metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di-μ3-chlorido-di-μ2-chlorido-{μ4-N,N,N′,N′-tetra­kis­[(di­phenyl­phosphan­yl)meth­yl]benzene-1,4-di­amine-κ4P:P′:P′′:P′′′}tetra­copper(II)]

aSchool of Physics and Chemistry, Xihua University, Chengdu 610039, People's Republic of China
*Correspondence e-mail: liujq67@yahoo.com.cn

(Received 12 January 2012; accepted 12 March 2012; online 17 March 2012)

In the title complex, [Cu4Cl4(C58H52N2P4)]n, four CuII atoms are held together via two doubly bridging and two triply bridging chlorides, forming a stair-like Cu4Cl4 core having crystallographically imposed inversion symmetry, while the benzene-1,4-diamine ligand (with a crystallographic inversion center at the centroid) acts in a tetra­dentate coordination mode, bridging two adjacent Cu4Cl4 cores, resulting in a chain along the a-axis direction. One Cu atom has a distorted tetra­hedral geometry, coordinated by one P atom, one μ2-Cl and two μ3-Cl atoms, while the second Cu atom adopts a trigonal geometry, coordinated by one P atom, one μ2-Cl and one μ3-Cl atoms.

Related literature

For the structures and properties of CuI complexes containing polyphosphine ligands, see: Li et al. (2009[Li, N.-Y., Ren, Z.-G., Liu, D., Wang, J., Dai, M., Li, H.-X. & Lang, J.-P. (2009). Inorg. Chem. Commun. 12, 1031-1034.]); Kohl et al. (2006[Kohl, S. W., Heinemann, F. W., Hummert, M., Bauer, W. & Grohmann, A. (2006). Dalton Trans. pp. 5583-5592.]); Wang et al. (2008[Wang, X.-J., Gui, L.-C., Ni, Q.-L., Liao, Y.-F., Jiang, X.-F., Tang, L.-H., Zhang, Z. & Wu, Q. (2008). CrystEngComm, 10, 1003-1010.]); Hou et al.(2011[Hou, R., Huang, T.-H., Wang, X.-J., Jiang, X.-F., Ni, Q.-L., Gui, L.-C., Fan, Y.-J. & Tan, Y.-L. (2011). Dalton Trans. 40, 7551-7558.]); Ni et al. (2011[Ni, Q.-L., Jiang, X.-F., Gui, L.-C., Wang, X.-J., Yang, K.-G. & Bi, X.-S. (2011). New J. Chem. 35, 2471-2476.]). For the synthesis of Cu(I) complexes with diphosphine ligands, see: Saravanabharathi et al. (2002[Saravanabharathi, D., Monika,Venugopalan, P. & Samuelson, A. G. (2002). Polyhedron, 21, 2433-2443.]); Sivasankar et al. (2004[Sivasankar, C., Nethaji, M. & Samuelson, A. G. (2004). Inorg. Chem. Commun. 7, 238-240.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4Cl4(C58H52N2P4)]

  • Mr = 1296.86

  • Monoclinic, P 21 /c

  • a = 10.298 (7) Å

  • b = 17.649 (12) Å

  • c = 18.009 (9) Å

  • β = 123.94 (3)°

  • V = 2715 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.90 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.852, Tmax = 1.000

  • 15819 measured reflections

  • 5333 independent reflections

  • 3089 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.143

  • S = 0.94

  • 5333 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—P1 2.1998 (19)
Cu1—Cl2 2.3975 (19)
Cu1—Cl1 2.4140 (17)
Cu1—Cl1i 2.565 (2)
Cu2—P2ii 2.188 (2)
Cu2—Cl2 2.3062 (18)
Cu2—Cl1 2.3255 (18)
Symmetry codes: (i) -x-1, -y, -z+1; (ii) -x, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, CuI complexes containing multiphosphine ligands have received much attention so far due to their special structures, novel reactivity, as well as catalytic and luminescent properties (Kohl et al., 2006; Wang et al., 2008; Hou et al., 2011; Ni et al., 2011). However, synthesis of CuI complexes with tetraphosphine ligands have been virtually not explored, though a great number of Cu(I) complexes with diphosphines were reported (Saravanabharathi et al., 2002; Sivasankar et al., 2004; Li et al., 2009). Herein, we report the synthesis and crystal structure of a new CuI complex with the tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand (dpppda), the title complex [Cu4Cl4(dpppda)]n.

The asymmetric unit of the title complex, [Cu2Cl2(C29H26NP2)]n, contains two copper ions, two chlorine atoms and one half of the N,N,N',N'-tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand (dpppda). Four copper atoms are held together via two doubly bridging and two triply-bridging chlorides to form a stair-like Cu4Cl4 core having a crystallographically imposed centrosymmetry, while the N,N,N',N'-tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand (with a crystallographic inversion center at the midpoint of the central phenyl ring) acts as a tetradentate coordination mode to bridge two adjacent Cu4Cl4 cores resulting in a one-dimentional chain. The structure of the title complex is anologous to the reported complex [Cu4I4(dpppda)] (Li et al., 2009). Cu1 has a distorted tetrahedral geometry, coordinated by one P atom, one µ2-Cl and two µ3-Cl atoms, while Cu2 adopts a trigonal geometry, coordinated by one P atom, one µ2-Cl and one µ3-Cl atoms. The mean Cu—Cl and Cu—P bond distances are 2.40 (1) and 2.19 (2) Å, respectively.

Related literature top

For the structures and properties of CuI complexes containing multiphosphine ligands, see: Li et al. (2009); Kohl et al. (2006); Wang et al. (2008); Hou et al.(2011); Ni et al. (2011). For the synthesis of Cu(I) complexes with diphosphine ligands, see: Saravanabharathi et al. (2002); Sivasankar et al. (2004).

Experimental top

CuCl (0.0198 g, 0.2 mmol) was added with stirring to a solution of N,N,N',N'-tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine (0.0900 g, 0.10 mmol) in DMF (5 ml), and the resulting solution was allowed to stir for 1 h at room temperature. Slow diffusion of diethyl ether into the solution give colourless block crystals suitable for X-ray analysis after three days.

Refinement top

All hydrogen atoms were generated geometrically with C—H distances of 0.93Å (aromatic H atoms) and 0.97Å (methylene H atoms) and refined with a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

Recently, CuI complexes containing multiphosphine ligands have received much attention so far due to their special structures, novel reactivity, as well as catalytic and luminescent properties (Kohl et al., 2006; Wang et al., 2008; Hou et al., 2011; Ni et al., 2011). However, synthesis of CuI complexes with tetraphosphine ligands have been virtually not explored, though a great number of Cu(I) complexes with diphosphines were reported (Saravanabharathi et al., 2002; Sivasankar et al., 2004; Li et al., 2009). Herein, we report the synthesis and crystal structure of a new CuI complex with the tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand (dpppda), the title complex [Cu4Cl4(dpppda)]n.

The asymmetric unit of the title complex, [Cu2Cl2(C29H26NP2)]n, contains two copper ions, two chlorine atoms and one half of the N,N,N',N'-tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand (dpppda). Four copper atoms are held together via two doubly bridging and two triply-bridging chlorides to form a stair-like Cu4Cl4 core having a crystallographically imposed centrosymmetry, while the N,N,N',N'-tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand (with a crystallographic inversion center at the midpoint of the central phenyl ring) acts as a tetradentate coordination mode to bridge two adjacent Cu4Cl4 cores resulting in a one-dimentional chain. The structure of the title complex is anologous to the reported complex [Cu4I4(dpppda)] (Li et al., 2009). Cu1 has a distorted tetrahedral geometry, coordinated by one P atom, one µ2-Cl and two µ3-Cl atoms, while Cu2 adopts a trigonal geometry, coordinated by one P atom, one µ2-Cl and one µ3-Cl atoms. The mean Cu—Cl and Cu—P bond distances are 2.40 (1) and 2.19 (2) Å, respectively.

For the structures and properties of CuI complexes containing multiphosphine ligands, see: Li et al. (2009); Kohl et al. (2006); Wang et al. (2008); Hou et al.(2011); Ni et al. (2011). For the synthesis of Cu(I) complexes with diphosphine ligands, see: Saravanabharathi et al. (2002); Sivasankar et al. (2004).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 20% probability level. Hydrogen atoms are omitted for clarity. [symmetry code: (A) 1-x, -y, 1-z; (B) -x, -y, 1-z; (C) -1+x, y, z.]
Poly[di-µ3-chlorido-di-µ2-chlorido-{µ4- N,N,N',N'- tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine- κ4P:P':P'':P'''}tetracopper(II)] top
Crystal data top
[Cu4Cl4(C58H52N2P4)]F(000) = 1316
Mr = 1296.86Dx = 1.586 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5682 reflections
a = 10.298 (7) Åθ = 2.8–26.3°
b = 17.649 (12) ŵ = 1.90 mm1
c = 18.009 (9) ÅT = 296 K
β = 123.94 (3)°Block, colourless
V = 2715 (3) Å30.20 × 0.15 × 0.13 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
5333 independent reflections
Radiation source: fine-focus sealed tube3089 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 129
Tmin = 0.852, Tmax = 1.000k = 1921
15819 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
5333 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Cu4Cl4(C58H52N2P4)]V = 2715 (3) Å3
Mr = 1296.86Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.298 (7) ŵ = 1.90 mm1
b = 17.649 (12) ÅT = 296 K
c = 18.009 (9) Å0.20 × 0.15 × 0.13 mm
β = 123.94 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5333 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3089 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 1.000Rint = 0.085
15819 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 0.94Δρmax = 0.70 e Å3
5333 reflectionsΔρmin = 0.62 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.45394 (8)0.04466 (4)0.43168 (4)0.0540 (2)
Cu20.15464 (7)0.07255 (4)0.62081 (4)0.0487 (2)
Cl10.30501 (14)0.03659 (7)0.56069 (8)0.0417 (3)
Cl20.32846 (15)0.15805 (7)0.51454 (9)0.0526 (4)
P10.52339 (15)0.01608 (8)0.29527 (8)0.0402 (3)
P20.07631 (15)0.08176 (7)0.25371 (8)0.0367 (3)
N10.2438 (4)0.0268 (2)0.3202 (2)0.0397 (10)
C10.1055 (6)0.0562 (3)0.4500 (3)0.0370 (12)
H1A0.17670.09480.41720.044*
C20.1233 (5)0.0133 (3)0.4094 (3)0.0336 (11)
C30.0155 (6)0.0698 (3)0.4619 (3)0.0364 (11)
H3A0.02510.11750.43720.044*
C40.3712 (5)0.0258 (3)0.2699 (3)0.0393 (12)
H4A0.41930.01730.20640.047*
H4B0.33040.07710.28350.047*
C50.5742 (6)0.0830 (3)0.2617 (3)0.0430 (13)
C60.6482 (7)0.1100 (4)0.1736 (4)0.0658 (18)
H6A0.69620.07520.12690.079*
C70.6531 (8)0.1842 (4)0.1535 (5)0.077 (2)
H7A0.70370.19990.09430.092*
C80.5818 (8)0.2361 (4)0.2222 (5)0.087 (2)
H8A0.58020.28700.20940.104*
C90.5123 (8)0.2134 (4)0.3103 (4)0.088 (2)
H9A0.46840.24900.35620.105*
C100.5089 (7)0.1380 (3)0.3292 (4)0.0647 (17)
H10A0.46190.12300.38840.078*
C110.6787 (6)0.0772 (3)0.2085 (3)0.0481 (14)
C120.7157 (8)0.0836 (4)0.1220 (4)0.078 (2)
H12A0.66070.05450.10530.094*
C130.8307 (9)0.1312 (4)0.0603 (4)0.099 (3)
H13A0.85830.13190.00150.118*
C140.9051 (8)0.1783 (4)0.0868 (5)0.086 (2)
H14A0.98360.21080.04540.103*
C150.8645 (7)0.1776 (4)0.1730 (5)0.0743 (19)
H15A0.91180.21100.19100.089*
C160.7513 (7)0.1263 (3)0.2341 (4)0.0647 (17)
H16A0.72450.12530.29270.078*
C170.2353 (5)0.0931 (3)0.2727 (3)0.0402 (12)
H17A0.33460.09900.21560.048*
H17B0.21650.13850.30770.048*
C180.1096 (5)0.1626 (2)0.1820 (3)0.0352 (11)
C190.2520 (6)0.1996 (3)0.1284 (3)0.0516 (14)
H19A0.33850.18230.12710.062*
C200.2680 (7)0.2612 (3)0.0773 (4)0.0551 (15)
H20A0.36470.28490.04180.066*
C210.1420 (7)0.2879 (3)0.0785 (4)0.0525 (14)
H21A0.15260.32960.04410.063*
C220.0008 (7)0.2525 (3)0.1307 (4)0.0548 (15)
H22A0.08490.26990.13120.066*
C230.0160 (6)0.1911 (3)0.1827 (3)0.0453 (13)
H23A0.11380.16850.21900.054*
C240.1553 (6)0.0012 (3)0.1797 (3)0.0430 (13)
C250.1172 (7)0.0719 (3)0.2188 (4)0.0545 (15)
H25A0.04230.07690.27980.065*
C260.1918 (8)0.1364 (3)0.1661 (5)0.0701 (19)
H26A0.16720.18400.19280.084*
C270.2981 (8)0.1301 (4)0.0776 (4)0.0710 (19)
H27A0.34770.17320.04350.085*
C280.3334 (8)0.0610 (4)0.0378 (4)0.0714 (19)
H28A0.40570.05700.02370.086*
C290.2629 (7)0.0035 (3)0.0880 (4)0.0607 (17)
H29A0.28780.05050.05990.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0651 (5)0.0619 (5)0.0341 (4)0.0056 (3)0.0270 (4)0.0001 (3)
Cu20.0389 (4)0.0554 (4)0.0406 (4)0.0038 (3)0.0154 (3)0.0054 (3)
Cl10.0392 (7)0.0407 (7)0.0396 (7)0.0005 (5)0.0187 (6)0.0031 (5)
Cl20.0503 (8)0.0430 (8)0.0577 (9)0.0049 (6)0.0259 (7)0.0008 (6)
P10.0376 (8)0.0506 (9)0.0318 (7)0.0042 (6)0.0190 (6)0.0011 (6)
P20.0355 (7)0.0419 (8)0.0322 (7)0.0021 (6)0.0185 (6)0.0041 (6)
N10.038 (2)0.043 (2)0.035 (2)0.0018 (19)0.018 (2)0.0083 (18)
C10.040 (3)0.038 (3)0.032 (3)0.001 (2)0.020 (2)0.004 (2)
C20.035 (3)0.039 (3)0.029 (2)0.002 (2)0.019 (2)0.001 (2)
C30.046 (3)0.031 (3)0.040 (3)0.006 (2)0.030 (3)0.006 (2)
C40.041 (3)0.048 (3)0.026 (2)0.002 (2)0.017 (2)0.001 (2)
C50.035 (3)0.055 (3)0.047 (3)0.004 (2)0.027 (3)0.008 (3)
C60.066 (4)0.079 (5)0.044 (3)0.022 (3)0.026 (3)0.010 (3)
C70.083 (5)0.070 (5)0.087 (5)0.034 (4)0.053 (4)0.037 (4)
C80.068 (5)0.058 (4)0.119 (7)0.011 (4)0.044 (5)0.022 (5)
C90.088 (5)0.063 (5)0.066 (5)0.000 (4)0.014 (4)0.005 (4)
C100.064 (4)0.058 (4)0.054 (4)0.006 (3)0.021 (3)0.000 (3)
C110.044 (3)0.064 (4)0.034 (3)0.010 (3)0.021 (3)0.003 (2)
C120.093 (5)0.090 (5)0.047 (4)0.045 (4)0.037 (4)0.017 (3)
C130.123 (7)0.107 (6)0.053 (4)0.055 (5)0.041 (5)0.022 (4)
C140.065 (5)0.106 (6)0.064 (5)0.027 (4)0.021 (4)0.022 (4)
C150.075 (5)0.072 (5)0.083 (5)0.027 (4)0.048 (4)0.016 (4)
C160.064 (4)0.070 (4)0.057 (4)0.018 (3)0.032 (3)0.015 (3)
C170.040 (3)0.047 (3)0.036 (3)0.001 (2)0.023 (2)0.002 (2)
C180.038 (3)0.034 (3)0.034 (3)0.000 (2)0.020 (2)0.001 (2)
C190.043 (3)0.058 (4)0.053 (3)0.005 (3)0.026 (3)0.017 (3)
C200.052 (4)0.061 (4)0.056 (4)0.018 (3)0.033 (3)0.022 (3)
C210.068 (4)0.043 (3)0.056 (4)0.006 (3)0.040 (3)0.011 (3)
C220.052 (4)0.053 (4)0.065 (4)0.005 (3)0.036 (3)0.007 (3)
C230.040 (3)0.048 (3)0.050 (3)0.000 (2)0.027 (3)0.007 (2)
C240.043 (3)0.046 (3)0.041 (3)0.004 (2)0.025 (3)0.004 (2)
C250.062 (4)0.048 (3)0.053 (3)0.011 (3)0.032 (3)0.009 (3)
C260.090 (5)0.035 (3)0.085 (5)0.005 (3)0.048 (4)0.002 (3)
C270.077 (5)0.056 (4)0.068 (4)0.006 (3)0.033 (4)0.021 (3)
C280.077 (5)0.067 (5)0.046 (4)0.000 (3)0.020 (3)0.008 (3)
C290.074 (4)0.048 (4)0.046 (3)0.003 (3)0.025 (3)0.004 (3)
Geometric parameters (Å, º) top
Cu1—P12.1998 (19)C10—H10A0.9300
Cu1—Cl22.3975 (19)C11—C161.381 (7)
Cu1—Cl12.4140 (17)C11—C121.386 (8)
Cu1—Cl1i2.565 (2)C12—C131.369 (8)
Cu2—P2ii2.188 (2)C12—H12A0.9300
Cu2—Cl22.3062 (18)C13—C141.382 (9)
Cu2—Cl12.3255 (18)C13—H13A0.9300
Cl1—Cu1i2.565 (2)C14—C151.364 (9)
P1—C51.828 (5)C14—H14A0.9300
P1—C111.837 (5)C15—C161.399 (7)
P1—C41.869 (5)C15—H15A0.9300
P2—C181.824 (5)C16—H16A0.9300
P2—C241.836 (5)C17—H17A0.9700
P2—C171.861 (5)C17—H17B0.9700
P2—Cu2ii2.188 (2)C18—C231.381 (7)
N1—C21.397 (5)C18—C191.389 (6)
N1—C41.442 (6)C19—C201.374 (7)
N1—C171.479 (6)C19—H19A0.9300
C1—C3ii1.386 (6)C20—C211.368 (8)
C1—C21.387 (6)C20—H20A0.9300
C1—H1A0.9300C21—C221.364 (7)
C2—C31.396 (6)C21—H21A0.9300
C3—C1ii1.386 (6)C22—C231.378 (7)
C3—H3A0.9300C22—H22A0.9300
C4—H4A0.9700C23—H23A0.9300
C4—H4B0.9700C24—C251.378 (7)
C5—C101.400 (7)C24—C291.386 (7)
C5—C61.405 (7)C25—C261.404 (7)
C6—C71.352 (8)C25—H25A0.9300
C6—H6A0.9300C26—C271.342 (8)
C7—C81.377 (9)C26—H26A0.9300
C7—H7A0.9300C27—C281.358 (8)
C8—C91.387 (9)C27—H27A0.9300
C8—H8A0.9300C28—C291.380 (7)
C9—C101.368 (8)C28—H28A0.9300
C9—H9A0.9300C29—H29A0.9300
P1—Cu1—Cl2127.78 (6)C16—C11—C12117.7 (5)
P1—Cu1—Cl1125.05 (7)C16—C11—P1117.4 (4)
Cl2—Cu1—Cl193.71 (7)C12—C11—P1124.5 (4)
P1—Cu1—Cl1i109.03 (6)C13—C12—C11122.2 (6)
Cl2—Cu1—Cl1i102.38 (6)C13—C12—H12A118.9
Cl1—Cu1—Cl1i91.68 (6)C11—C12—H12A118.9
P2ii—Cu2—Cl2134.50 (6)C12—C13—C14118.9 (7)
P2ii—Cu2—Cl1126.84 (6)C12—C13—H13A120.5
Cl2—Cu2—Cl198.57 (7)C14—C13—H13A120.5
Cu2—Cl1—Cu181.73 (6)C15—C14—C13120.7 (6)
Cu2—Cl1—Cu1i115.71 (6)C15—C14—H14A119.6
Cu1—Cl1—Cu1i88.32 (6)C13—C14—H14A119.6
Cu2—Cl2—Cu182.49 (7)C14—C15—C16119.5 (6)
C5—P1—C11109.2 (2)C14—C15—H15A120.2
C5—P1—C497.5 (2)C16—C15—H15A120.2
C11—P1—C4100.9 (2)C11—C16—C15120.8 (6)
C5—P1—Cu1116.30 (18)C11—C16—H16A119.6
C11—P1—Cu1113.65 (18)C15—C16—H16A119.6
C4—P1—Cu1117.26 (16)N1—C17—P2111.4 (3)
C18—P2—C24106.1 (2)N1—C17—H17A109.4
C18—P2—C17102.1 (2)P2—C17—H17A109.4
C24—P2—C1798.1 (2)N1—C17—H17B109.4
C18—P2—Cu2ii117.10 (16)P2—C17—H17B109.4
C24—P2—Cu2ii118.43 (17)H17A—C17—H17B108.0
C17—P2—Cu2ii112.24 (17)C23—C18—C19117.1 (4)
C2—N1—C4121.7 (4)C23—C18—P2118.3 (4)
C2—N1—C17119.9 (4)C19—C18—P2124.6 (4)
C4—N1—C17118.2 (4)C20—C19—C18121.5 (5)
C3ii—C1—C2121.7 (4)C20—C19—H19A119.2
C3ii—C1—H1A119.1C18—C19—H19A119.2
C2—C1—H1A119.1C21—C20—C19120.2 (5)
C1—C2—C3117.0 (4)C21—C20—H20A119.9
C1—C2—N1121.9 (4)C19—C20—H20A119.9
C3—C2—N1121.1 (4)C22—C21—C20119.3 (5)
C1ii—C3—C2121.2 (4)C22—C21—H21A120.3
C1ii—C3—H3A119.4C20—C21—H21A120.3
C2—C3—H3A119.4C21—C22—C23120.6 (5)
N1—C4—P1112.3 (3)C21—C22—H22A119.7
N1—C4—H4A109.1C23—C22—H22A119.7
P1—C4—H4A109.1C22—C23—C18121.2 (5)
N1—C4—H4B109.1C22—C23—H23A119.4
P1—C4—H4B109.1C18—C23—H23A119.4
H4A—C4—H4B107.9C25—C24—C29118.2 (5)
C10—C5—C6116.0 (5)C25—C24—P2117.9 (4)
C10—C5—P1117.8 (4)C29—C24—P2123.6 (4)
C6—C5—P1125.0 (4)C24—C25—C26119.8 (5)
C7—C6—C5123.2 (6)C24—C25—H25A120.1
C7—C6—H6A118.4C26—C25—H25A120.1
C5—C6—H6A118.4C27—C26—C25120.8 (5)
C6—C7—C8118.8 (6)C27—C26—H26A119.6
C6—C7—H7A120.6C25—C26—H26A119.6
C8—C7—H7A120.6C26—C27—C28120.1 (6)
C7—C8—C9120.8 (6)C26—C27—H27A120.0
C7—C8—H8A119.6C28—C27—H27A120.0
C9—C8—H8A119.6C27—C28—C29120.5 (6)
C10—C9—C8119.4 (6)C27—C28—H28A119.8
C10—C9—H9A120.3C29—C28—H28A119.8
C8—C9—H9A120.3C28—C29—C24120.6 (5)
C9—C10—C5121.7 (6)C28—C29—H29A119.7
C9—C10—H10A119.1C24—C29—H29A119.7
C5—C10—H10A119.1
Symmetry codes: (i) x1, y, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu4Cl4(C58H52N2P4)]
Mr1296.86
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.298 (7), 17.649 (12), 18.009 (9)
β (°) 123.94 (3)
V3)2715 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.90
Crystal size (mm)0.20 × 0.15 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.852, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15819, 5333, 3089
Rint0.085
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.143, 0.94
No. of reflections5333
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.62

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—P12.1998 (19)Cu2—P2ii2.188 (2)
Cu1—Cl22.3975 (19)Cu2—Cl22.3062 (18)
Cu1—Cl12.4140 (17)Cu2—Cl12.3255 (18)
Cu1—Cl1i2.565 (2)
Symmetry codes: (i) x1, y, z+1; (ii) x, y, z+1.
 

Acknowledgements

This work was supported by the Key Program of Xihua University (E0913305, E0913307).

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHou, R., Huang, T.-H., Wang, X.-J., Jiang, X.-F., Ni, Q.-L., Gui, L.-C., Fan, Y.-J. & Tan, Y.-L. (2011). Dalton Trans. 40, 7551–7558.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKohl, S. W., Heinemann, F. W., Hummert, M., Bauer, W. & Grohmann, A. (2006). Dalton Trans. pp. 5583–5592.  Web of Science CSD CrossRef Google Scholar
First citationLi, N.-Y., Ren, Z.-G., Liu, D., Wang, J., Dai, M., Li, H.-X. & Lang, J.-P. (2009). Inorg. Chem. Commun. 12, 1031–1034.  Web of Science CSD CrossRef CAS Google Scholar
First citationNi, Q.-L., Jiang, X.-F., Gui, L.-C., Wang, X.-J., Yang, K.-G. & Bi, X.-S. (2011). New J. Chem. 35, 2471–2476.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaravanabharathi, D., Monika,Venugopalan, P. & Samuelson, A. G. (2002). Polyhedron, 21, 2433–2443.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivasankar, C., Nethaji, M. & Samuelson, A. G. (2004). Inorg. Chem. Commun. 7, 238–240.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X.-J., Gui, L.-C., Ni, Q.-L., Liao, Y.-F., Jiang, X.-F., Tang, L.-H., Zhang, Z. & Wu, Q. (2008). CrystEngComm, 10, 1003–1010.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds