metal-organic compounds
Poly[di-μ3-chlorido-di-μ2-chlorido-{μ4-N,N,N′,N′-tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine-κ4P:P′:P′′:P′′′}tetracopper(II)]
aSchool of Physics and Chemistry, Xihua University, Chengdu 610039, People's Republic of China
*Correspondence e-mail: liujq67@yahoo.com.cn
In the title complex, [Cu4Cl4(C58H52N2P4)]n, four CuII atoms are held together via two doubly bridging and two triply bridging chlorides, forming a stair-like Cu4Cl4 core having crystallographically imposed inversion symmetry, while the benzene-1,4-diamine ligand (with a crystallographic inversion center at the centroid) acts in a tetradentate coordination mode, bridging two adjacent Cu4Cl4 cores, resulting in a chain along the a-axis direction. One Cu atom has a distorted tetrahedral geometry, coordinated by one P atom, one μ2-Cl and two μ3-Cl atoms, while the second Cu atom adopts a trigonal geometry, coordinated by one P atom, one μ2-Cl and one μ3-Cl atoms.
Related literature
For the structures and properties of CuI complexes containing polyphosphine ligands, see: Li et al. (2009); Kohl et al. (2006); Wang et al. (2008); Hou et al.(2011); Ni et al. (2011). For the synthesis of Cu(I) complexes with diphosphine ligands, see: Saravanabharathi et al. (2002); Sivasankar et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812010860/zq2150sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812010860/zq2150Isup2.hkl
CuCl (0.0198 g, 0.2 mmol) was added with stirring to a solution of N,N,N',N'-tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine (0.0900 g, 0.10 mmol) in DMF (5 ml), and the resulting solution was allowed to stir for 1 h at room temperature. Slow diffusion of diethyl ether into the solution give colourless block crystals suitable for X-ray analysis after three days.
All hydrogen atoms were generated geometrically with C—H distances of 0.93Å (aromatic H atoms) and 0.97Å (methylene H atoms) and refined with a riding model with Uiso(H) = 1.2Ueq(C).
Recently, CuI complexes containing multiphosphine ligands have received much attention so far due to their special structures, novel reactivity, as well as catalytic and luminescent properties (Kohl et al., 2006; Wang et al., 2008; Hou et al., 2011; Ni et al., 2011). However, synthesis of CuI complexes with tetraphosphine ligands have been virtually not explored, though a great number of Cu(I) complexes with diphosphines were reported (Saravanabharathi et al., 2002; Sivasankar et al., 2004; Li et al., 2009). Herein, we report the synthesis and
of a new CuI complex with the tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand (dpppda), the title complex [Cu4Cl4(dpppda)]n.The
of the title complex, [Cu2Cl2(C29H26NP2)]n, contains two copper ions, two chlorine atoms and one half of the N,N,N',N'-tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand (dpppda). Four copper atoms are held together via two doubly bridging and two triply-bridging chlorides to form a stair-like Cu4Cl4 core having a crystallographically imposed centrosymmetry, while the N,N,N',N'-tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand (with a crystallographic inversion center at the midpoint of the central phenyl ring) acts as a tetradentate coordination mode to bridge two adjacent Cu4Cl4 cores resulting in a one-dimentional chain. The structure of the title complex is anologous to the reported complex [Cu4I4(dpppda)] (Li et al., 2009). Cu1 has a distorted tetrahedral geometry, coordinated by one P atom, one µ2-Cl and two µ3-Cl atoms, while Cu2 adopts a trigonal geometry, coordinated by one P atom, one µ2-Cl and one µ3-Cl atoms. The mean Cu—Cl and Cu—P bond distances are 2.40 (1) and 2.19 (2) Å, respectively.For the structures and properties of CuI complexes containing multiphosphine ligands, see: Li et al. (2009); Kohl et al. (2006); Wang et al. (2008); Hou et al.(2011); Ni et al. (2011). For the synthesis of Cu(I) complexes with diphosphine ligands, see: Saravanabharathi et al. (2002); Sivasankar et al. (2004).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu4Cl4(C58H52N2P4)] | F(000) = 1316 |
Mr = 1296.86 | Dx = 1.586 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5682 reflections |
a = 10.298 (7) Å | θ = 2.8–26.3° |
b = 17.649 (12) Å | µ = 1.90 mm−1 |
c = 18.009 (9) Å | T = 296 K |
β = 123.94 (3)° | Block, colourless |
V = 2715 (3) Å3 | 0.20 × 0.15 × 0.13 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 5333 independent reflections |
Radiation source: fine-focus sealed tube | 3089 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.085 |
ω scans | θmax = 26.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −12→9 |
Tmin = 0.852, Tmax = 1.000 | k = −19→21 |
15819 measured reflections | l = −21→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 0.94 | w = 1/[σ2(Fo2) + (0.P)2] where P = (Fo2 + 2Fc2)/3 |
5333 reflections | (Δ/σ)max = 0.001 |
325 parameters | Δρmax = 0.70 e Å−3 |
0 restraints | Δρmin = −0.62 e Å−3 |
[Cu4Cl4(C58H52N2P4)] | V = 2715 (3) Å3 |
Mr = 1296.86 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.298 (7) Å | µ = 1.90 mm−1 |
b = 17.649 (12) Å | T = 296 K |
c = 18.009 (9) Å | 0.20 × 0.15 × 0.13 mm |
β = 123.94 (3)° |
Bruker SMART CCD area-detector diffractometer | 5333 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 3089 reflections with I > 2σ(I) |
Tmin = 0.852, Tmax = 1.000 | Rint = 0.085 |
15819 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 0.94 | Δρmax = 0.70 e Å−3 |
5333 reflections | Δρmin = −0.62 e Å−3 |
325 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | −0.45394 (8) | 0.04466 (4) | 0.43168 (4) | 0.0540 (2) | |
Cu2 | −0.15464 (7) | 0.07255 (4) | 0.62081 (4) | 0.0487 (2) | |
Cl1 | −0.30501 (14) | −0.03659 (7) | 0.56069 (8) | 0.0417 (3) | |
Cl2 | −0.32846 (15) | 0.15805 (7) | 0.51454 (9) | 0.0526 (4) | |
P1 | −0.52339 (15) | 0.01608 (8) | 0.29527 (8) | 0.0402 (3) | |
P2 | −0.07631 (15) | −0.08176 (7) | 0.25371 (8) | 0.0367 (3) | |
N1 | −0.2438 (4) | −0.0268 (2) | 0.3202 (2) | 0.0397 (10) | |
C1 | −0.1055 (6) | 0.0562 (3) | 0.4500 (3) | 0.0370 (12) | |
H1A | −0.1767 | 0.0948 | 0.4172 | 0.044* | |
C2 | −0.1233 (5) | −0.0133 (3) | 0.4094 (3) | 0.0336 (11) | |
C3 | −0.0155 (6) | −0.0698 (3) | 0.4619 (3) | 0.0364 (11) | |
H3A | −0.0251 | −0.1175 | 0.4372 | 0.044* | |
C4 | −0.3712 (5) | 0.0258 (3) | 0.2699 (3) | 0.0393 (12) | |
H4A | −0.4193 | 0.0173 | 0.2064 | 0.047* | |
H4B | −0.3304 | 0.0771 | 0.2835 | 0.047* | |
C5 | −0.5742 (6) | −0.0830 (3) | 0.2617 (3) | 0.0430 (13) | |
C6 | −0.6482 (7) | −0.1100 (4) | 0.1736 (4) | 0.0658 (18) | |
H6A | −0.6962 | −0.0752 | 0.1269 | 0.079* | |
C7 | −0.6531 (8) | −0.1842 (4) | 0.1535 (5) | 0.077 (2) | |
H7A | −0.7037 | −0.1999 | 0.0943 | 0.092* | |
C8 | −0.5818 (8) | −0.2361 (4) | 0.2222 (5) | 0.087 (2) | |
H8A | −0.5802 | −0.2870 | 0.2094 | 0.104* | |
C9 | −0.5123 (8) | −0.2134 (4) | 0.3103 (4) | 0.088 (2) | |
H9A | −0.4684 | −0.2490 | 0.3562 | 0.105* | |
C10 | −0.5089 (7) | −0.1380 (3) | 0.3292 (4) | 0.0647 (17) | |
H10A | −0.4619 | −0.1230 | 0.3884 | 0.078* | |
C11 | −0.6787 (6) | 0.0772 (3) | 0.2085 (3) | 0.0481 (14) | |
C12 | −0.7157 (8) | 0.0836 (4) | 0.1220 (4) | 0.078 (2) | |
H12A | −0.6607 | 0.0545 | 0.1053 | 0.094* | |
C13 | −0.8307 (9) | 0.1312 (4) | 0.0603 (4) | 0.099 (3) | |
H13A | −0.8583 | 0.1319 | 0.0015 | 0.118* | |
C14 | −0.9051 (8) | 0.1783 (4) | 0.0868 (5) | 0.086 (2) | |
H14A | −0.9836 | 0.2108 | 0.0454 | 0.103* | |
C15 | −0.8645 (7) | 0.1776 (4) | 0.1730 (5) | 0.0743 (19) | |
H15A | −0.9118 | 0.2110 | 0.1910 | 0.089* | |
C16 | −0.7513 (7) | 0.1263 (3) | 0.2341 (4) | 0.0647 (17) | |
H16A | −0.7245 | 0.1253 | 0.2927 | 0.078* | |
C17 | −0.2353 (5) | −0.0931 (3) | 0.2727 (3) | 0.0402 (12) | |
H17A | −0.3346 | −0.0990 | 0.2156 | 0.048* | |
H17B | −0.2165 | −0.1385 | 0.3077 | 0.048* | |
C18 | −0.1096 (5) | −0.1626 (2) | 0.1820 (3) | 0.0352 (11) | |
C19 | −0.2520 (6) | −0.1996 (3) | 0.1284 (3) | 0.0516 (14) | |
H19A | −0.3385 | −0.1823 | 0.1271 | 0.062* | |
C20 | −0.2680 (7) | −0.2612 (3) | 0.0773 (4) | 0.0551 (15) | |
H20A | −0.3647 | −0.2849 | 0.0418 | 0.066* | |
C21 | −0.1420 (7) | −0.2879 (3) | 0.0785 (4) | 0.0525 (14) | |
H21A | −0.1526 | −0.3296 | 0.0441 | 0.063* | |
C22 | −0.0008 (7) | −0.2525 (3) | 0.1307 (4) | 0.0548 (15) | |
H22A | 0.0849 | −0.2699 | 0.1312 | 0.066* | |
C23 | 0.0160 (6) | −0.1911 (3) | 0.1827 (3) | 0.0453 (13) | |
H23A | 0.1138 | −0.1685 | 0.2190 | 0.054* | |
C24 | −0.1553 (6) | 0.0012 (3) | 0.1797 (3) | 0.0430 (13) | |
C25 | −0.1172 (7) | 0.0719 (3) | 0.2188 (4) | 0.0545 (15) | |
H25A | −0.0423 | 0.0769 | 0.2798 | 0.065* | |
C26 | −0.1918 (8) | 0.1364 (3) | 0.1661 (5) | 0.0701 (19) | |
H26A | −0.1672 | 0.1840 | 0.1928 | 0.084* | |
C27 | −0.2981 (8) | 0.1301 (4) | 0.0776 (4) | 0.0710 (19) | |
H27A | −0.3477 | 0.1732 | 0.0435 | 0.085* | |
C28 | −0.3334 (8) | 0.0610 (4) | 0.0378 (4) | 0.0714 (19) | |
H28A | −0.4057 | 0.0570 | −0.0237 | 0.086* | |
C29 | −0.2629 (7) | −0.0035 (3) | 0.0880 (4) | 0.0607 (17) | |
H29A | −0.2878 | −0.0505 | 0.0599 | 0.073* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0651 (5) | 0.0619 (5) | 0.0341 (4) | 0.0056 (3) | 0.0270 (4) | 0.0001 (3) |
Cu2 | 0.0389 (4) | 0.0554 (4) | 0.0406 (4) | −0.0038 (3) | 0.0154 (3) | −0.0054 (3) |
Cl1 | 0.0392 (7) | 0.0407 (7) | 0.0396 (7) | −0.0005 (5) | 0.0187 (6) | 0.0031 (5) |
Cl2 | 0.0503 (8) | 0.0430 (8) | 0.0577 (9) | 0.0049 (6) | 0.0259 (7) | 0.0008 (6) |
P1 | 0.0376 (8) | 0.0506 (9) | 0.0318 (7) | 0.0042 (6) | 0.0190 (6) | 0.0011 (6) |
P2 | 0.0355 (7) | 0.0419 (8) | 0.0322 (7) | −0.0021 (6) | 0.0185 (6) | −0.0041 (6) |
N1 | 0.038 (2) | 0.043 (2) | 0.035 (2) | 0.0018 (19) | 0.018 (2) | −0.0083 (18) |
C1 | 0.040 (3) | 0.038 (3) | 0.032 (3) | 0.001 (2) | 0.020 (2) | 0.004 (2) |
C2 | 0.035 (3) | 0.039 (3) | 0.029 (2) | −0.002 (2) | 0.019 (2) | −0.001 (2) |
C3 | 0.046 (3) | 0.031 (3) | 0.040 (3) | −0.006 (2) | 0.030 (3) | −0.006 (2) |
C4 | 0.041 (3) | 0.048 (3) | 0.026 (2) | −0.002 (2) | 0.017 (2) | 0.001 (2) |
C5 | 0.035 (3) | 0.055 (3) | 0.047 (3) | −0.004 (2) | 0.027 (3) | −0.008 (3) |
C6 | 0.066 (4) | 0.079 (5) | 0.044 (3) | −0.022 (3) | 0.026 (3) | −0.010 (3) |
C7 | 0.083 (5) | 0.070 (5) | 0.087 (5) | −0.034 (4) | 0.053 (4) | −0.037 (4) |
C8 | 0.068 (5) | 0.058 (4) | 0.119 (7) | −0.011 (4) | 0.044 (5) | −0.022 (5) |
C9 | 0.088 (5) | 0.063 (5) | 0.066 (5) | 0.000 (4) | 0.014 (4) | 0.005 (4) |
C10 | 0.064 (4) | 0.058 (4) | 0.054 (4) | −0.006 (3) | 0.021 (3) | 0.000 (3) |
C11 | 0.044 (3) | 0.064 (4) | 0.034 (3) | 0.010 (3) | 0.021 (3) | 0.003 (2) |
C12 | 0.093 (5) | 0.090 (5) | 0.047 (4) | 0.045 (4) | 0.037 (4) | 0.017 (3) |
C13 | 0.123 (7) | 0.107 (6) | 0.053 (4) | 0.055 (5) | 0.041 (5) | 0.022 (4) |
C14 | 0.065 (5) | 0.106 (6) | 0.064 (5) | 0.027 (4) | 0.021 (4) | 0.022 (4) |
C15 | 0.075 (5) | 0.072 (5) | 0.083 (5) | 0.027 (4) | 0.048 (4) | 0.016 (4) |
C16 | 0.064 (4) | 0.070 (4) | 0.057 (4) | 0.018 (3) | 0.032 (3) | 0.015 (3) |
C17 | 0.040 (3) | 0.047 (3) | 0.036 (3) | −0.001 (2) | 0.023 (2) | −0.002 (2) |
C18 | 0.038 (3) | 0.034 (3) | 0.034 (3) | 0.000 (2) | 0.020 (2) | −0.001 (2) |
C19 | 0.043 (3) | 0.058 (4) | 0.053 (3) | −0.005 (3) | 0.026 (3) | −0.017 (3) |
C20 | 0.052 (4) | 0.061 (4) | 0.056 (4) | −0.018 (3) | 0.033 (3) | −0.022 (3) |
C21 | 0.068 (4) | 0.043 (3) | 0.056 (4) | −0.006 (3) | 0.040 (3) | −0.011 (3) |
C22 | 0.052 (4) | 0.053 (4) | 0.065 (4) | 0.005 (3) | 0.036 (3) | −0.007 (3) |
C23 | 0.040 (3) | 0.048 (3) | 0.050 (3) | 0.000 (2) | 0.027 (3) | −0.007 (2) |
C24 | 0.043 (3) | 0.046 (3) | 0.041 (3) | −0.004 (2) | 0.025 (3) | −0.004 (2) |
C25 | 0.062 (4) | 0.048 (3) | 0.053 (3) | −0.011 (3) | 0.032 (3) | −0.009 (3) |
C26 | 0.090 (5) | 0.035 (3) | 0.085 (5) | −0.005 (3) | 0.048 (4) | −0.002 (3) |
C27 | 0.077 (5) | 0.056 (4) | 0.068 (4) | 0.006 (3) | 0.033 (4) | 0.021 (3) |
C28 | 0.077 (5) | 0.067 (5) | 0.046 (4) | 0.000 (3) | 0.020 (3) | 0.008 (3) |
C29 | 0.074 (4) | 0.048 (4) | 0.046 (3) | −0.003 (3) | 0.025 (3) | −0.004 (3) |
Cu1—P1 | 2.1998 (19) | C10—H10A | 0.9300 |
Cu1—Cl2 | 2.3975 (19) | C11—C16 | 1.381 (7) |
Cu1—Cl1 | 2.4140 (17) | C11—C12 | 1.386 (8) |
Cu1—Cl1i | 2.565 (2) | C12—C13 | 1.369 (8) |
Cu2—P2ii | 2.188 (2) | C12—H12A | 0.9300 |
Cu2—Cl2 | 2.3062 (18) | C13—C14 | 1.382 (9) |
Cu2—Cl1 | 2.3255 (18) | C13—H13A | 0.9300 |
Cl1—Cu1i | 2.565 (2) | C14—C15 | 1.364 (9) |
P1—C5 | 1.828 (5) | C14—H14A | 0.9300 |
P1—C11 | 1.837 (5) | C15—C16 | 1.399 (7) |
P1—C4 | 1.869 (5) | C15—H15A | 0.9300 |
P2—C18 | 1.824 (5) | C16—H16A | 0.9300 |
P2—C24 | 1.836 (5) | C17—H17A | 0.9700 |
P2—C17 | 1.861 (5) | C17—H17B | 0.9700 |
P2—Cu2ii | 2.188 (2) | C18—C23 | 1.381 (7) |
N1—C2 | 1.397 (5) | C18—C19 | 1.389 (6) |
N1—C4 | 1.442 (6) | C19—C20 | 1.374 (7) |
N1—C17 | 1.479 (6) | C19—H19A | 0.9300 |
C1—C3ii | 1.386 (6) | C20—C21 | 1.368 (8) |
C1—C2 | 1.387 (6) | C20—H20A | 0.9300 |
C1—H1A | 0.9300 | C21—C22 | 1.364 (7) |
C2—C3 | 1.396 (6) | C21—H21A | 0.9300 |
C3—C1ii | 1.386 (6) | C22—C23 | 1.378 (7) |
C3—H3A | 0.9300 | C22—H22A | 0.9300 |
C4—H4A | 0.9700 | C23—H23A | 0.9300 |
C4—H4B | 0.9700 | C24—C25 | 1.378 (7) |
C5—C10 | 1.400 (7) | C24—C29 | 1.386 (7) |
C5—C6 | 1.405 (7) | C25—C26 | 1.404 (7) |
C6—C7 | 1.352 (8) | C25—H25A | 0.9300 |
C6—H6A | 0.9300 | C26—C27 | 1.342 (8) |
C7—C8 | 1.377 (9) | C26—H26A | 0.9300 |
C7—H7A | 0.9300 | C27—C28 | 1.358 (8) |
C8—C9 | 1.387 (9) | C27—H27A | 0.9300 |
C8—H8A | 0.9300 | C28—C29 | 1.380 (7) |
C9—C10 | 1.368 (8) | C28—H28A | 0.9300 |
C9—H9A | 0.9300 | C29—H29A | 0.9300 |
P1—Cu1—Cl2 | 127.78 (6) | C16—C11—C12 | 117.7 (5) |
P1—Cu1—Cl1 | 125.05 (7) | C16—C11—P1 | 117.4 (4) |
Cl2—Cu1—Cl1 | 93.71 (7) | C12—C11—P1 | 124.5 (4) |
P1—Cu1—Cl1i | 109.03 (6) | C13—C12—C11 | 122.2 (6) |
Cl2—Cu1—Cl1i | 102.38 (6) | C13—C12—H12A | 118.9 |
Cl1—Cu1—Cl1i | 91.68 (6) | C11—C12—H12A | 118.9 |
P2ii—Cu2—Cl2 | 134.50 (6) | C12—C13—C14 | 118.9 (7) |
P2ii—Cu2—Cl1 | 126.84 (6) | C12—C13—H13A | 120.5 |
Cl2—Cu2—Cl1 | 98.57 (7) | C14—C13—H13A | 120.5 |
Cu2—Cl1—Cu1 | 81.73 (6) | C15—C14—C13 | 120.7 (6) |
Cu2—Cl1—Cu1i | 115.71 (6) | C15—C14—H14A | 119.6 |
Cu1—Cl1—Cu1i | 88.32 (6) | C13—C14—H14A | 119.6 |
Cu2—Cl2—Cu1 | 82.49 (7) | C14—C15—C16 | 119.5 (6) |
C5—P1—C11 | 109.2 (2) | C14—C15—H15A | 120.2 |
C5—P1—C4 | 97.5 (2) | C16—C15—H15A | 120.2 |
C11—P1—C4 | 100.9 (2) | C11—C16—C15 | 120.8 (6) |
C5—P1—Cu1 | 116.30 (18) | C11—C16—H16A | 119.6 |
C11—P1—Cu1 | 113.65 (18) | C15—C16—H16A | 119.6 |
C4—P1—Cu1 | 117.26 (16) | N1—C17—P2 | 111.4 (3) |
C18—P2—C24 | 106.1 (2) | N1—C17—H17A | 109.4 |
C18—P2—C17 | 102.1 (2) | P2—C17—H17A | 109.4 |
C24—P2—C17 | 98.1 (2) | N1—C17—H17B | 109.4 |
C18—P2—Cu2ii | 117.10 (16) | P2—C17—H17B | 109.4 |
C24—P2—Cu2ii | 118.43 (17) | H17A—C17—H17B | 108.0 |
C17—P2—Cu2ii | 112.24 (17) | C23—C18—C19 | 117.1 (4) |
C2—N1—C4 | 121.7 (4) | C23—C18—P2 | 118.3 (4) |
C2—N1—C17 | 119.9 (4) | C19—C18—P2 | 124.6 (4) |
C4—N1—C17 | 118.2 (4) | C20—C19—C18 | 121.5 (5) |
C3ii—C1—C2 | 121.7 (4) | C20—C19—H19A | 119.2 |
C3ii—C1—H1A | 119.1 | C18—C19—H19A | 119.2 |
C2—C1—H1A | 119.1 | C21—C20—C19 | 120.2 (5) |
C1—C2—C3 | 117.0 (4) | C21—C20—H20A | 119.9 |
C1—C2—N1 | 121.9 (4) | C19—C20—H20A | 119.9 |
C3—C2—N1 | 121.1 (4) | C22—C21—C20 | 119.3 (5) |
C1ii—C3—C2 | 121.2 (4) | C22—C21—H21A | 120.3 |
C1ii—C3—H3A | 119.4 | C20—C21—H21A | 120.3 |
C2—C3—H3A | 119.4 | C21—C22—C23 | 120.6 (5) |
N1—C4—P1 | 112.3 (3) | C21—C22—H22A | 119.7 |
N1—C4—H4A | 109.1 | C23—C22—H22A | 119.7 |
P1—C4—H4A | 109.1 | C22—C23—C18 | 121.2 (5) |
N1—C4—H4B | 109.1 | C22—C23—H23A | 119.4 |
P1—C4—H4B | 109.1 | C18—C23—H23A | 119.4 |
H4A—C4—H4B | 107.9 | C25—C24—C29 | 118.2 (5) |
C10—C5—C6 | 116.0 (5) | C25—C24—P2 | 117.9 (4) |
C10—C5—P1 | 117.8 (4) | C29—C24—P2 | 123.6 (4) |
C6—C5—P1 | 125.0 (4) | C24—C25—C26 | 119.8 (5) |
C7—C6—C5 | 123.2 (6) | C24—C25—H25A | 120.1 |
C7—C6—H6A | 118.4 | C26—C25—H25A | 120.1 |
C5—C6—H6A | 118.4 | C27—C26—C25 | 120.8 (5) |
C6—C7—C8 | 118.8 (6) | C27—C26—H26A | 119.6 |
C6—C7—H7A | 120.6 | C25—C26—H26A | 119.6 |
C8—C7—H7A | 120.6 | C26—C27—C28 | 120.1 (6) |
C7—C8—C9 | 120.8 (6) | C26—C27—H27A | 120.0 |
C7—C8—H8A | 119.6 | C28—C27—H27A | 120.0 |
C9—C8—H8A | 119.6 | C27—C28—C29 | 120.5 (6) |
C10—C9—C8 | 119.4 (6) | C27—C28—H28A | 119.8 |
C10—C9—H9A | 120.3 | C29—C28—H28A | 119.8 |
C8—C9—H9A | 120.3 | C28—C29—C24 | 120.6 (5) |
C9—C10—C5 | 121.7 (6) | C28—C29—H29A | 119.7 |
C9—C10—H10A | 119.1 | C24—C29—H29A | 119.7 |
C5—C10—H10A | 119.1 |
Symmetry codes: (i) −x−1, −y, −z+1; (ii) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu4Cl4(C58H52N2P4)] |
Mr | 1296.86 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 10.298 (7), 17.649 (12), 18.009 (9) |
β (°) | 123.94 (3) |
V (Å3) | 2715 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.90 |
Crystal size (mm) | 0.20 × 0.15 × 0.13 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.852, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15819, 5333, 3089 |
Rint | 0.085 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.143, 0.94 |
No. of reflections | 5333 |
No. of parameters | 325 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.70, −0.62 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—P1 | 2.1998 (19) | Cu2—P2ii | 2.188 (2) |
Cu1—Cl2 | 2.3975 (19) | Cu2—Cl2 | 2.3062 (18) |
Cu1—Cl1 | 2.4140 (17) | Cu2—Cl1 | 2.3255 (18) |
Cu1—Cl1i | 2.565 (2) |
Symmetry codes: (i) −x−1, −y, −z+1; (ii) −x, −y, −z+1. |
Acknowledgements
This work was supported by the Key Program of Xihua University (E0913305, E0913307).
References
Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hou, R., Huang, T.-H., Wang, X.-J., Jiang, X.-F., Ni, Q.-L., Gui, L.-C., Fan, Y.-J. & Tan, Y.-L. (2011). Dalton Trans. 40, 7551–7558. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kohl, S. W., Heinemann, F. W., Hummert, M., Bauer, W. & Grohmann, A. (2006). Dalton Trans. pp. 5583–5592. Web of Science CSD CrossRef Google Scholar
Li, N.-Y., Ren, Z.-G., Liu, D., Wang, J., Dai, M., Li, H.-X. & Lang, J.-P. (2009). Inorg. Chem. Commun. 12, 1031–1034. Web of Science CSD CrossRef CAS Google Scholar
Ni, Q.-L., Jiang, X.-F., Gui, L.-C., Wang, X.-J., Yang, K.-G. & Bi, X.-S. (2011). New J. Chem. 35, 2471–2476. Web of Science CSD CrossRef CAS Google Scholar
Saravanabharathi, D., Monika,Venugopalan, P. & Samuelson, A. G. (2002). Polyhedron, 21, 2433–2443. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sivasankar, C., Nethaji, M. & Samuelson, A. G. (2004). Inorg. Chem. Commun. 7, 238–240. Web of Science CSD CrossRef CAS Google Scholar
Wang, X.-J., Gui, L.-C., Ni, Q.-L., Liao, Y.-F., Jiang, X.-F., Tang, L.-H., Zhang, Z. & Wu, Q. (2008). CrystEngComm, 10, 1003–1010. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, CuI complexes containing multiphosphine ligands have received much attention so far due to their special structures, novel reactivity, as well as catalytic and luminescent properties (Kohl et al., 2006; Wang et al., 2008; Hou et al., 2011; Ni et al., 2011). However, synthesis of CuI complexes with tetraphosphine ligands have been virtually not explored, though a great number of Cu(I) complexes with diphosphines were reported (Saravanabharathi et al., 2002; Sivasankar et al., 2004; Li et al., 2009). Herein, we report the synthesis and crystal structure of a new CuI complex with the tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand (dpppda), the title complex [Cu4Cl4(dpppda)]n.
The asymmetric unit of the title complex, [Cu2Cl2(C29H26NP2)]n, contains two copper ions, two chlorine atoms and one half of the N,N,N',N'-tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand (dpppda). Four copper atoms are held together via two doubly bridging and two triply-bridging chlorides to form a stair-like Cu4Cl4 core having a crystallographically imposed centrosymmetry, while the N,N,N',N'-tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand (with a crystallographic inversion center at the midpoint of the central phenyl ring) acts as a tetradentate coordination mode to bridge two adjacent Cu4Cl4 cores resulting in a one-dimentional chain. The structure of the title complex is anologous to the reported complex [Cu4I4(dpppda)] (Li et al., 2009). Cu1 has a distorted tetrahedral geometry, coordinated by one P atom, one µ2-Cl and two µ3-Cl atoms, while Cu2 adopts a trigonal geometry, coordinated by one P atom, one µ2-Cl and one µ3-Cl atoms. The mean Cu—Cl and Cu—P bond distances are 2.40 (1) and 2.19 (2) Å, respectively.