3) | 0.17900 (15) | 0.0352 (7) | |
C27 | 0.2475 (3) | 0.0131 (4) | 0.12171 (16) | 0.0458 (8) | |
H27A | 0.2835 | −0.0264 | 0.0717 | 0.069* | |
H27B | 0.3075 | 0.0756 | 0.1545 | 0.069* | |
H27C | 0.1736 | 0.0675 | 0.1013 | 0.069* | |
C28 | 0.1314 (3) | −0.2140 (4) | 0.13137 (17) | 0.0484 (8) | |
H28A | 0.0541 | −0.1691 | 0.1076 | 0.073* | |
H28B | 0.1141 | −0.2897 | 0.1717 | 0.073* | |
H28C | 0.1723 | −0.2544 | 0.0838 | 0.073* | |
C29 | 0.2868 (2) | 0.3655 (3) | 0.30546 (15) | 0.0299 (6) | |
C30 | 0.1609 (2) | 0.3732 (3) | 0.30083 (16) | 0.0380 (7) | |
H30 | 0.1208 | 0.3655 | 0.3520 | 0.046* | |
C31 | 0.0930 (3) | 0.3923 (3) | 0.22034 (17) | 0.0423 (8) | |
H31 | 0.0058 | 0.3980 | 0.2168 | 0.051* | |
C32 | 0.1503 (3) | 0.4034 (3) | 0.14480 (17) | 0.0363 (7) | |
C33 | 0.2781 (3) | 0.3983 (3) | 0.15257 (17) | 0.0397 (7) | |
H33 | 0.3190 | 0.4075 | 0.1019 | 0.048* | |
C34 | 0.3470 (2) | 0.3801 (3) | 0.23193 (16) | 0.0351 (7) | |
H34 | 0.4343 | 0.3776 | 0.2361 | 0.042* | |
C35 | 0.0762 (3) | 0.4189 (4) | 0.05773 (18) | 0.0514 (8) | |
H35A | 0.1229 | 0.3808 | 0.0125 | 0.077* | |
H35B | 0.0584 | 0.5195 | 0.0462 | 0.077* | |
H35C | −0.0012 | 0.3665 | 0.0576 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0464 (4) | 0.0303 (4) | 0.0239 (3) | −0.0009 (3) | 0.0023 (3) | −0.0021 (3) |
O1 | 0.0468 (11) | 0.0378 (13) | 0.0338 (9) | −0.0049 (9) | 0.0105 (8) | −0.0022 (8) |
O2 | 0.0328 (10) | 0.0770 (17) | 0.0323 (9) | 0.0110 (11) | 0.0043 (8) | −0.0023 (10) |
O3 | 0.0337 (10) | 0.0388 (13) | 0.0325 (8) | 0.0022 (9) | 0.0055 (7) | 0.0022 (9) |
O4 | 0.0467 (11) | 0.0256 (11) | 0.0260 (8) | 0.0015 (9) | 0.0046 (7) | −0.0009 (8) |
O5 | 0.0482 (11) | 0.0449 (14) | 0.0326 (9) | −0.0158 (10) | −0.0064 (8) | 0.0009 (9) |
O6 | 0.0734 (14) | 0.0392 (14) | 0.0306 (9) | 0.0083 (11) | 0.0120 (9) | −0.0024 (9) |
C1 | 0.0457 (16) | 0.0346 (19) | 0.0308 (13) | −0.0058 (13) | 0.0107 (11) | 0.0011 (12) |
C2 | 0.0454 (16) | 0.0284 (17) | 0.0363 (14) | 0.0088 (14) | 0.0040 (12) | 0.0046 (12) |
C3 | 0.0431 (16) | 0.035 (2) | 0.0391 (14) | 0.0106 (13) | −0.0041 (12) | 0.0048 (14) |
C4 | 0.0370 (16) | 0.0387 (19) | 0.0274 (12) | 0.0031 (13) | −0.0039 (10) | 0.0014 (12) |
C5 | 0.0353 (15) | 0.0362 (19) | 0.0323 (13) | 0.0046 (12) | 0.0059 (11) | −0.0011 (12) |
C6 | 0.0322 (14) | 0.0336 (18) | 0.0289 (12) | −0.0010 (13) | 0.0024 (10) | −0.0034 (12) |
C7 | 0.0558 (19) | 0.0331 (18) | 0.0430 (15) | −0.0011 (15) | −0.0107 (13) | −0.0017 (14) |
C8 | 0.058 (2) | 0.038 (2) | 0.0438 (15) | −0.0073 (15) | −0.0057 (14) | −0.0009 (14) |
C9 | 0.0312 (13) | 0.0279 (16) | 0.0266 (11) | 0.0024 (12) | 0.0031 (10) | 0.0003 (12) |
C10 | 0.0319 (14) | 0.038 (2) | 0.0336 (13) | −0.0029 (12) | 0.0112 (11) | 0.0061 (12) |
C11 | 0.0233 (13) | 0.0341 (19) | 0.0465 (15) | −0.0006 (12) | 0.0040 (11) | 0.0063 (13) |
C12 | 0.0344 (14) | 0.0265 (17) | 0.0319 (12) | −0.0018 (12) | −0.0028 (11) | −0.0013 (12) |
C13 | 0.0310 (13) | 0.0318 (17) | 0.0291 (12) | −0.0029 (12) | 0.0061 (10) | −0.0002 (12) |
C14 | 0.0250 (13) | 0.0357 (17) | 0.0273 (11) | −0.0042 (12) | 0.0035 (10) | −0.0028 (12) |
C15 | 0.0442 (17) | 0.053 (2) | 0.0378 (14) | 0.0004 (15) | −0.0052 (12) | 0.0010 (15) |
S2 | 0.0354 (4) | 0.0359 (4) | 0.0286 (3) | 0.0021 (3) | 0.0008 (3) | −0.0048 (3) |
O11 | 0.0358 (10) | 0.0478 (14) | 0.0283 (9) | 0.0019 (9) | 0.0081 (7) | −0.0012 (9) |
O12 | 0.0372 (10) | 0.0429 (13) | 0.0289 (9) | 0.0126 (9) | 0.0035 (7) | −0.0006 (8) |
O13 | 0.0364 (10) | 0.0445 (13) | 0.0307 (9) | 0.0112 (9) | 0.0084 (7) | 0.0056 (9) |
O14 | 0.0402 (10) | 0.0365 (13) | 0.0288 (9) | 0.0065 (9) | 0.0056 (7) | −0.0015 (8) |
O15 | 0.0312 (10) | 0.0436 (13) | 0.0390 (10) | −0.0023 (9) | −0.0008 (8) | −0.0065 (9) |
O16 | 0.0512 (12) | 0.0435 (14) | 0.0352 (10) | 0.0072 (10) | 0.0049 (8) | −0.0097 (9) |
C21 | 0.0406 (16) | 0.0427 (19) | 0.0290 (13) | −0.0028 (14) | 0.0051 (11) | −0.0005 (13) |
C22 | 0.0446 (17) | 0.0300 (17) | 0.0331 (13) | 0.0048 (13) | 0.0084 (11) | 0.0057 (12) |
C23 | 0.0458 (17) | 0.037 (2) | 0.0356 (14) | 0.0102 (14) | 0.0035 (12) | 0.0081 (13) |
C24 | 0.0302 (14) | 0.0377 (19) | 0.0297 (13) | 0.0072 (12) | −0.0002 (10) | 0.0043 (12) |
C25 | 0.0329 (14) | 0.0381 (18) | 0.0290 (13) | 0.0079 (13) | 0.0037 (10) | −0.0046 (12) |
C26 | 0.0366 (15) | 0.0432 (19) | 0.0261 (13) | 0.0090 (13) | 0.0047 (11) | −0.0014 (12) |
C27 | 0.0513 (18) | 0.051 (2) | 0.0343 (14) | 0.0006 (15) | 0.0020 (12) | 0.0087 (14) |
C28 | 0.0561 (19) | 0.055 (2) | 0.0329 (14) | −0.0021 (16) | 0.0018 (13) | −0.0016 (15) |
C29 | 0.0343 (14) | 0.0232 (17) | 0.0316 (12) | 0.0012 (12) | 0.0008 (11) | −0.0029 (11) |
C30 | 0.0312 (15) | 0.048 (2) | 0.0356 (14) | −0.0004 (13) | 0.0085 (11) | 0.0047 (13) |
C31 | 0.0286 (15) | 0.054 (2) | 0.0440 (16) | 0.0002 (14) | 0.0036 (12) | 0.0079 (14) |
C32 | 0.0405 (15) | 0.0320 (18) | 0.0355 (14) | 0.0001 (13) | 0.0002 (12) | −0.0003 (12) |
C33 | 0.0420 (17) | 0.046 (2) | 0.0324 (14) | 0.0016 (14) | 0.0098 (12) | −0.0005 (13) |
C34 | 0.0275 (14) | 0.042 (2) | 0.0368 (14) | −0.0018 (12) | 0.0059 (11) | −0.0005 (12) |
C35 | 0.055 (2) | 0.055 (2) | 0.0416 (16) | −0.0039 (17) | −0.0059 (13) | −0.0018 (15) |
S1—O6 | 1.4167 (18) | S2—O16 | 1.4201 (18) |
S1—O5 | 1.4332 (19) | S2—O15 | 1.4257 (17) |
S1—O4 | 1.5740 (19) | S2—O14 | 1.578 (2) |
S1—C9 | 1.758 (2) | S2—C29 | 1.760 (2) |
O1—C1 | 1.410 (3) | O11—C21 | 1.402 (3) |
O1—C4 | 1.439 (3) | O11—C24 | 1.445 (3) |
O2—C1 | 1.413 (3) | O12—C21 | 1.421 (3) |
O2—C6 | 1.431 (3) | O12—C26 | 1.427 (3) |
O3—C2 | 1.426 (3) | O13—C22 | 1.426 (3) |
O3—C6 | 1.432 (3) | O13—C26 | 1.436 (3) |
O4—C5 | 1.467 (3) | O14—C25 | 1.464 (3) |
C1—C2 | 1.535 (3) | C21—C22 | 1.544 (4) |
C1—H1 | 1.0000 | C21—H21 | 1.0000 |
C2—C3 | 1.510 (4) | C22—C23 | 1.516 (4) |
C2—H2 | 1.0000 | C22—H22 | 1.0000 |
C3—C4 | 1.522 (4) | C23—C24 | 1.526 (4) |
C3—H3A | 0.9900 | C23—H23A | 0.9900 |
C3—H3B | 0.9900 | C23—H23B | 0.9900 |
C4—C5 | 1.503 (4) | C24—C25 | 1.501 (4) |
C4—H4 | 1.0000 | C24—H24 | 1.0000 |
C5—H5A | 0.9900 | C25—H25A | 0.9900 |
C5—H5B | 0.9900 | C25—H25B | 0.9900 |
C6—C7 | 1.502 (4) | C26—C27 | 1.492 (4) |
C6—C8 | 1.508 (4) | C26—C28 | 1.509 (4) |
C7—H7A | 0.9800 | C27—H27A | 0.9800 |
C7—H7B | 0.9800 | C27—H27B | 0.9800 |
C7—H7C | 0.9800 | C27—H27C | 0.9800 |
C8—H8A | 0.9800 | C28—H28A | 0.9800 |
C8—H8B | 0.9800 | C28—H28B | 0.9800 |
C8—H8C | 0.9800 | C28—H28C | 0.9800 |
C9—C14 | 1.383 (3) | C29—C30 | 1.372 (3) |
C9—C10 | 1.390 (3) | C29—C34 | 1.385 (3) |
C10—C11 | 1.373 (3) | C30—C31 | 1.390 (4) |
C10—H10 | 0.9500 | C30—H30 | 0.9500 |
C11—C12 | 1.385 (3) | C31—C32 | 1.392 (3) |
C11—H11 | 0.9500 | C31—H31 | 0.9500 |
C12—C13 | 1.384 (3) | C32—C33 | 1.391 (4) |
C12—C15 | 1.514 (3) | C32—C35 | 1.501 (4) |
C13—C14 | 1.380 (3) | C33—C34 | 1.378 (4) |
C13—H13 | 0.9500 | C33—H33 | 0.9500 |
C14—H14 | 0.9500 | C34—H34 | 0.9500 |
C15—H15A | 0.9800 | C35—H35A | 0.9800 |
C15—H15B | 0.9800 | C35—H35B | 0.9800 |
C15—H15C | 0.9800 | C35—H35C | 0.9800 |
O6—S1—O5 | 119.90 (13) | O16—S2—O15 | 119.98 (12) |
O6—S1—O4 | 104.30 (11) | O16—S2—O14 | 104.35 (11) |
O5—S1—O4 | 109.14 (11) | O15—S2—O14 | 108.99 (11) |
O6—S1—C9 | 109.36 (12) | O16—S2—C29 | 109.76 (12) |
O5—S1—C9 | 108.18 (11) | O15—S2—C29 | 108.69 (11) |
O4—S1—C9 | 104.94 (11) | O14—S2—C29 | 103.82 (11) |
C1—O1—C4 | 110.36 (19) | C21—O11—C24 | 109.26 (19) |
C1—O2—C6 | 109.11 (18) | C21—O12—C26 | 106.85 (19) |
C2—O3—C6 | 106.69 (18) | C22—O13—C26 | 106.29 (18) |
C5—O4—S1 | 117.38 (15) | C25—O14—S2 | 117.15 (15) |
O1—C1—O2 | 111.1 (2) | O11—C21—O12 | 110.5 (2) |
O1—C1—C2 | 107.7 (2) | O11—C21—C22 | 108.0 (2) |
O2—C1—C2 | 105.09 (18) | O12—C21—C22 | 104.04 (18) |
O1—C1—H1 | 110.9 | O11—C21—H21 | 111.3 |
O2—C1—H1 | 110.9 | O12—C21—H21 | 111.3 |
C2—C1—H1 | 110.9 | C22—C21—H21 | 111.3 |
O3—C2—C3 | 110.5 (2) | O13—C22—C23 | 112.1 (2) |
O3—C2—C1 | 103.4 (2) | O13—C22—C21 | 104.2 (2) |
C3—C2—C1 | 104.0 (2) | C23—C22—C21 | 104.2 (2) |
O3—C2—H2 | 112.7 | O13—C22—H22 | 112.0 |
C3—C2—H2 | 112.7 | C23—C22—H22 | 112.0 |
C1—C2—H2 | 112.7 | C21—C22—H22 | 112.0 |
C2—C3—C4 | 104.0 (2) | C22—C23—C24 | 104.4 (2) |
C2—C3—H3A | 110.9 | C22—C23—H23A | 110.9 |
C4—C3—H3A | 110.9 | C24—C23—H23A | 110.9 |
C2—C3—H3B | 110.9 | C22—C23—H23B | 110.9 |
C4—C3—H3B | 110.9 | C24—C23—H23B | 110.9 |
H3A—C3—H3B | 109.0 | H23A—C23—H23B | 108.9 |
O1—C4—C5 | 111.8 (2) | O11—C24—C25 | 112.3 (2) |
O1—C4—C3 | 104.8 (2) | O11—C24—C23 | 104.6 (2) |
C5—C4—C3 | 112.4 (2) | C25—C24—C23 | 112.8 (2) |
O1—C4—H4 | 109.2 | O11—C24—H24 | 109.0 |
C5—C4—H4 | 109.2 | C25—C24—H24 | 109.0 |
C3—C4—H4 | 109.2 | C23—C24—H24 | 109.0 |
O4—C5—C4 | 106.98 (19) | O14—C25—C24 | 107.61 (19) |
O4—C5—H5A | 110.3 | O14—C25—H25A | 110.2 |
C4—C5—H5A | 110.3 | C24—C25—H25A | 110.2 |
O4—C5—H5B | 110.3 | O14—C25—H25B | 110.2 |
C4—C5—H5B | 110.3 | C24—C25—H25B | 110.2 |
H5A—C5—H5B | 108.6 | H25A—C25—H25B | 108.5 |
O3—C6—O2 | 104.07 (17) | O12—C26—O13 | 102.86 (18) |
O3—C6—C7 | 108.8 (2) | O12—C26—C27 | 109.8 (2) |
O2—C6—C7 | 109.2 (2) | O13—C26—C27 | 109.4 (2) |
O3—C6—C8 | 111.6 (2) | O12—C26—C28 | 110.0 (2) |
O2—C6—C8 | 110.1 (2) | O13—C26—C28 | 111.3 (3) |
C7—C6—C8 | 112.7 (2) | C27—C26—C28 | 113.0 (2) |
C6—C7—H7A | 109.5 | C26—C27—H27A | 109.5 |
C6—C7—H7B | 109.5 | C26—C27—H27B | 109.5 |
H7A—C7—H7B | 109.5 | H27A—C27—H27B | 109.5 |
C6—C7—H7C | 109.5 | C26—C27—H27C | 109.5 |
H7A—C7—H7C | 109.5 | H27A—C27—H27C | 109.5 |
H7B—C7—H7C | 109.5 | H27B—C27—H27C | 109.5 |
C6—C8—H8A | 109.5 | C26—C28—H28A | 109.5 |
C6—C8—H8B | 109.5 | C26—C28—H28B | 109.5 |
H8A—C8—H8B | 109.5 | H28A—C28—H28B | 109.5 |
C6—C8—H8C | 109.5 | C26—C28—H28C | 109.5 |
H8A—C8—H8C | 109.5 | H28A—C28—H28C | 109.5 |
H8B—C8—H8C | 109.5 | H28B—C28—H28C | 109.5 |
C14—C9—C10 | 120.2 (2) | C30—C29—C34 | 121.2 (2) |
C14—C9—S1 | 119.69 (18) | C30—C29—S2 | 119.01 (19) |
C10—C9—S1 | 120.11 (18) | C34—C29—S2 | 119.74 (19) |
C11—C10—C9 | 119.1 (2) | C29—C30—C31 | 119.1 (2) |
C11—C10—H10 | 120.5 | C29—C30—H30 | 120.4 |
C9—C10—H10 | 120.5 | C31—C30—H30 | 120.4 |
C10—C11—C12 | 121.7 (2) | C30—C31—C32 | 121.1 (2) |
C10—C11—H11 | 119.2 | C30—C31—H31 | 119.4 |
C12—C11—H11 | 119.2 | C32—C31—H31 | 119.4 |
C13—C12—C11 | 118.4 (2) | C33—C32—C31 | 117.9 (2) |
C13—C12—C15 | 120.9 (2) | C33—C32—C35 | 121.2 (2) |
C11—C12—C15 | 120.7 (2) | C31—C32—C35 | 120.9 (3) |
C14—C13—C12 | 120.9 (2) | C34—C33—C32 | 121.7 (2) |
C14—C13—H13 | 119.6 | C34—C33—H33 | 119.1 |
C12—C13—H13 | 119.6 | C32—C33—H33 | 119.1 |
C13—C14—C9 | 119.7 (2) | C33—C34—C29 | 118.8 (2) |
C13—C14—H14 | 120.2 | C33—C34—H34 | 120.6 |
C9—C14—H14 | 120.2 | C29—C34—H34 | 120.6 |
C12—C15—H15A | 109.5 | C32—C35—H35A | 109.5 |
C12—C15—H15B | 109.5 | C32—C35—H35B | 109.5 |
H15A—C15—H15B | 109.5 | H35A—C35—H35B | 109.5 |
C12—C15—H15C | 109.5 | C32—C35—H35C | 109.5 |
H15A—C15—H15C | 109.5 | H35A—C35—H35C | 109.5 |
H15B—C15—H15C | 109.5 | H35B—C35—H35C | 109.5 |
O6—S1—O4—C5 | −179.34 (17) | O16—S2—O14—C25 | −171.83 (16) |
O5—S1—O4—C5 | −50.06 (19) | O15—S2—O14—C25 | −42.51 (17) |
C9—S1—O4—C5 | 65.69 (18) | C29—S2—O14—C25 | 73.20 (17) |
C4—O1—C1—O2 | −105.4 (2) | C24—O11—C21—O12 | −94.0 (2) |
C4—O1—C1—C2 | 9.2 (3) | C24—O11—C21—C22 | 19.2 (3) |
C6—O2—C1—O1 | 124.0 (2) | C26—O12—C21—O11 | 139.4 (2) |
C6—O2—C1—C2 | 7.8 (3) | C26—O12—C21—C22 | 23.7 (3) |
C6—O3—C2—C3 | −140.6 (2) | C26—O13—C22—C23 | −135.6 (2) |
C6—O3—C2—C1 | −29.8 (3) | C26—O13—C22—C21 | −23.6 (3) |
O1—C1—C2—O3 | −105.1 (2) | O11—C21—C22—O13 | −117.4 (2) |
O2—C1—C2—O3 | 13.4 (3) | O12—C21—C22—O13 | 0.1 (3) |
O1—C1—C2—C3 | 10.4 (3) | O11—C21—C22—C23 | 0.2 (3) |
O2—C1—C2—C3 | 128.9 (2) | O12—C21—C22—C23 | 117.7 (2) |
O3—C2—C3—C4 | 85.9 (2) | O13—C22—C23—C24 | 94.0 (2) |
C1—C2—C3—C4 | −24.6 (3) | C21—C22—C23—C24 | −18.0 (3) |
C1—O1—C4—C5 | 97.1 (2) | C21—O11—C24—C25 | 92.0 (3) |
C1—O1—C4—C3 | −24.9 (2) | C21—O11—C24—C23 | −30.7 (3) |
C2—C3—C4—O1 | 30.4 (3) | C22—C23—C24—O11 | 29.6 (3) |
C2—C3—C4—C5 | −91.2 (3) | C22—C23—C24—C25 | −92.8 (3) |
S1—O4—C5—C4 | 178.03 (15) | S2—O14—C25—C24 | −177.50 (16) |
O1—C4—C5—O4 | 62.0 (3) | O11—C24—C25—O14 | 63.8 (2) |
C3—C4—C5—O4 | 179.55 (19) | C23—C24—C25—O14 | −178.25 (19) |
C2—O3—C6—O2 | 35.0 (3) | C21—O12—C26—O13 | −38.7 (3) |
C2—O3—C6—C7 | 151.4 (2) | C21—O12—C26—C27 | −155.1 (2) |
C2—O3—C6—C8 | −83.7 (3) | C21—O12—C26—C28 | 79.9 (3) |
C1—O2—C6—O3 | −26.1 (3) | C22—O13—C26—O12 | 38.6 (3) |
C1—O2—C6—C7 | −142.1 (2) | C22—O13—C26—C27 | 155.2 (2) |
C1—O2—C6—C8 | 93.7 (3) | C22—O13—C26—C28 | −79.2 (2) |
O6—S1—C9—C14 | 138.3 (2) | O16—S2—C29—C30 | −43.9 (3) |
O5—S1—C9—C14 | 6.1 (3) | O15—S2—C29—C30 | −176.9 (2) |
O4—S1—C9—C14 | −110.3 (2) | O14—S2—C29—C30 | 67.2 (2) |
O6—S1—C9—C10 | −41.2 (3) | O16—S2—C29—C34 | 135.5 (2) |
O5—S1—C9—C10 | −173.4 (2) | O15—S2—C29—C34 | 2.5 (3) |
O4—S1—C9—C10 | 70.2 (2) | O14—S2—C29—C34 | −113.4 (2) |
C14—C9—C10—C11 | −1.4 (4) | C34—C29—C30—C31 | 1.7 (4) |
S1—C9—C10—C11 | 178.1 (2) | S2—C29—C30—C31 | −178.9 (2) |
C9—C10—C11—C12 | 0.1 (4) | C29—C30—C31—C32 | 0.2 (5) |
C10—C11—C12—C13 | 1.0 (4) | C30—C31—C32—C33 | −1.6 (5) |
C10—C11—C12—C15 | −179.3 (3) | C30—C31—C32—C35 | 177.8 (3) |
C11—C12—C13—C14 | −0.8 (4) | C31—C32—C33—C34 | 1.2 (5) |
C15—C12—C13—C14 | 179.5 (3) | C35—C32—C33—C34 | −178.1 (3) |
C12—C13—C14—C9 | −0.4 (4) | C32—C33—C34—C29 | 0.5 (4) |
C10—C9—C14—C13 | 1.6 (4) | C30—C29—C34—C33 | −2.0 (4) |
S1—C9—C14—C13 | −177.9 (2) | S2—C29—C34—C33 | 178.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O5i | 1.00 | 2.48 | 3.390 (3) | 152 |
C5—H5B···O3 | 0.99 | 2.56 | 3.196 (3) | 122 |
C11—H11···O12ii | 0.95 | 2.44 | 3.163 (3) | 133 |
C14—H14···O5 | 0.95 | 2.51 | 2.897 (3) | 105 |
C24—H24···O15iii | 1.00 | 2.42 | 3.315 (3) | 148 |
C28—H28C···O6iv | 0.98 | 2.54 | 3.471 (3) | 159 |
C34—H34···O15 | 0.95 | 2.53 | 2.908 (3) | 104 |
Symmetry codes: (i) −x+1, y−1/2, −z+2; (ii) −x, y+1/2, −z+1; (iii) −x+1, y−1/2, −z+1; (iv) x, y−1, z−1. |
Experimental details
Crystal data | |
Chemical formula | C15H20O6S |
Mr | 328.37 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 123 |
a, b, c (Å) | 10.9397 (1), 9.4251 (1), 15.4833 (10) |
β (°) | 96.414 (7) |
V (Å3) | 1586.46 (10) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.06 |
Crystal size (mm) | 0.2 × 0.2 × 0.18 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID II imaging plate |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.55, 0.65 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14179, 4917, 4440 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.590 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.087, 1.04 |
No. of reflections | 4917 |
No. of parameters | 404 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.26 |
Absolute structure | Flack (1983), 2059 Friedel pairs |
Absolute structure parameter | 0.005 (12) |
Computer programs: CrystalClear-SM Expert (Rigaku, 2009), HKL-2000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O5i | 1.00 | 2.48 | 3.390 (3) | 152 |
C5—H5B···O3 | 0.99 | 2.56 | 3.196 (3) | 122 |
C11—H11···O12ii | 0.95 | 2.44 | 3.163 (3) | 133 |
C24—H24···O15iii | 1.00 | 2.42 | 3.315 (3) | 148 |
C28—H28C···O6iv | 0.98 | 2.54 | 3.471 (3) | 159 |
Symmetry codes: (i) −x+1, y−1/2, −z+2; (ii) −x, y+1/2, −z+1; (iii) −x+1, y−1/2, −z+1; (iv) x, y−1, z−1. |
Acknowledgements
This study was supported by the NSF (grant CHE-0922366 for X-ray diffractometer) and by SUNY (grant No 1073053).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Boeyens, J. C. A. & Dobson, S. M. (1987). Stereochemistry of Metallic Macrocycles, in Stereochemical and Stereophysical Behaviour of Macrocycles, edited by I. Bernal, pp. 2–102. Amsterdam: Elsevier. Google Scholar
Cox, P. J., Howie, R. A., Rufino, H. & Wardell, J. L. (1997). Acta Cryst. C53, 1939–1941. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dahlman, O., Garegg, P. J., Mayer, H. & Schramek, S. (1986). Acta Chem. Scand. Ser. B, 40, 15–20. CrossRef CAS Web of Science Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press. Google Scholar
Doboszewski, B. & Herdewijn, P. (1996). Tetrahedron, 52, 1651–1668. CrossRef CAS Web of Science Google Scholar
Doboszewski, B. & Herdewijn, P. (2008). Tetrahedron, 64, 5551–5562. CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fieser, L. F. & Fieser, M. (1967). Reagents for Organic Synthesis, Vol. 1, pp. 1179–1181. New York: Wiley. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tipson, R. S. (1944). J. Org. Chem. 9, 235-241. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
D- and L-arabinose are very convenient chiral-pool substrates for stereoselective synthesis since both of them are commercially available, reasonably priced, and easy to functionalize in two steps to form 5-O-t-butyldiphenylsilyl-1,2-O-isopropylidene furanose or its L-enantiomer (Dahlman et al., 1986; Doboszewski & Herdewijn, 2008). Both enantiomers have been previously used in the synthesis of degradation products of the antibiotic Batumin/Kalimantacin A (Doboszewski & Herdewijn, 2008), to obtain branched-chain pyranosyl nucleosides (Doboszewski & Herdewijn, 1996) and C-hydroxymethylpentose present in lipopolysaccharides of Coxiella brunetii (Dahlman et al., 1986), among others. Our current interest in arabinose stems from a possibility to convert it into the general substrates 3-deoxy-1,2-di-O-isopropylidene-5-O-tosyl-D-threo-pentofuranose and 3-deoxy-1,2-di-O-isopropylidene-5-O-butyldiphenylsilyl-D-threo-pentofuranose to be used in further transformations. A synthesis scheme for both these compounds is shown in Figure 1. We wanted to firmly establish their structures, due to a possibility of enolization of the ulose and concomitant inversion of configuration at the C4 position during formation of the tosylhydrazone.
A correct absolute structure of the title compound was important for the further synthetic work. Because of that, we have selected Cu Kα radiation to ensure unambigous determination of the absolute structure.
In the crystal structure of the title compound (Fig.2), there are two crystallographically independent molecules, A (C1–C15, O1–O6, S1) and B (C21–C35, O11–O16, S2), in which all bond lengths and bond angles have standard dimensions. The six-membered phenyl rings in both molecules are flat within 0.01 Å.
It is visually obvious (Fig. 3 and Fig. 4) that the conformations of the five-membered rings differs in the two independent molecules A and B. A quantitative analysis of the ring conformations was performed using the method of Cremer and Pople (Cremer & Pople, 1975; Boeyens & Dobson, 1987) for the calculation of parameters of puckering. In molecule A, the polar parameters for the furanose ring and adjacent five membered ring are Q = 0.289 (3) and 0.312 (2) Å, Φ = 122.9 (5)° and 119.7 (5)°, respectively. These suggest a twisted 4T3 conformation for the furanose ring (ideal Φ = 126°), slightly distorted towards envelope (Φ = 108°). The substituent ring also has a twisted conformation (Fig. 3).
In molecule B (Fig. 4), the polar parameters for the furanose ring and the corresponding five membered ring are Q = 0.292 (3) and 0.361 (2) Å, Φ = 142.1 (5)° and 143.9 (4)°. These suggest an envelope conformation (ideal Φ = 144°) for both rings, with atoms C(24) and C(26) in the corners of the respective envelopes (4E for the furanose ring).
In the structure of 1,2-di-O-isopropylidene-5-O-tosyl-D-xylofuranose which differs from the title compound in one hydroxy group, the polar parameters are Q = 0.352 (3) Å, Φ = 288.8 (5)°; see refcodes RUWDES and RUWDES01 (Cox et al., 1997). This makes the conformation an almost exact 3E envelope, but with a different carbon atom in the corner than in the case described here. Obviously, the furanose ring conformation is highly flexible and is easily influenced even by weak intermolecular interactions.
A short intramolecular contact is present between sulfonyl O atoms O5 and O15 and neighboring hydrogen atoms of the adjacent respective phenyl rings (see Table 1). This is quite common for aryl sulfonyls and the majority of these compounds exhibit these intramolecular interactions (mean H···O distance is 2.533 Å for more than 2500 analogous structures listed in the Cambridge Structural Database (Allen, 2002)). It may additionaly stabilize the conformation of the molecule. Only weak intermolecular C—H···O contacts (Table 1) exist between neighboring molecules.