organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o976-o977

4-Chloro­benzoyl-meso-octa­methyl­calix[2]pyrrolidino[2]pyrrole: an acyl chloride derivative of a partially reduced calix[4] pyrrole

aInstitute of Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: reinhard.neier@unine.ch, helen.stoeckli-evans@unine.ch

(Received 15 February 2012; accepted 16 February 2012; online 7 March 2012)

In the title compound, C35H47ClN4O, the two pyrrolidine rings have envelope conformations. The conformation of the macrocycle is stabilized by N—H⋯N hydrogen bonds and a C—H⋯N inter­action. The benzoyl ring is inclined to the adjacent pyrrole ring by 11.66 (11)°, with a centroid–centroid distance of 3.7488 (13) Å. In the crystal, molecules are linked by N—H⋯O hydrogen bonds into helical chains propagating in [010] and C—H⋯O and C—H⋯π interactions are also observed.

Related literature

For the heterogeneous catalytic hydrogenation of meso-octa­methyl­calix[4]pyrrole, which gave meso-octa­methyl­calix[2]pyrrole­[2]pyrrolidine, see: Blangy et al. (2009[Blangy, V., Heiss, C., Khlebnikov, V., Letondor, C., Stoeckli-Evans, H. & Neier, R. (2009). Angew. Chem. Int. Ed. 48, 1688-1691.]). For N-acyl­ation of pyrrolidines, using substituted benzoyl chlorides, see: Journot et al. (2012a[Journot, G., Neier, R. & Stoeckli-Evans, H. (2012a). Acta Cryst. C68, o119-o122.]); Zhang et al. (2009[Zhang, L., Wang, X.-J., Wang, J., Grinberg, N., Krishnamurthy, D. K. & Senanayake, C. H. (2009). Tetrahedron Lett. 50, 2964-2966.]). For the synthesis and reactivity of the title compound, see: Journot & Neier (2012[Journot, G. & Neier, R. (2012). In preparation.]). For the crystal structures of similar compounds, see: Journot et al. (2012b[Journot, G., Neier, R. & Stoeckli-Evans, H. (2012b). Acta Cryst. E68, o929-o930.],c[Journot, G., Neier, R. & Stoeckli-Evans, H. (2012c). Private communication (deposition number CCDC-866917). CCDC, Cambridge, England.],d[Journot, G., Neier, R. & Stoeckli-Evans, H. (2012d). Private communication (deposition number CCDC-866918). CCDC, Cambridge, England.],e[Journot, G., Neier, R. & Stoeckli-Evans, H. (2012e). Private communication (deposition number CCDC-866919). CCDC, Cambridge, England.]).

[Scheme 1]

Experimental

Crystal data
  • C35H47ClN4O

  • Mr = 575.22

  • Monoclinic, P 21 /n

  • a = 10.3224 (6) Å

  • b = 12.0389 (4) Å

  • c = 25.3311 (13) Å

  • β = 96.798 (4)°

  • V = 3125.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 173 K

  • 0.45 × 0.42 × 0.40 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.973, Tmax = 1.000

  • 32665 measured reflections

  • 5906 independent reflections

  • 4215 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.102

  • S = 1.03

  • 5906 reflections

  • 381 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of pyrrole ring N2/C3/C4/C25/C26; Cg2 is the centroid of the benzene ring C30–C35.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3 0.88 2.31 2.865 (2) 121
N4—H4⋯N3 0.88 2.55 3.051 (2) 117
C15—H15A⋯N2 0.98 2.52 3.488 (3) 171
C15—H15ACg1 0.98 2.40 3.301 (2) 152
N3—H3N⋯O1i 0.882 (18) 2.257 (18) 3.105 (2) 161.1 (18)
C23—H23B⋯O1i 0.98 2.53 3.495 (3) 168
C27—H27CCg2i 0.98 2.82 3.702 (2) 150
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have recently reported the access to new macrocycles by heterogeneous catalytic hydrogenation of meso-octamethylcalix[4]pyrrole, which gave meso-octamethylcalix[2]pyrrole[2]pyrrolidine (1 in Fig. 3) [Blangy et al., 2009]. It was decided to investigate the nucleophilicity of this new macrocycle, which showed interesting reactivity (Journot & Neier, 2012), by reacting different substituted benzoyl chlorides with the macrocycle under smooth conditions [Journot et al., 2012a; Zhang et al., 2009]. Herein, we report on the synthesis and crystal structure of the title 4-chlorobenzoyl derivative, one of five compounds that have been studied by X-ray diffraction analysis (Journot et al., 2012b,c,d,e).

The molecular structure of the title compound is given in Fig. 1. The two pyrrolidine rings (N1,C1,C12—C14) and (N3,C6,C7,C21,C22) have envelope conformations with, respectively, atoms C13 and C6 as the flaps. The conformation of the macrocycle is stabilized by intramolecular N—H···N hydrogen bonds involving atom N3 and the two pyrrole H atoms, H2 and H4 (Fig. 1 and Table 1). The benzoyl ring (C30—C35) is inclined to the pyrrole ring (N4,C9,C10,C17,C18) by 11.66 (11)°, with a centroid-to-centroid distance of 3.7488 (13) Å. The methyl group C15 is also in close contact with the pyrrole ring (N2,C3,C4,C25,C26), with a short C15—H15A···N2 interaction and a C15—H15A···centroid distance of 3.301 (2) [see Table 1].

In the crystal, molecules are linked via an N—H···O hydrogen bond, involving the N3 pyrrolidine H-atom (H3N) and the benzoyl O atom (O1), leading to the formation of helical chains propagating along [010] - see Fig. 2 and Table 1. The same O atom is involved in a C—H···O contact with methyl group C23. A C—H···π interaction is also observed, involving the methyl group C27 and the benzoyl ring (C30—C35) [see Table 1].

The overall geometry and crystal packing is very similar to that reported for the 4-methoxybenzoyl derivative (Journot et al., 2012b), and the 4-nitrobenzoyl (Journot et al., 2012d) and 4-methylbenzoyl (Journot et al., 2012e) derivatives. The benzoyl derivative (Journot et al., 2012c) crystallized, in the trigonal space group R-3, as a partial (0.25H2O) hydrate, and forms hydrogen bonded chains propagating along [001].

Footnote to Table 1: Cg1 is the centroid of pyrrole ring (N2,C3,C4,C25,C26); Cg2 is the centroid of the benzene ring (C30—C35).

Related literature top

For the heterogeneous catalytic hydrogenation of meso-octamethylcalix[4]pyrrole, which gave meso-octamethylcalix[2]pyrrole[2]pyrrolidine, see: Blangy et al. (2009). For N-acylation of pyrrolidines, using substituted benzoyl chlorides, see: Journot et al. (2012a); Zhang et al. (2009). For the synthesis and reactivity of the title compound, see: Journot & Neier (2012). For the crystal structures of similar compounds, see: Journot et al. (2012b,c,d,e)

Experimental top

The general procedure for the N-acylation of meso-octamethylcalix[2]pyrrolidino[2]pyrrole (1) is illustrated in Fig. 3. A two-necked flask fitted with a gas inlet and containing a stirrer bar was charged with 100 mg (0.23 mmol) of meso-octamethylcalix[2]pyrrolidino[2]pyrrole (1), 4-chlorobenzoyl chloride (2c) (53.61 µL, 0.48 mmol), potassium carbonate (70 mg, 0.48 mmol) in THF (5 ml) and acetonitrile (2.5 ml). The reaction vessel was flushed with argon and sealed with a septum. After 15 min. a precipitate appeared and the reaction mixture was stirred for 2 h room temperature. 10% sodium carbonate was then added and the reaction mixture was extracted with dichloromethane. The organic layer was washed successively with two × 10% sodium carbonate and saturated brine. The organic layer was dried with sodium sulfate, and the solvents were removed under vacuum. The residue was purified by column chromatography (SiO2, CH2Cl2/MeOH, 97/3) to yield 131.6 mg (75.6%) of colourless crystals of the title compound (3c). Melting point: 501 K. HRMS calcd. for C35H47ClN4O+H+ 575.3511; found 575.3510. Further synthetic and spectroscopic data have been reported elsewhere (Journot & Neier, 2012).

Refinement top

The NH H-atoms were located in a difference electron-density map. H-atom H3N was freely refined while the other NH H-atoms and the C-bound H-atoms were included in calculated positions and treated as riding atoms: N—H = 0.88 Å, C—H = 0.95 Å for CH-allyl and CH-aromatic H atoms, and 1.00, 0.99 and 0.98 Å, for methine, methylene and methyl H atoms, respectively, with Uiso(H) = k × Ueq(N,C), where k = 1.5 for CH3 H-atoms, and 1.2 for the other H-atoms.

Structure description top

We have recently reported the access to new macrocycles by heterogeneous catalytic hydrogenation of meso-octamethylcalix[4]pyrrole, which gave meso-octamethylcalix[2]pyrrole[2]pyrrolidine (1 in Fig. 3) [Blangy et al., 2009]. It was decided to investigate the nucleophilicity of this new macrocycle, which showed interesting reactivity (Journot & Neier, 2012), by reacting different substituted benzoyl chlorides with the macrocycle under smooth conditions [Journot et al., 2012a; Zhang et al., 2009]. Herein, we report on the synthesis and crystal structure of the title 4-chlorobenzoyl derivative, one of five compounds that have been studied by X-ray diffraction analysis (Journot et al., 2012b,c,d,e).

The molecular structure of the title compound is given in Fig. 1. The two pyrrolidine rings (N1,C1,C12—C14) and (N3,C6,C7,C21,C22) have envelope conformations with, respectively, atoms C13 and C6 as the flaps. The conformation of the macrocycle is stabilized by intramolecular N—H···N hydrogen bonds involving atom N3 and the two pyrrole H atoms, H2 and H4 (Fig. 1 and Table 1). The benzoyl ring (C30—C35) is inclined to the pyrrole ring (N4,C9,C10,C17,C18) by 11.66 (11)°, with a centroid-to-centroid distance of 3.7488 (13) Å. The methyl group C15 is also in close contact with the pyrrole ring (N2,C3,C4,C25,C26), with a short C15—H15A···N2 interaction and a C15—H15A···centroid distance of 3.301 (2) [see Table 1].

In the crystal, molecules are linked via an N—H···O hydrogen bond, involving the N3 pyrrolidine H-atom (H3N) and the benzoyl O atom (O1), leading to the formation of helical chains propagating along [010] - see Fig. 2 and Table 1. The same O atom is involved in a C—H···O contact with methyl group C23. A C—H···π interaction is also observed, involving the methyl group C27 and the benzoyl ring (C30—C35) [see Table 1].

The overall geometry and crystal packing is very similar to that reported for the 4-methoxybenzoyl derivative (Journot et al., 2012b), and the 4-nitrobenzoyl (Journot et al., 2012d) and 4-methylbenzoyl (Journot et al., 2012e) derivatives. The benzoyl derivative (Journot et al., 2012c) crystallized, in the trigonal space group R-3, as a partial (0.25H2O) hydrate, and forms hydrogen bonded chains propagating along [001].

Footnote to Table 1: Cg1 is the centroid of pyrrole ring (N2,C3,C4,C25,C26); Cg2 is the centroid of the benzene ring (C30—C35).

For the heterogeneous catalytic hydrogenation of meso-octamethylcalix[4]pyrrole, which gave meso-octamethylcalix[2]pyrrole[2]pyrrolidine, see: Blangy et al. (2009). For N-acylation of pyrrolidines, using substituted benzoyl chlorides, see: Journot et al. (2012a); Zhang et al. (2009). For the synthesis and reactivity of the title compound, see: Journot & Neier (2012). For the crystal structures of similar compounds, see: Journot et al. (2012b,c,d,e)

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the numbering scheme and displacement ellipsoids drawn at the 50% probability level. The N—H···N hydrogen bonds are shown as dashed lines (see Table 1 for details; the C-bound H atoms have been omitted for clarity).
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The N—H···N and N—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; the C-bound H atoms have been omitted for clarity).
[Figure 3] Fig. 3. The general procedure for the N-acylation of meso-octamethylcalix[2]pyrrolidino[2]pyrrole (1).
21-[(4-chlorophenyl)carbonyl]-2,2,7,7,12,12,17,17-octamethyl-21,22,23,24- tetraazapentacyclo[16.2.1.13,6.18,11.113,16]tetracosa-3,5,13,15-tetraene top
Crystal data top
C35H47ClN4OF(000) = 1240
Mr = 575.22Dx = 1.222 Mg m3
Monoclinic, P21/nMelting point: 501 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.3224 (6) ÅCell parameters from 16706 reflections
b = 12.0389 (4) Åθ = 1.6–26.1°
c = 25.3311 (13) ŵ = 0.16 mm1
β = 96.798 (4)°T = 173 K
V = 3125.8 (3) Å3Block, colourless
Z = 40.45 × 0.42 × 0.40 mm
Data collection top
Stoe IPDS 2
diffractometer
5906 independent reflections
Radiation source: fine-focus sealed tube4215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
φ + ω scansθmax = 25.6°, θmin = 1.6°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 1212
Tmin = 0.973, Tmax = 1.000k = 1414
32665 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.1416P]
where P = (Fo2 + 2Fc2)/3
5906 reflections(Δ/σ)max < 0.001
381 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
C35H47ClN4OV = 3125.8 (3) Å3
Mr = 575.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.3224 (6) ŵ = 0.16 mm1
b = 12.0389 (4) ÅT = 173 K
c = 25.3311 (13) Å0.45 × 0.42 × 0.40 mm
β = 96.798 (4)°
Data collection top
Stoe IPDS 2
diffractometer
5906 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
4215 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 1.000Rint = 0.076
32665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
5906 reflectionsΔρmin = 0.34 e Å3
381 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.05031 (7)0.59602 (6)0.05700 (3)0.0518 (3)
O10.69721 (14)0.42893 (12)0.23989 (6)0.0285 (5)
N10.54054 (15)0.36573 (13)0.17599 (6)0.0190 (5)
N20.49236 (15)0.04698 (13)0.19441 (6)0.0190 (5)
N30.69523 (16)0.04818 (14)0.14086 (7)0.0205 (5)
N40.65525 (16)0.18840 (13)0.09895 (6)0.0196 (5)
C10.45318 (19)0.34058 (16)0.21789 (8)0.0211 (6)
C20.47134 (19)0.22457 (16)0.24667 (8)0.0211 (6)
C30.41422 (19)0.12539 (16)0.21499 (8)0.0201 (6)
C40.41809 (19)0.03545 (16)0.16818 (8)0.0208 (6)
C50.4779 (2)0.14266 (16)0.15089 (8)0.0223 (6)
C60.59425 (19)0.12726 (16)0.11840 (8)0.0225 (6)
C70.7886 (2)0.03802 (17)0.10096 (8)0.0224 (6)
C80.86281 (19)0.07432 (17)0.10394 (8)0.0233 (6)
C90.77456 (19)0.16747 (16)0.08152 (8)0.0211 (6)
C100.59096 (19)0.27254 (16)0.06975 (8)0.0204 (6)
C110.45514 (19)0.31136 (16)0.07862 (8)0.0212 (6)
C120.46446 (19)0.39816 (16)0.12436 (8)0.0219 (6)
C130.3355 (2)0.43797 (17)0.14288 (9)0.0275 (7)
C140.3152 (2)0.36450 (17)0.19048 (9)0.0255 (7)
C150.3680 (2)0.21172 (17)0.08691 (9)0.0252 (7)
C160.3952 (2)0.37268 (18)0.02826 (9)0.0291 (7)
C170.6724 (2)0.30665 (17)0.03383 (9)0.0270 (7)
C180.7864 (2)0.24086 (18)0.04111 (9)0.0279 (7)
C190.9189 (2)0.09679 (19)0.16166 (9)0.0278 (7)
C200.9764 (2)0.0633 (2)0.07007 (10)0.0352 (8)
C210.7047 (2)0.06059 (18)0.04720 (8)0.0274 (7)
C220.5666 (2)0.08356 (18)0.06159 (8)0.0259 (7)
C230.5242 (2)0.20936 (17)0.20181 (9)0.0278 (7)
C240.3731 (2)0.21047 (18)0.11673 (9)0.0304 (7)
C250.2906 (2)0.00910 (17)0.17232 (9)0.0255 (7)
C260.2880 (2)0.09026 (17)0.20192 (9)0.0257 (7)
C270.6151 (2)0.20230 (17)0.26588 (9)0.0257 (7)
C280.3973 (2)0.23431 (19)0.29592 (9)0.0323 (8)
C290.65598 (19)0.41796 (16)0.19249 (8)0.0209 (6)
C300.74298 (19)0.45928 (16)0.15280 (8)0.0210 (6)
C310.8608 (2)0.40440 (18)0.15117 (9)0.0279 (7)
C320.9543 (2)0.44442 (19)0.12113 (10)0.0336 (7)
C330.9312 (2)0.54209 (19)0.09329 (9)0.0312 (7)
C340.8160 (2)0.59963 (18)0.09487 (9)0.0289 (7)
C350.7220 (2)0.55801 (16)0.12428 (8)0.0247 (7)
H10.471900.398400.246100.0250*
H20.578100.049500.197700.0230*
H3N0.7345 (19)0.0690 (17)0.1721 (7)0.0250*
H40.624400.152900.125100.0230*
H60.637300.201300.116500.0270*
H70.854200.099100.107400.0270*
H120.508100.465300.111400.0260*
H13A0.341500.517100.153500.0330*
H13B0.262400.429000.114100.0330*
H14A0.270300.294600.178600.0310*
H14B0.262600.403600.214900.0310*
H15A0.402000.172800.119600.0380*
H15B0.366900.161000.056600.0380*
H15C0.279000.237500.089800.0380*
H16A0.396700.324000.002700.0440*
H16B0.445800.440000.023400.0440*
H16C0.304800.393100.032000.0440*
H170.655100.364500.008500.0320*
H180.858900.246600.021400.0330*
H19A0.969600.032300.175800.0420*
H19B0.847300.110200.183100.0420*
H19C0.975600.162300.163100.0420*
H20A0.941800.047100.033200.0530*
H20B1.034000.002700.084000.0530*
H20C1.025800.132900.071500.0530*
H21A0.704700.004800.023500.0330*
H21B0.738400.125600.029200.0330*
H22A0.513700.014800.060100.0310*
H22B0.521100.139800.037600.0310*
H23A0.451400.218600.223000.0420*
H23B0.595300.169200.222800.0420*
H23C0.555400.282500.192000.0420*
H24A0.334900.165200.086700.0450*
H24B0.304800.232400.138400.0450*
H24C0.413000.277000.103300.0450*
H250.216500.050500.157800.0310*
H260.212100.126500.211200.0310*
H27A0.648200.260100.291200.0380*
H27B0.665500.203000.235400.0380*
H27C0.623800.129600.283300.0380*
H28A0.436100.293700.319100.0480*
H28B0.305500.251600.284600.0480*
H28C0.403300.163800.315400.0480*
H310.877600.338000.171100.0330*
H321.033500.405000.119700.0400*
H340.801300.667400.075900.0350*
H350.642300.597200.125000.0300*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0417 (4)0.0663 (5)0.0499 (4)0.0137 (3)0.0153 (3)0.0165 (4)
O10.0300 (8)0.0350 (9)0.0190 (8)0.0049 (7)0.0032 (6)0.0026 (7)
N10.0205 (9)0.0188 (8)0.0168 (9)0.0017 (7)0.0012 (7)0.0010 (7)
N20.0145 (8)0.0212 (8)0.0213 (9)0.0005 (7)0.0023 (7)0.0011 (7)
N30.0221 (9)0.0238 (9)0.0150 (9)0.0003 (7)0.0004 (7)0.0019 (7)
N40.0221 (9)0.0218 (9)0.0147 (9)0.0017 (7)0.0019 (7)0.0051 (7)
C10.0199 (10)0.0219 (10)0.0217 (11)0.0029 (8)0.0035 (8)0.0018 (9)
C20.0223 (10)0.0223 (10)0.0191 (11)0.0030 (8)0.0039 (8)0.0001 (9)
C30.0211 (10)0.0215 (10)0.0183 (11)0.0031 (8)0.0046 (8)0.0051 (8)
C40.0221 (11)0.0219 (10)0.0180 (11)0.0027 (8)0.0010 (8)0.0045 (9)
C50.0267 (11)0.0180 (10)0.0218 (11)0.0041 (8)0.0012 (9)0.0005 (9)
C60.0254 (11)0.0178 (10)0.0237 (12)0.0016 (8)0.0002 (9)0.0022 (9)
C70.0237 (11)0.0229 (10)0.0211 (11)0.0056 (9)0.0050 (9)0.0009 (9)
C80.0196 (10)0.0283 (11)0.0223 (11)0.0005 (9)0.0039 (8)0.0011 (9)
C90.0203 (10)0.0230 (10)0.0202 (11)0.0035 (8)0.0029 (8)0.0005 (9)
C100.0240 (11)0.0196 (10)0.0163 (11)0.0036 (8)0.0024 (8)0.0000 (8)
C110.0219 (11)0.0226 (10)0.0177 (11)0.0021 (8)0.0034 (8)0.0032 (9)
C120.0229 (11)0.0190 (10)0.0223 (11)0.0000 (8)0.0038 (8)0.0051 (9)
C130.0247 (11)0.0231 (11)0.0340 (13)0.0049 (9)0.0001 (9)0.0020 (10)
C140.0240 (11)0.0245 (11)0.0283 (12)0.0065 (9)0.0048 (9)0.0025 (9)
C150.0237 (11)0.0263 (11)0.0240 (12)0.0035 (9)0.0033 (9)0.0011 (9)
C160.0293 (12)0.0318 (12)0.0243 (12)0.0007 (10)0.0048 (9)0.0064 (10)
C170.0330 (12)0.0270 (12)0.0207 (11)0.0028 (9)0.0021 (9)0.0059 (9)
C180.0290 (12)0.0335 (12)0.0224 (12)0.0042 (10)0.0087 (9)0.0031 (10)
C190.0218 (11)0.0307 (12)0.0297 (13)0.0003 (9)0.0017 (9)0.0026 (10)
C200.0263 (12)0.0431 (14)0.0379 (14)0.0040 (10)0.0105 (10)0.0044 (11)
C210.0325 (12)0.0279 (12)0.0216 (12)0.0034 (9)0.0030 (9)0.0039 (9)
C220.0295 (12)0.0254 (11)0.0220 (12)0.0016 (9)0.0005 (9)0.0029 (9)
C230.0314 (12)0.0230 (11)0.0295 (13)0.0012 (9)0.0052 (10)0.0036 (10)
C240.0311 (12)0.0295 (11)0.0306 (13)0.0083 (10)0.0043 (10)0.0036 (10)
C250.0200 (11)0.0250 (11)0.0305 (13)0.0047 (9)0.0015 (9)0.0072 (10)
C260.0203 (11)0.0252 (11)0.0322 (13)0.0024 (9)0.0062 (9)0.0067 (10)
C270.0289 (12)0.0209 (10)0.0252 (12)0.0027 (9)0.0050 (9)0.0001 (9)
C280.0420 (14)0.0317 (12)0.0249 (13)0.0069 (10)0.0107 (10)0.0024 (10)
C290.0238 (11)0.0158 (10)0.0222 (12)0.0029 (8)0.0006 (9)0.0015 (9)
C300.0225 (11)0.0204 (10)0.0187 (11)0.0049 (8)0.0037 (8)0.0045 (9)
C310.0240 (11)0.0252 (11)0.0336 (13)0.0000 (9)0.0003 (9)0.0033 (10)
C320.0233 (11)0.0354 (13)0.0422 (14)0.0033 (10)0.0038 (10)0.0017 (11)
C330.0285 (12)0.0400 (13)0.0252 (12)0.0121 (10)0.0042 (9)0.0000 (11)
C340.0347 (13)0.0263 (11)0.0235 (12)0.0074 (10)0.0058 (9)0.0037 (10)
C350.0257 (11)0.0217 (11)0.0251 (12)0.0006 (9)0.0035 (9)0.0015 (9)
Geometric parameters (Å, º) top
Cl1—C331.745 (2)C33—C341.381 (3)
O1—C291.233 (3)C34—C351.385 (3)
N1—C11.503 (3)C1—H11.0000
N1—C121.496 (3)C6—H61.0000
N1—C291.368 (3)C7—H71.0000
N2—C31.383 (3)C12—H121.0000
N2—C41.376 (2)C13—H13A0.9900
N3—C61.475 (3)C13—H13B0.9900
N3—C71.482 (3)C14—H14A0.9900
N4—C91.380 (3)C14—H14B0.9900
N4—C101.378 (3)C15—H15A0.9800
N2—H20.8800C15—H15B0.9800
N3—H3N0.882 (18)C15—H15C0.9800
N4—H40.8800C16—H16A0.9800
C1—C21.576 (3)C16—H16B0.9800
C1—C141.536 (3)C16—H16C0.9800
C2—C31.518 (3)C17—H170.9500
C2—C271.530 (3)C18—H180.9500
C2—C281.543 (3)C19—H19A0.9800
C3—C261.373 (3)C19—H19B0.9800
C4—C51.518 (3)C19—H19C0.9800
C4—C251.370 (3)C20—H20A0.9800
C5—C231.546 (3)C20—H20B0.9800
C5—C61.545 (3)C20—H20C0.9800
C5—C241.538 (3)C21—H21A0.9900
C6—C221.527 (3)C21—H21B0.9900
C7—C81.552 (3)C22—H22A0.9900
C7—C211.549 (3)C22—H22B0.9900
C8—C201.538 (3)C23—H23A0.9800
C8—C91.512 (3)C23—H23B0.9800
C8—C191.532 (3)C23—H23C0.9800
C9—C181.369 (3)C24—H24A0.9800
C10—C111.520 (3)C24—H24B0.9800
C10—C171.373 (3)C24—H24C0.9800
C11—C161.539 (3)C25—H250.9500
C11—C121.555 (3)C26—H260.9500
C11—C151.529 (3)C27—H27A0.9800
C12—C131.539 (3)C27—H27B0.9800
C13—C141.530 (3)C27—H27C0.9800
C17—C181.412 (3)C28—H28A0.9800
C21—C221.538 (3)C28—H28B0.9800
C25—C261.414 (3)C28—H28C0.9800
C29—C301.510 (3)C31—H310.9500
C30—C351.395 (3)C32—H320.9500
C30—C311.389 (3)C34—H340.9500
C31—C321.384 (3)C35—H350.9500
C32—C331.377 (3)
C1—N1—C12111.93 (15)C21—C7—H7108.00
C1—N1—C29116.78 (15)N1—C12—H12107.00
C12—N1—C29119.69 (15)C11—C12—H12107.00
C3—N2—C4110.96 (16)C13—C12—H12107.00
C6—N3—C7106.09 (15)C12—C13—H13A111.00
C9—N4—C10110.73 (16)C12—C13—H13B111.00
C4—N2—H2125.00C14—C13—H13A111.00
C3—N2—H2124.00C14—C13—H13B111.00
C6—N3—H3N113.1 (13)H13A—C13—H13B109.00
C7—N3—H3N111.6 (13)C1—C14—H14A111.00
C10—N4—H4125.00C1—C14—H14B111.00
C9—N4—H4125.00C13—C14—H14A111.00
N1—C1—C14104.17 (16)C13—C14—H14B111.00
N1—C1—C2117.18 (16)H14A—C14—H14B109.00
C2—C1—C14115.36 (16)C11—C15—H15A109.00
C1—C2—C28105.28 (16)C11—C15—H15B109.00
C1—C2—C3115.78 (16)C11—C15—H15C109.00
C1—C2—C27111.11 (16)H15A—C15—H15B110.00
C27—C2—C28108.11 (17)H15A—C15—H15C109.00
C3—C2—C27109.37 (16)H15B—C15—H15C109.00
C3—C2—C28106.78 (16)C11—C16—H16A109.00
C2—C3—C26131.91 (18)C11—C16—H16B109.00
N2—C3—C26106.15 (17)C11—C16—H16C110.00
N2—C3—C2121.91 (17)H16A—C16—H16B110.00
C5—C4—C25130.28 (18)H16A—C16—H16C109.00
N2—C4—C5122.03 (17)H16B—C16—H16C109.00
N2—C4—C25106.35 (17)C10—C17—H17126.00
C4—C5—C6114.84 (16)C18—C17—H17126.00
C6—C5—C23108.88 (16)C9—C18—H18126.00
C4—C5—C23107.28 (16)C17—C18—H18126.00
C4—C5—C24109.32 (17)C8—C19—H19A110.00
C6—C5—C24107.66 (16)C8—C19—H19B109.00
C23—C5—C24108.73 (16)C8—C19—H19C110.00
N3—C6—C22100.71 (16)H19A—C19—H19B109.00
N3—C6—C5115.48 (16)H19A—C19—H19C109.00
C5—C6—C22118.22 (17)H19B—C19—H19C109.00
N3—C7—C8113.32 (16)C8—C20—H20A109.00
N3—C7—C21104.13 (16)C8—C20—H20B109.00
C8—C7—C21114.65 (17)C8—C20—H20C109.00
C7—C8—C20107.59 (17)H20A—C20—H20B109.00
C9—C8—C19111.74 (17)H20A—C20—H20C110.00
C7—C8—C9110.86 (16)H20B—C20—H20C109.00
C7—C8—C19109.21 (17)C7—C21—H21A111.00
C9—C8—C20108.63 (17)C7—C21—H21B111.00
C19—C8—C20108.70 (17)C22—C21—H21A111.00
N4—C9—C8122.41 (17)C22—C21—H21B111.00
N4—C9—C18106.47 (17)H21A—C21—H21B109.00
C8—C9—C18131.03 (18)C6—C22—H22A111.00
N4—C10—C17106.38 (17)C6—C22—H22B111.00
N4—C10—C11122.76 (17)C21—C22—H22A111.00
C11—C10—C17130.85 (18)C21—C22—H22B111.00
C12—C11—C16106.18 (16)H22A—C22—H22B109.00
C10—C11—C15110.31 (16)C5—C23—H23A110.00
C15—C11—C16107.75 (17)C5—C23—H23B109.00
C10—C11—C12109.88 (16)C5—C23—H23C109.00
C10—C11—C16108.21 (16)H23A—C23—H23B109.00
C12—C11—C15114.24 (17)H23A—C23—H23C109.00
N1—C12—C13101.44 (16)H23B—C23—H23C109.00
N1—C12—C11117.13 (16)C5—C24—H24A109.00
C11—C12—C13117.19 (17)C5—C24—H24B109.00
C12—C13—C14105.32 (16)C5—C24—H24C109.00
C1—C14—C13104.98 (16)H24A—C24—H24B110.00
C10—C17—C18108.17 (19)H24A—C24—H24C109.00
C9—C18—C17108.24 (19)H24B—C24—H24C110.00
C7—C21—C22105.11 (16)C4—C25—H25126.00
C6—C22—C21102.14 (16)C26—C25—H25126.00
C4—C25—C26108.38 (18)C3—C26—H26126.00
C3—C26—C25108.16 (18)C25—C26—H26126.00
O1—C29—N1122.32 (18)C2—C27—H27A109.00
N1—C29—C30120.88 (17)C2—C27—H27B109.00
O1—C29—C30116.71 (17)C2—C27—H27C109.00
C31—C30—C35118.22 (19)H27A—C27—H27B109.00
C29—C30—C35123.90 (18)H27A—C27—H27C109.00
C29—C30—C31117.07 (18)H27B—C27—H27C109.00
C30—C31—C32121.4 (2)C2—C28—H28A109.00
C31—C32—C33119.3 (2)C2—C28—H28B110.00
Cl1—C33—C32119.82 (17)C2—C28—H28C109.00
Cl1—C33—C34119.44 (17)H28A—C28—H28B109.00
C32—C33—C34120.7 (2)H28A—C28—H28C109.00
C33—C34—C35119.6 (2)H28B—C28—H28C109.00
C30—C35—C34120.75 (19)C30—C31—H31119.00
N1—C1—H1106.00C32—C31—H31119.00
C2—C1—H1106.00C31—C32—H32120.00
C14—C1—H1106.00C33—C32—H32120.00
N3—C6—H6107.00C33—C34—H34120.00
C5—C6—H6107.00C35—C34—H34120.00
C22—C6—H6107.00C30—C35—H35120.00
N3—C7—H7108.00C34—C35—H35120.00
C8—C7—H7108.00
C12—N1—C1—C2126.13 (17)C24—C5—C6—C2250.7 (2)
C12—N1—C1—C142.6 (2)N3—C6—C22—C2143.55 (18)
C29—N1—C1—C290.6 (2)C5—C6—C22—C21170.30 (17)
C29—N1—C1—C14140.62 (17)N3—C7—C8—C974.1 (2)
C1—N1—C12—C11106.27 (18)N3—C7—C8—C1949.4 (2)
C1—N1—C12—C1322.59 (19)N3—C7—C8—C20167.26 (17)
C29—N1—C12—C11111.7 (2)C21—C7—C8—C945.3 (2)
C29—N1—C12—C13119.47 (18)C21—C7—C8—C19168.80 (17)
C1—N1—C29—O111.0 (3)C21—C7—C8—C2073.4 (2)
C1—N1—C29—C30172.54 (16)N3—C7—C21—C220.6 (2)
C12—N1—C29—O1151.33 (18)C8—C7—C21—C22124.95 (18)
C12—N1—C29—C3032.3 (3)C7—C8—C9—N453.4 (2)
C4—N2—C3—C2178.98 (17)C7—C8—C9—C18122.6 (2)
C4—N2—C3—C260.8 (2)C19—C8—C9—N468.7 (2)
C3—N2—C4—C5168.17 (18)C19—C8—C9—C18115.3 (2)
C3—N2—C4—C250.2 (2)C20—C8—C9—N4171.42 (18)
C7—N3—C6—C5174.32 (16)C20—C8—C9—C184.6 (3)
C7—N3—C6—C2245.77 (18)N4—C9—C18—C170.3 (2)
C6—N3—C7—C8154.10 (16)C8—C9—C18—C17176.2 (2)
C6—N3—C7—C2128.87 (19)N4—C10—C11—C1284.7 (2)
C10—N4—C9—C8176.00 (18)N4—C10—C11—C1542.2 (3)
C10—N4—C9—C180.9 (2)N4—C10—C11—C16159.80 (18)
C9—N4—C10—C11177.92 (17)C17—C10—C11—C1296.6 (3)
C9—N4—C10—C171.1 (2)C17—C10—C11—C15136.6 (2)
N1—C1—C2—C376.6 (2)C17—C10—C11—C1618.9 (3)
N1—C1—C2—C2748.9 (2)N4—C10—C17—C180.9 (2)
N1—C1—C2—C28165.73 (16)C11—C10—C17—C18178.0 (2)
C14—C1—C2—C346.6 (2)C10—C11—C12—N153.0 (2)
C14—C1—C2—C27172.15 (17)C10—C11—C12—C13173.86 (17)
C14—C1—C2—C2871.0 (2)C15—C11—C12—N171.6 (2)
N1—C1—C14—C1318.9 (2)C15—C11—C12—C1349.3 (2)
C2—C1—C14—C13148.75 (17)C16—C11—C12—N1169.75 (16)
C1—C2—C3—N2108.6 (2)C16—C11—C12—C1369.3 (2)
C1—C2—C3—C2673.8 (3)N1—C12—C13—C1433.75 (19)
C27—C2—C3—N217.9 (3)C11—C12—C13—C1495.1 (2)
C27—C2—C3—C26159.7 (2)C12—C13—C14—C133.4 (2)
C28—C2—C3—N2134.63 (19)C10—C17—C18—C90.3 (3)
C28—C2—C3—C2643.0 (3)C7—C21—C22—C626.4 (2)
N2—C3—C26—C251.1 (2)C4—C25—C26—C31.1 (3)
C2—C3—C26—C25179.0 (2)O1—C29—C30—C3165.7 (3)
N2—C4—C5—C651.8 (3)O1—C29—C30—C35103.8 (2)
N2—C4—C5—C2369.4 (2)N1—C29—C30—C31110.9 (2)
N2—C4—C5—C24172.90 (18)N1—C29—C30—C3579.6 (3)
C25—C4—C5—C6143.4 (2)C29—C30—C31—C32171.7 (2)
C25—C4—C5—C2395.5 (3)C35—C30—C31—C321.6 (3)
C25—C4—C5—C2422.3 (3)C29—C30—C35—C34169.84 (19)
N2—C4—C25—C260.5 (2)C31—C30—C35—C340.4 (3)
C5—C4—C25—C26166.1 (2)C30—C31—C32—C331.6 (3)
C4—C5—C6—N348.0 (2)C31—C32—C33—Cl1177.89 (18)
C4—C5—C6—C2271.3 (2)C31—C32—C33—C340.4 (3)
C23—C5—C6—N372.3 (2)Cl1—C33—C34—C35179.02 (17)
C23—C5—C6—C22168.44 (17)C32—C33—C34—C350.8 (3)
C24—C5—C6—N3170.03 (16)C33—C34—C35—C300.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of pyrrole ring N2/C3/C4/C25/C26; Cg2 is the centroid of the benzene ring C30–C35.
D—H···AD—HH···AD···AD—H···A
N2—H2···N30.882.312.865 (2)121
N4—H4···N30.882.553.051 (2)117
C15—H15A···N20.982.523.488 (3)171
C15—H15A···Cg10.982.403.301 (2)152
N3—H3N···O1i0.882 (18)2.257 (18)3.105 (2)161.1 (18)
C23—H23B···O1i0.982.533.495 (3)168
C27—H27C···Cg2i0.982.823.702 (2)150
Symmetry code: (i) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC35H47ClN4O
Mr575.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.3224 (6), 12.0389 (4), 25.3311 (13)
β (°) 96.798 (4)
V3)3125.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.45 × 0.42 × 0.40
Data collection
DiffractometerStoe IPDS 2
Absorption correctionMulti-scan
(MULscanABS in PLATON; Spek, 2009)
Tmin, Tmax0.973, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
32665, 5906, 4215
Rint0.076
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.102, 1.03
No. of reflections5906
No. of parameters381
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.34

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of pyrrole ring N2/C3/C4/C25/C26; Cg2 is the centroid of the benzene ring C30–C35.
D—H···AD—HH···AD···AD—H···A
N2—H2···N30.882.312.865 (2)121
N4—H4···N30.882.553.051 (2)117
C15—H15A···N20.982.523.488 (3)171
C15—H15A···Cg10.982.403.301 (2)152
N3—H3N···O1i0.882 (18)2.257 (18)3.105 (2)161.1 (18)
C23—H23B···O1i0.982.533.495 (3)168
C27—H27C···Cg2i0.982.823.702 (2)150
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

HSE thanks the staff of the XRD Application Laboratory, CSEM, Neuchâtel for access to the X-ray diffraction equipment.

References

First citationBlangy, V., Heiss, C., Khlebnikov, V., Letondor, C., Stoeckli-Evans, H. & Neier, R. (2009). Angew. Chem. Int. Ed. 48, 1688–1691.  Web of Science CSD CrossRef CAS Google Scholar
First citationJournot, G. & Neier, R. (2012). In preparation.  Google Scholar
First citationJournot, G., Neier, R. & Stoeckli-Evans, H. (2012a). Acta Cryst. C68, o119–o122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJournot, G., Neier, R. & Stoeckli-Evans, H. (2012b). Acta Cryst. E68, o929–o930.  CSD CrossRef IUCr Journals Google Scholar
First citationJournot, G., Neier, R. & Stoeckli-Evans, H. (2012c). Private communication (deposition number CCDC-866917). CCDC, Cambridge, England.  Google Scholar
First citationJournot, G., Neier, R. & Stoeckli-Evans, H. (2012d). Private communication (deposition number CCDC-866918). CCDC, Cambridge, England.  Google Scholar
First citationJournot, G., Neier, R. & Stoeckli-Evans, H. (2012e). Private communication (deposition number CCDC-866919). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Wang, X.-J., Wang, J., Grinberg, N., Krishnamurthy, D. K. & Senanayake, C. H. (2009). Tetrahedron Lett. 50, 2964–2966.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o976-o977
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds