metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m351-m352

(3-{[2,6-Bis(1-methyl­eth­yl)phen­yl]imino-κN}-1-phenyl­but-1-en-1-olato-κO)­di­methyl­aluminium

aSchool of Science, Beijing University of Chemical Technology, PO Box 144, Beisanhuandong Road 15, Chaoyang District, 100029 Beijing, People's Republic of China, and bKey Laboratory for Synthetic Resin, Petrochemical Research Institute, PetroChina Company Limited, Block E, Jingxinyuan A, No. 25 Beiwucun Road, Haidian District, Beijing 100195, People's Republic of China
*Correspondence e-mail: hjhao@mail.buct.edu.cn

(Received 24 November 2011; accepted 10 February 2012; online 3 March 2012)

The mol­ecular structure of the title compound, [Al(CH3)2(C22H26NO)], displays a monomer with the AlIII atom in a distorted tetra­hedral environment defined by two methyl groups and the N and O atoms of the chelating ketiminate anion. The O—Al—N bite angle of the chelating ligand is 94.14 (9)°. The O—C—C—C—N backbone of the ligand is nearly coplanar (r.m.s. deviation = 0.029 Å) and the Al atom deviates significantly from the mean plane by 0.525 (3) Å. In the crystal, weak inter­molecular C—H⋯O inter­actions are observed.

Related literature

For the structures of related aluminium complexes, see: Yu et al. (2002[Yu, R.-C., Hung, C.-H., Huang, J.-H., Lee, H.-Y. & Chen, J.-T. (2002). Inorg. Chem. 41, 6450-6455.]). For the structures of nickel, palladium, iron and zinc complexes with related bidentate β-ketoiminate ligands, see: He et al. (2003[He, X., Yao, Y., Luo, X., Zhang, J., Liu, Y., Zhang, L. & Wu, Q. (2003). Organometallics, 22, 4952-4957.]); Li et al. (2005[Li, X.-F., Li, Y.-G., Li, Y.-S., Chen, Y.-X. & Hu, N.-H. (2005). Organometallics, 24, 2502-2510.]); Benito-Garagorri et al. (2005[Benito-Garagorri, D., Kirchner, K. & Mereiter, K. (2005). Private communication (refcode NAWKOM). CCDC, Union Road, Cambridge, England.]); Granum et al. (2011[Granum, D. M., Riedel, P. J., Crawford, J. A., Mahle, T. K., Wyss, C. M., Begej, A. K., Arulsamy, N., Pierce, B. S. & Mehn, M. P. (2011). Dalton Trans. 40, 5881-5890.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Al(CH3)2(C22H26NO)]

  • Mr = 377.49

  • Monoclinic, P 21 /c

  • a = 15.231 (4) Å

  • b = 9.994 (3) Å

  • c = 15.289 (4) Å

  • β = 102.889 (5)°

  • V = 2268.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan SADABS (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.988

  • 12801 measured reflections

  • 4662 independent reflections

  • 2308 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.142

  • S = 0.99

  • 4662 reflections

  • 251 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Selected bond lengths (Å)

Al1—O1 1.7853 (19)
Al1—C24 1.939 (3)
Al1—N1 1.947 (2)
Al1—C23 1.949 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.69 3.525 (2) 151
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART and SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The bidentate β-ketoiminate ligand, {[2,6-bis(1-methylethyl)phenyl]imino}pent-2-en-2-olate, is well known in the literature in transition-metal complexes (see Granum, et al., 2011, and references therein) while the phenyl derivative used in the title compound, {[2,6-bis(1-methylethyl)phenyl]imino}-1-phenylbut-1-en-1-olate, is only reported in the Cambridge Structural Database (Allen, 2002) for two Ni complexes (He et al., 2003; Li et al., 2005) and one Pd complex (Benito-Garagorri et al., 2005).

The molecular structure of the title compound, C24H32AlNO, displays a monomer with the Al atom in a distorted tetrahedral environment defined by two methyl groups and the N and O atoms of the chelating ketiminate ligand. (Yu, et al., 2002). The Al—O1, Al1—N1 (Table 1), C1—C8, and C8—C9 bond lengths of 1.7853 (10), 1.947 (2), 1.360 (3) and1.417 (3) Å, respectively, are very similar to those in related aluminium compounds (Yu et al., 2002). The biting angle of the ligand, O1—Al1—N1, is 94.14 (9)°. The backbone of the ligand, O1–C1–C8–C9–N1, is nearly coplanar (r.m.s. deviation = 0.029 Å) and the Al atom significantly deviates from the mean plane by 0.525 (3) Å. In the crystal structure, weak intermolecular C–H···O are observed (Table 2).

Related literature top

For the structures of related aluminium complexes, see: Yu et al. (2002). For the structures of iron and zinc [Comment section says Ni and Pd; please clarify] complexes with related bidentate β-ketoiminate ligands, see: He et al. (2003); Li et al. (2005); Granum et al. (2011); Benito-Garagorri et al. (2005). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

All the operations were carried out by using Schlenk techniques or in a drybox under dinitrogen atmosphere. The ketiminate ligand [PhC(O)CHCMeNHAr] (0.645 g, 2.00 mmol) was dissolved in 30 ml of toluene. To this solution, AlMe3 (1.1 ml, 2.0 M in toluene, 2.2 mmol) was added dropwise at room temperature and the resulting solution was stirred for 3 h. After the removal of all volatiles, the residue was dissolved in hexane and stored at 0 °C for 12 h to afford colorless crystals (0.67 g, 90%), which were suitable for a X-ray diffraction analysis.

Refinement top

All hydrogen positions were calculated after each cycle of refinement using a riding model, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, with C—H = 0.98Å and Uiso(H) = 1.2Ueq(C) for methine H atoms, and with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Structure description top

The bidentate β-ketoiminate ligand, {[2,6-bis(1-methylethyl)phenyl]imino}pent-2-en-2-olate, is well known in the literature in transition-metal complexes (see Granum, et al., 2011, and references therein) while the phenyl derivative used in the title compound, {[2,6-bis(1-methylethyl)phenyl]imino}-1-phenylbut-1-en-1-olate, is only reported in the Cambridge Structural Database (Allen, 2002) for two Ni complexes (He et al., 2003; Li et al., 2005) and one Pd complex (Benito-Garagorri et al., 2005).

The molecular structure of the title compound, C24H32AlNO, displays a monomer with the Al atom in a distorted tetrahedral environment defined by two methyl groups and the N and O atoms of the chelating ketiminate ligand. (Yu, et al., 2002). The Al—O1, Al1—N1 (Table 1), C1—C8, and C8—C9 bond lengths of 1.7853 (10), 1.947 (2), 1.360 (3) and1.417 (3) Å, respectively, are very similar to those in related aluminium compounds (Yu et al., 2002). The biting angle of the ligand, O1—Al1—N1, is 94.14 (9)°. The backbone of the ligand, O1–C1–C8–C9–N1, is nearly coplanar (r.m.s. deviation = 0.029 Å) and the Al atom significantly deviates from the mean plane by 0.525 (3) Å. In the crystal structure, weak intermolecular C–H···O are observed (Table 2).

For the structures of related aluminium complexes, see: Yu et al. (2002). For the structures of iron and zinc [Comment section says Ni and Pd; please clarify] complexes with related bidentate β-ketoiminate ligands, see: He et al. (2003); Li et al. (2005); Granum et al. (2011); Benito-Garagorri et al. (2005). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART and SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
(3-{[2,6-Bis(1-methylethyl)phenyl]imino-κN}-1-phenylbut-1-en-1-olato- κO](dimethyl)aluminium top
Crystal data top
[Al(CH3)2(C22H26NO)]F(000) = 816
Mr = 377.49Dx = 1.105 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 960 reflections
a = 15.231 (4) Åθ = 2.5–22.1°
b = 9.994 (3) ŵ = 0.10 mm1
c = 15.289 (4) ÅT = 293 K
β = 102.889 (5)°Colourless, colourless
V = 2268.7 (10) Å30.20 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4662 independent reflections
Radiation source: fine-focus sealed tube2308 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
phi and ω scansθmax = 26.5°, θmin = 1.4°
Absorption correction: multi-scan
SADABS (Bruker, 1998)
h = 1915
Tmin = 0.973, Tmax = 0.988k = 1212
12801 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.1518P]
where P = (Fo2 + 2Fc2)/3
4662 reflections(Δ/σ)max = 0.002
251 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
[Al(CH3)2(C22H26NO)]V = 2268.7 (10) Å3
Mr = 377.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.231 (4) ŵ = 0.10 mm1
b = 9.994 (3) ÅT = 293 K
c = 15.289 (4) Å0.20 × 0.18 × 0.12 mm
β = 102.889 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4662 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 1998)
2308 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.988Rint = 0.071
12801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 0.99Δρmax = 0.18 e Å3
4662 reflectionsΔρmin = 0.18 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.72813 (6)0.07289 (8)0.08417 (5)0.0456 (3)
O10.66287 (12)0.00347 (19)0.15410 (12)0.0557 (5)
N10.79222 (13)0.1912 (2)0.17815 (13)0.0380 (5)
C10.68754 (17)0.0199 (3)0.24069 (18)0.0409 (7)
C20.63259 (19)0.1183 (3)0.27835 (19)0.0431 (7)
C30.6553 (2)0.1596 (3)0.3665 (2)0.0639 (9)
H30.70680.12550.40450.077*
C40.6024 (3)0.2510 (3)0.3991 (2)0.0732 (10)
H40.61840.27840.45870.088*
C50.5262 (2)0.3012 (3)0.3435 (3)0.0678 (10)
H50.49010.36180.36550.081*
C60.5035 (2)0.2623 (3)0.2560 (3)0.0662 (9)
H60.45220.29710.21800.079*
C70.5564 (2)0.1714 (3)0.2236 (2)0.0572 (8)
H70.54040.14560.16370.069*
C80.75586 (18)0.0519 (3)0.29209 (17)0.0456 (7)
H80.77410.02730.35210.055*
C90.80191 (17)0.1606 (3)0.26307 (18)0.0415 (7)
C100.8627 (2)0.2406 (3)0.33578 (18)0.0608 (9)
H10A0.91770.19220.35760.091*
H10B0.83310.25540.38420.091*
H10C0.87600.32510.31190.091*
C110.82742 (18)0.3144 (3)0.14972 (16)0.0396 (7)
C120.76949 (18)0.4247 (3)0.13277 (17)0.0441 (7)
C130.67952 (19)0.4276 (3)0.1588 (2)0.0565 (8)
H130.66050.33470.16350.068*
C140.6892 (2)0.4919 (4)0.2512 (2)0.0892 (12)
H14A0.73360.44420.29430.134*
H14B0.63240.48860.26850.134*
H14C0.70760.58350.24870.134*
C150.6056 (2)0.4978 (4)0.0913 (2)0.0863 (11)
H15A0.61720.59230.09280.129*
H15B0.54850.48150.10620.129*
H15C0.60430.46400.03220.129*
C160.7996 (2)0.5371 (3)0.09505 (19)0.0603 (9)
H160.76240.61180.08310.072*
C170.8826 (2)0.5407 (3)0.0750 (2)0.0692 (10)
H170.90080.61640.04830.083*
C180.9385 (2)0.4338 (3)0.0939 (2)0.0617 (9)
H180.99530.43840.08090.074*
C190.91372 (19)0.3177 (3)0.13219 (17)0.0459 (7)
C200.9802 (2)0.2053 (3)0.1555 (2)0.0604 (9)
H200.95100.13210.18080.072*
C211.0103 (3)0.1520 (4)0.0738 (2)0.0964 (13)
H21A0.95840.12890.02800.145*
H21B1.04700.07390.09030.145*
H21C1.04450.21940.05150.145*
C221.0629 (2)0.2489 (4)0.2259 (3)0.1135 (15)
H22A1.09660.31320.20010.170*
H22B1.10010.17240.24600.170*
H22C1.04410.28840.27600.170*
C230.8091 (2)0.0611 (3)0.0531 (2)0.0842 (11)
H23A0.85510.08210.10520.126*
H23B0.83640.02650.00690.126*
H23C0.77560.14050.03190.126*
C240.6516 (2)0.1673 (3)0.01497 (19)0.0738 (10)
H24A0.62790.10520.06220.111*
H24B0.68620.23460.03690.111*
H24C0.60280.20900.00520.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0502 (5)0.0460 (5)0.0408 (5)0.0029 (4)0.0106 (4)0.0022 (4)
O10.0552 (13)0.0653 (13)0.0444 (12)0.0169 (10)0.0061 (10)0.0040 (10)
N10.0396 (13)0.0369 (13)0.0384 (13)0.0003 (10)0.0109 (10)0.0035 (10)
C10.0380 (16)0.0405 (16)0.0437 (17)0.0039 (13)0.0079 (14)0.0043 (13)
C20.0416 (17)0.0389 (16)0.0508 (18)0.0000 (13)0.0148 (15)0.0014 (14)
C30.072 (2)0.062 (2)0.058 (2)0.0226 (18)0.0151 (18)0.0045 (17)
C40.092 (3)0.067 (2)0.068 (2)0.015 (2)0.033 (2)0.0093 (18)
C50.068 (2)0.052 (2)0.095 (3)0.0082 (18)0.043 (2)0.003 (2)
C60.046 (2)0.061 (2)0.091 (3)0.0111 (17)0.0165 (19)0.0031 (19)
C70.048 (2)0.057 (2)0.066 (2)0.0031 (16)0.0128 (17)0.0041 (16)
C80.0488 (18)0.0498 (18)0.0369 (16)0.0022 (15)0.0067 (14)0.0091 (13)
C90.0399 (17)0.0406 (16)0.0435 (18)0.0003 (13)0.0083 (13)0.0027 (13)
C100.067 (2)0.065 (2)0.0466 (18)0.0177 (18)0.0033 (16)0.0002 (15)
C110.0438 (18)0.0382 (17)0.0372 (16)0.0033 (13)0.0099 (13)0.0001 (12)
C120.0498 (18)0.0394 (16)0.0441 (16)0.0032 (15)0.0122 (14)0.0003 (14)
C130.054 (2)0.0423 (17)0.076 (2)0.0048 (16)0.0201 (17)0.0100 (16)
C140.092 (3)0.110 (3)0.076 (2)0.031 (2)0.040 (2)0.001 (2)
C150.066 (2)0.084 (3)0.107 (3)0.021 (2)0.015 (2)0.015 (2)
C160.075 (2)0.043 (2)0.065 (2)0.0018 (16)0.0207 (19)0.0063 (15)
C170.084 (3)0.055 (2)0.077 (2)0.013 (2)0.037 (2)0.0131 (18)
C180.060 (2)0.063 (2)0.070 (2)0.0121 (19)0.0315 (18)0.0002 (18)
C190.0466 (18)0.0487 (19)0.0436 (17)0.0028 (15)0.0129 (14)0.0008 (14)
C200.0451 (19)0.068 (2)0.072 (2)0.0035 (17)0.0217 (17)0.0097 (18)
C210.106 (3)0.094 (3)0.106 (3)0.029 (3)0.058 (3)0.006 (2)
C220.060 (3)0.150 (4)0.116 (3)0.001 (3)0.010 (2)0.017 (3)
C230.080 (3)0.075 (2)0.100 (3)0.004 (2)0.025 (2)0.027 (2)
C240.092 (3)0.076 (2)0.048 (2)0.006 (2)0.0041 (18)0.0002 (17)
Geometric parameters (Å, º) top
Al1—O11.7853 (19)C13—C141.528 (4)
Al1—C241.939 (3)C13—H130.9800
Al1—N11.947 (2)C14—H14A0.9600
Al1—C231.949 (3)C14—H14B0.9600
O1—C11.303 (3)C14—H14C0.9600
N1—C91.310 (3)C15—H15A0.9600
N1—C111.447 (3)C15—H15B0.9600
C1—C81.360 (3)C15—H15C0.9600
C1—C21.488 (3)C16—C171.367 (4)
C2—C71.377 (4)C16—H160.9300
C2—C31.377 (4)C17—C181.357 (4)
C3—C41.384 (4)C17—H170.9300
C3—H30.9300C18—C191.390 (4)
C4—C51.371 (4)C18—H180.9300
C4—H40.9300C19—C201.501 (4)
C5—C61.362 (4)C20—C211.519 (4)
C5—H50.9300C20—C221.527 (4)
C6—C71.377 (4)C20—H200.9800
C6—H60.9300C21—H21A0.9600
C7—H70.9300C21—H21B0.9600
C8—C91.417 (3)C21—H21C0.9600
C8—H80.9300C22—H22A0.9600
C9—C101.508 (4)C22—H22B0.9600
C10—H10A0.9600C22—H22C0.9600
C10—H10B0.9600C23—H23A0.9600
C10—H10C0.9600C23—H23B0.9600
C11—C191.399 (3)C23—H23C0.9600
C11—C121.400 (4)C24—H24A0.9600
C12—C161.386 (4)C24—H24B0.9600
C12—C131.510 (4)C24—H24C0.9600
C13—C151.519 (4)
O1—Al1—C24111.00 (13)C13—C14—H14A109.5
O1—Al1—N194.14 (9)C13—C14—H14B109.5
C24—Al1—N1113.34 (12)H14A—C14—H14B109.5
O1—Al1—C23108.60 (13)C13—C14—H14C109.5
C24—Al1—C23116.53 (15)H14A—C14—H14C109.5
N1—Al1—C23110.90 (13)H14B—C14—H14C109.5
C1—O1—Al1126.10 (18)C13—C15—H15A109.5
C9—N1—C11122.0 (2)C13—C15—H15B109.5
C9—N1—Al1121.08 (18)H15A—C15—H15B109.5
C11—N1—Al1116.95 (16)C13—C15—H15C109.5
O1—C1—C8122.0 (2)H15A—C15—H15C109.5
O1—C1—C2114.6 (2)H15B—C15—H15C109.5
C8—C1—C2123.3 (2)C17—C16—C12121.5 (3)
C7—C2—C3118.3 (3)C17—C16—H16119.2
C7—C2—C1119.3 (3)C12—C16—H16119.2
C3—C2—C1122.4 (3)C18—C17—C16120.0 (3)
C2—C3—C4120.7 (3)C18—C17—H17120.0
C2—C3—H3119.6C16—C17—H17120.0
C4—C3—H3119.6C17—C18—C19122.1 (3)
C5—C4—C3119.9 (3)C17—C18—H18119.0
C5—C4—H4120.0C19—C18—H18119.0
C3—C4—H4120.0C18—C19—C11117.1 (3)
C6—C5—C4119.9 (3)C18—C19—C20119.5 (3)
C6—C5—H5120.0C11—C19—C20123.4 (2)
C4—C5—H5120.0C19—C20—C21112.3 (3)
C5—C6—C7120.1 (3)C19—C20—C22111.1 (3)
C5—C6—H6120.0C21—C20—C22109.1 (3)
C7—C6—H6120.0C19—C20—H20108.1
C2—C7—C6121.1 (3)C21—C20—H20108.1
C2—C7—H7119.5C22—C20—H20108.1
C6—C7—H7119.5C20—C21—H21A109.5
C1—C8—C9126.3 (2)C20—C21—H21B109.5
C1—C8—H8116.9H21A—C21—H21B109.5
C9—C8—H8116.9C20—C21—H21C109.5
N1—C9—C8122.4 (2)H21A—C21—H21C109.5
N1—C9—C10121.4 (2)H21B—C21—H21C109.5
C8—C9—C10116.2 (2)C20—C22—H22A109.5
C9—C10—H10A109.5C20—C22—H22B109.5
C9—C10—H10B109.5H22A—C22—H22B109.5
H10A—C10—H10B109.5C20—C22—H22C109.5
C9—C10—H10C109.5H22A—C22—H22C109.5
H10A—C10—H10C109.5H22B—C22—H22C109.5
H10B—C10—H10C109.5Al1—C23—H23A109.5
C19—C11—C12121.8 (2)Al1—C23—H23B109.5
C19—C11—N1120.3 (2)H23A—C23—H23B109.5
C12—C11—N1117.7 (2)Al1—C23—H23C109.5
C16—C12—C11117.5 (2)H23A—C23—H23C109.5
C16—C12—C13119.9 (3)H23B—C23—H23C109.5
C11—C12—C13122.5 (2)Al1—C24—H24A109.5
C12—C13—C15114.1 (2)Al1—C24—H24B109.5
C12—C13—C14110.2 (3)H24A—C24—H24B109.5
C15—C13—C14109.7 (3)Al1—C24—H24C109.5
C12—C13—H13107.5H24A—C24—H24C109.5
C15—C13—H13107.5H24B—C24—H24C109.5
C14—C13—H13107.5
C24—Al1—O1—C1146.8 (2)C1—C8—C9—N110.8 (4)
N1—Al1—O1—C129.8 (2)C1—C8—C9—C10168.7 (3)
C23—Al1—O1—C183.9 (2)C9—N1—C11—C1992.0 (3)
O1—Al1—N1—C924.7 (2)Al1—N1—C11—C1988.7 (3)
C24—Al1—N1—C9139.7 (2)C9—N1—C11—C1293.7 (3)
C23—Al1—N1—C987.0 (2)Al1—N1—C11—C1285.6 (2)
O1—Al1—N1—C11154.67 (18)C19—C11—C12—C162.0 (4)
C24—Al1—N1—C1139.7 (2)N1—C11—C12—C16172.2 (2)
C23—Al1—N1—C1193.6 (2)C19—C11—C12—C13174.4 (2)
Al1—O1—C1—C818.8 (4)N1—C11—C12—C1311.4 (4)
Al1—O1—C1—C2163.72 (17)C16—C12—C13—C1541.1 (4)
O1—C1—C2—C77.2 (4)C11—C12—C13—C15142.6 (3)
C8—C1—C2—C7170.2 (3)C16—C12—C13—C1482.9 (3)
O1—C1—C2—C3172.3 (3)C11—C12—C13—C1493.4 (3)
C8—C1—C2—C310.3 (4)C11—C12—C16—C170.0 (4)
C7—C2—C3—C40.6 (4)C13—C12—C16—C17176.5 (3)
C1—C2—C3—C4179.8 (3)C12—C16—C17—C181.6 (5)
C2—C3—C4—C50.2 (5)C16—C17—C18—C191.2 (5)
C3—C4—C5—C60.9 (5)C17—C18—C19—C110.7 (4)
C4—C5—C6—C70.8 (5)C17—C18—C19—C20177.2 (3)
C3—C2—C7—C60.8 (4)C12—C11—C19—C182.3 (4)
C1—C2—C7—C6179.7 (3)N1—C11—C19—C18171.7 (2)
C5—C6—C7—C20.1 (5)C12—C11—C19—C20175.5 (3)
O1—C1—C8—C97.3 (4)N1—C11—C19—C2010.5 (4)
C2—C1—C8—C9170.0 (2)C18—C19—C20—C2160.2 (4)
C11—N1—C9—C8169.6 (2)C11—C19—C20—C21122.0 (3)
Al1—N1—C9—C89.7 (3)C18—C19—C20—C2262.2 (4)
C11—N1—C9—C109.9 (4)C11—C19—C20—C22115.5 (3)
Al1—N1—C9—C10170.84 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.693.525 (2)151
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Al(CH3)2(C22H26NO)]
Mr377.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.231 (4), 9.994 (3), 15.289 (4)
β (°) 102.889 (5)
V3)2268.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
SADABS (Bruker, 1998)
Tmin, Tmax0.973, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
12801, 4662, 2308
Rint0.071
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.142, 0.99
No. of reflections4662
No. of parameters251
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: SMART (Bruker, 1998), SMART and SAINT (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Al1—O11.7853 (19)Al1—N11.947 (2)
Al1—C241.939 (3)Al1—C231.949 (3)
O1—Al1—C24111.00 (13)O1—Al1—C23108.60 (13)
O1—Al1—N194.14 (9)C24—Al1—C23116.53 (15)
C24—Al1—N1113.34 (12)N1—Al1—C23110.90 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.6853.525 (2)151
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Haibin Song for the structural determination. This work is financed by PetroChina (contract No. 09-YK-05-19).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBenito-Garagorri, D., Kirchner, K. & Mereiter, K. (2005). Private communication (refcode NAWKOM). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGranum, D. M., Riedel, P. J., Crawford, J. A., Mahle, T. K., Wyss, C. M., Begej, A. K., Arulsamy, N., Pierce, B. S. & Mehn, M. P. (2011). Dalton Trans. 40, 5881–5890.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHe, X., Yao, Y., Luo, X., Zhang, J., Liu, Y., Zhang, L. & Wu, Q. (2003). Organometallics, 22, 4952–4957.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X.-F., Li, Y.-G., Li, Y.-S., Chen, Y.-X. & Hu, N.-H. (2005). Organometallics, 24, 2502–2510.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, R.-C., Hung, C.-H., Huang, J.-H., Lee, H.-Y. & Chen, J.-T. (2002). Inorg. Chem. 41, 6450–6455.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m351-m352
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds