organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1102-o1103

(3aR*,6S*,7aR*)-7a-Chloro-6-methyl-2-(4-methyl­phenyl­sulfon­yl)-2,3,3a,6,7,7a-hexa­hydro-3a,6-ep­­oxy-1H-iso­indole

aOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and bNigde University, Faculty of Arts and Sciences, Department of Chemistry, 51240 Nigde, Turkey
*Correspondence e-mail: etemel@omu.edu.tr

(Received 20 February 2012; accepted 5 March 2012; online 17 March 2012)

In the title compound, C16H18ClNO3S, the six-membered ring has a boat conformation. The two five-membered rings with the bridging O atom adopt envelope conformations, whereas the N-containing five-membered ring adopts a twisted conformation. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For background to the intra­molecular Diels–Alder reaction with furan (IMDAF) as diene partner, see: Lipshutz (1986[Lipshutz, B. H. (1986). Chem. Rev. 86, 795-819.]); Heiner et al. (1996[Heiner, T., Kozhushkov, S. I., Noltemeyer, M., Haumann, T., Boese, R. & de Meijere, A. (1996). Tetrahedron, 52, 12185-12196.]); Prajapati et al. (2000[Prajapati, D., Laskar, D. D. & Sandhu, J. S. (2000). Tetrahedron Lett. 41, 8639-8643.]); Kappe et al. (1997[Kappe, C. O., Murphree, S. S. & Padwa, A. (1997). Tetrahedron, 53, 14179-14233.]); Padwa et al. (1997[Padwa, A., Dimitroff, M., Waterson, A. G. & Wu, T. (1997). J. Org. Chem. 62, 4088-4096.]). For our studies of the intra­molecular free radical reaction of furan with a carbon side chain, see: Demircan & Parsons (1998[Demircan, A. & Parsons, P. J. (1998). Synlett, pp. 1215-1216.], 2002[Demircan, A. & Parsons, P. J. (2002). Heterocycl. Commun. 8, 531-536.]); Demircan et al. (2006[Demircan, A., Karaarslan, M. & Turac, E. (2006). Heterocycl. Commun. 12, 233-240.]); Karaarslan et al. (2007[Karaarslan, M., Göktürk, E. & Demircan, A. (2007). J. Chem. Res. 2, 117-120.]). For our investigation of whether the protective group on nitro­gen influences the cyclo­addition process, see: Koşar et al. (2006[Koşar, B., Demircan, A., Karaarslan, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o765-o767.]); Arslan et al. (2008[Arslan, H., Demircan, A. & Göktürk, E. (2008). Spectrochim. Acta Part A, 69, 105-112.]); Temel et al. (2011[Temel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304-o1305.]); Demircan et al. (2011[Demircan, A., Şahin, E., Beyazova, G., Karaaslan, M. & Hökelek, T. (2011). Acta Cryst. E67, o1085-o1086.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18ClNO3S

  • Mr = 339.82

  • Monoclinic, P 21 /c

  • a = 10.0523 (5) Å

  • b = 15.5135 (6) Å

  • c = 11.2729 (6) Å

  • β = 114.800 (4)°

  • V = 1595.84 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 K

  • 0.78 × 0.72 × 0.60 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2001[Stoe & Cie (2001). X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.746, Tmax = 0.843

  • 18547 measured reflections

  • 3312 independent reflections

  • 2841 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.101

  • S = 1.05

  • 3312 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.48 3.368 (2) 159
C5—H5⋯O3ii 0.93 2.62 3.539 (2) 169
C13—H13⋯O3iii 0.93 2.67 3.601 (2) 174
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The intramolecular Diels–Alder reaction with furan (IMDAF) as diene partner provides a facile route to the synthesis of complicated multicyclic structures via oxanobornenes in synthetic organic chemistry (Lipshutz, 1986). However, in many cases, the cyclization process of IMDAF requires high pressure (Heiner et al., 1996) or the employment of Lewis acid catalysis (Prajapati et al., 2000) to proceed, the most extensively studied five-membered heterocycle for this cycloaddition is furan (Kappe et al., 1997; Padwa et al., 1997).

We have been studying intramolecular free radical reaction of furan with carbon side chain (Demircan & Parsons, 1998; 2002; Demircan et al., 2006; Karaarslan et al., 2007) and recently reported that under thermal conditions the bromofurfurylalkenes (1), with heteroatom possessed in a side chain, undergo intramolecular cycloadditions and give heterofused tricycles (2) (32–44% overall) as shown in Figure 4. We have also been researching whether the protective group on nitrogen influences cycloaddition process or not; it is noteworthy that the exchange of the protective group from tert-butoxy (Boc) group to tosyl group increases yield and accelerate the cycloaddition process. We have already reported our findings since 2005 (Koşar et al., 2006; Arslan et al., 2008; Temel et al., 2011; Demircan et al., 2011), now we report the new tricyclic structure, (3aR,6S,7aR)-7a-chloro-6-methyl-2-[(4-methylphenyl) sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole (4), derived from the furan moiety (3) via thermal IMDAF in aqueous media with 73% yield (Figure 5).

The molecular structure of the title compound is shown in Figure 1. The title compound contains non-planar five- and six-membered rings. The six membered ring (C9—C14) has a boat conformation with puckering parameters Q = 0.944 (2) Å, θ = 89.03 (12)°, φ = 119.03 (14)°. The two five-membered rings with bridging oxygen (O3/C11/C10/C9/C14 and O3/C11—C14) adopt envelope configurations, whereas the N-containing five membered ring adopts a twisted conformation with the total puckering parameters of 0.6053 (19)°, 0.502 (2)° and 0.324 (2)°, respectively (Cremer & Pople, 1975). The crystal packing is stabilized by intermolecular C—H···O type hydrogen bonds (Table 1). Atom C13 in the reference molecule acts as a hydrogen bond donor to the bridging oxygen atom O3iii forming a C(4) chain running parallel to the c axis (iii = x, -y + 3/2, z - 1/2). Similarly, atom C5 acts as a hydrogen bond donor to the bridging oxygen atom O3ii forming a C(9) chain running parallel to the a axis (ii = x+1, y, z). The intersection of the C(4) and C(9) chains produce R43(25) rings parallel to the ac plane (Fig. 2). The C2—H2···O1i (i = -x + 1, -y + 1, -z + 1) hydrogen bond produces dimeric R22(10) rings while the combination of C2—H2···O1i and C13—H13···O3iii hydrogen bonds generate R66(38) rings (Fig. 3) (Bernstein et al., 1995).

Related literature top

For background to the intramolecular Diels–Alder reaction with furan (IMDAF) as diene partner, see: Lipshutz (1986); Heiner et al. (1996); Prajapati et al. (2000); Kappe et al. (1997); Padwa et al. (1997). For our studies of the intramolecular free radical reaction of furan with a carbon side chain, see: Demircan & Parsons (1998, 2002); Demircan et al. (2006); Karaarslan et al. (2007). For our investigation of whether the protective group on nitrogen influences the cycloaddition process, see: Koşar et al. (2006); Arslan et al. (2008); Temel et al. (2011); Demircan et al. (2011). For puckering analysis, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

N-(2-chloroprop-2-en-1-yl)-4-methyl-N-[(5-methyl-2-furyl)methyl] benzenesulfonamide (3) (1 g, 2.94 mmol) and 50 ml water were placed in a 100 ml two neck flask, equipped with a condenser. The mixture was stirred at 371 K for 24 h and monitored by thin layer chromatography. The reaction mixture was then poured into 50 ml e thyl acetate; aqueous part was further washed with 3x50 ml ethyl acetate. The combined organic phases were washed with 50 ml brine, dried over magnesium sulfate and concentrated under reduced pressure. Subsequently, the residue was subjected to flash column chromatography to afford the title compound (4) as pale yellow crystals, re-crystallized from dichloromethane - hexane(1:4), (0.73 g, 73%).

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.96, 0.97 and 0.93 Å for CH3, CH2 and aromatic CH, respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq (aromatic or methylene C) or 1.5Ueq (methyl C).

Structure description top

The intramolecular Diels–Alder reaction with furan (IMDAF) as diene partner provides a facile route to the synthesis of complicated multicyclic structures via oxanobornenes in synthetic organic chemistry (Lipshutz, 1986). However, in many cases, the cyclization process of IMDAF requires high pressure (Heiner et al., 1996) or the employment of Lewis acid catalysis (Prajapati et al., 2000) to proceed, the most extensively studied five-membered heterocycle for this cycloaddition is furan (Kappe et al., 1997; Padwa et al., 1997).

We have been studying intramolecular free radical reaction of furan with carbon side chain (Demircan & Parsons, 1998; 2002; Demircan et al., 2006; Karaarslan et al., 2007) and recently reported that under thermal conditions the bromofurfurylalkenes (1), with heteroatom possessed in a side chain, undergo intramolecular cycloadditions and give heterofused tricycles (2) (32–44% overall) as shown in Figure 4. We have also been researching whether the protective group on nitrogen influences cycloaddition process or not; it is noteworthy that the exchange of the protective group from tert-butoxy (Boc) group to tosyl group increases yield and accelerate the cycloaddition process. We have already reported our findings since 2005 (Koşar et al., 2006; Arslan et al., 2008; Temel et al., 2011; Demircan et al., 2011), now we report the new tricyclic structure, (3aR,6S,7aR)-7a-chloro-6-methyl-2-[(4-methylphenyl) sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole (4), derived from the furan moiety (3) via thermal IMDAF in aqueous media with 73% yield (Figure 5).

The molecular structure of the title compound is shown in Figure 1. The title compound contains non-planar five- and six-membered rings. The six membered ring (C9—C14) has a boat conformation with puckering parameters Q = 0.944 (2) Å, θ = 89.03 (12)°, φ = 119.03 (14)°. The two five-membered rings with bridging oxygen (O3/C11/C10/C9/C14 and O3/C11—C14) adopt envelope configurations, whereas the N-containing five membered ring adopts a twisted conformation with the total puckering parameters of 0.6053 (19)°, 0.502 (2)° and 0.324 (2)°, respectively (Cremer & Pople, 1975). The crystal packing is stabilized by intermolecular C—H···O type hydrogen bonds (Table 1). Atom C13 in the reference molecule acts as a hydrogen bond donor to the bridging oxygen atom O3iii forming a C(4) chain running parallel to the c axis (iii = x, -y + 3/2, z - 1/2). Similarly, atom C5 acts as a hydrogen bond donor to the bridging oxygen atom O3ii forming a C(9) chain running parallel to the a axis (ii = x+1, y, z). The intersection of the C(4) and C(9) chains produce R43(25) rings parallel to the ac plane (Fig. 2). The C2—H2···O1i (i = -x + 1, -y + 1, -z + 1) hydrogen bond produces dimeric R22(10) rings while the combination of C2—H2···O1i and C13—H13···O3iii hydrogen bonds generate R66(38) rings (Fig. 3) (Bernstein et al., 1995).

For background to the intramolecular Diels–Alder reaction with furan (IMDAF) as diene partner, see: Lipshutz (1986); Heiner et al. (1996); Prajapati et al. (2000); Kappe et al. (1997); Padwa et al. (1997). For our studies of the intramolecular free radical reaction of furan with a carbon side chain, see: Demircan & Parsons (1998, 2002); Demircan et al. (2006); Karaarslan et al. (2007). For our investigation of whether the protective group on nitrogen influences the cycloaddition process, see: Koşar et al. (2006); Arslan et al. (2008); Temel et al. (2011); Demircan et al. (2011). For puckering analysis, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the formation of C(4), C(10) chains and R43(25) rings parallel to ac-plane. Hydrogen bonds are indicated by dashed lines. (Symmetry codes: i; x, -y + 3/2, z - 1/2; ii; x + 1, y, z).
[Figure 3] Fig. 3. Part of the crystal structure of the title compound, showing the formation of R22(10) and R66(38) rings. Hydrogen bonds are indicated by dashed lines. (Symmetry codes: i; x, -y + 3/2, z - 1/2; ii; -x + 1, -y + 1, -z + 1).
[Figure 4] Fig. 4. Synthesis of fused tricycles (2) from bromofurufurylalkenes (1)
[Figure 5] Fig. 5. Synthesis of titled compound (4) in water
(3aR*,6S*,7aR*)-7a-Chloro-6-methyl-2-(4- methylphenylsulfonyl)-2,3,3a,6,7,7a-hexahydro-3a,6-epoxy-1H-isoindole top
Crystal data top
C16H18ClNO3SF(000) = 712
Mr = 339.82Dx = 1.414 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18547 reflections
a = 10.0523 (5) Åθ = 2.0–28.0°
b = 15.5135 (6) ŵ = 0.38 mm1
c = 11.2729 (6) ÅT = 296 K
β = 114.800 (4)°Block, colourless
V = 1595.84 (13) Å30.78 × 0.72 × 0.60 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
3312 independent reflections
Radiation source: fine-focus sealed tube2841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.2°
rotation method scansh = 1212
Absorption correction: integration
(X-RED; Stoe & Cie, 2001)
k = 1919
Tmin = 0.746, Tmax = 0.843l = 1414
18547 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.051P)2 + 0.5399P]
where P = (Fo2 + 2Fc2)/3
3312 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C16H18ClNO3SV = 1595.84 (13) Å3
Mr = 339.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0523 (5) ŵ = 0.38 mm1
b = 15.5135 (6) ÅT = 296 K
c = 11.2729 (6) Å0.78 × 0.72 × 0.60 mm
β = 114.800 (4)°
Data collection top
Stoe IPDS 2
diffractometer
3312 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2001)
2841 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.843Rint = 0.026
18547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
3312 reflectionsΔρmin = 0.37 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C100.4256 (2)0.89806 (12)0.5996 (2)0.0456 (4)
H10A0.44040.95120.56140.055*
H10B0.45440.90650.69230.055*
C110.2649 (2)0.86575 (12)0.52936 (19)0.0454 (4)
C120.2241 (2)0.86741 (15)0.3842 (2)0.0569 (5)
H120.16140.90660.32440.068*
C130.2935 (2)0.80336 (14)0.35758 (19)0.0524 (5)
H130.28930.78760.27650.063*
C160.1574 (3)0.90085 (17)0.5776 (3)0.0670 (6)
H16A0.06240.87640.52760.101*
H16B0.15220.96240.56800.101*
H16C0.18880.88620.66810.101*
O10.61916 (15)0.52146 (9)0.65522 (14)0.0526 (3)
O20.79916 (16)0.62551 (11)0.80370 (14)0.0587 (4)
O30.28849 (13)0.77360 (8)0.55435 (12)0.0413 (3)
C10.77799 (19)0.60653 (11)0.56803 (19)0.0411 (4)
C20.7250 (2)0.55616 (12)0.4569 (2)0.0460 (4)
H20.64280.52170.43750.055*
C30.7952 (2)0.55757 (13)0.3748 (2)0.0520 (5)
H30.75940.52360.29990.062*
C40.9179 (2)0.60826 (14)0.4013 (2)0.0530 (5)
C50.9670 (2)0.65924 (15)0.5121 (3)0.0627 (6)
H51.04810.69450.53080.075*
C60.8985 (2)0.65894 (14)0.5953 (2)0.0562 (5)
H60.93310.69370.66930.067*
C70.9952 (3)0.60749 (19)0.3123 (3)0.0746 (7)
H7A1.05810.55800.33140.112*
H7B1.05260.65900.32570.112*
H7C0.92410.60500.22300.112*
C80.5981 (2)0.76445 (12)0.68794 (18)0.0433 (4)
H8A0.70170.77780.72070.052*
H8B0.56760.77090.75850.052*
C90.50862 (19)0.82243 (11)0.57366 (17)0.0388 (4)
C140.38083 (19)0.76143 (11)0.48755 (16)0.0377 (4)
C150.4437 (2)0.67277 (12)0.5043 (2)0.0465 (4)
H15A0.37260.62990.50250.056*
H15B0.47640.65950.43670.056*
Cl10.61872 (6)0.85248 (4)0.48951 (6)0.06283 (18)
N10.56832 (16)0.67646 (10)0.63391 (15)0.0429 (4)
S10.69313 (5)0.60262 (3)0.67681 (5)0.04233 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.0524 (11)0.0356 (9)0.0507 (11)0.0016 (8)0.0233 (9)0.0048 (8)
C110.0477 (10)0.0396 (9)0.0482 (10)0.0060 (8)0.0194 (9)0.0017 (8)
C120.0608 (13)0.0518 (12)0.0460 (11)0.0136 (10)0.0106 (10)0.0068 (9)
C130.0617 (12)0.0560 (12)0.0343 (9)0.0062 (10)0.0150 (9)0.0004 (8)
C160.0531 (12)0.0716 (15)0.0790 (16)0.0095 (11)0.0304 (12)0.0167 (13)
O10.0568 (8)0.0384 (7)0.0644 (9)0.0005 (6)0.0272 (7)0.0103 (6)
O20.0523 (8)0.0646 (10)0.0461 (8)0.0066 (7)0.0079 (7)0.0030 (7)
O30.0394 (6)0.0404 (7)0.0464 (7)0.0014 (5)0.0202 (6)0.0000 (5)
C10.0347 (9)0.0351 (9)0.0498 (10)0.0034 (7)0.0141 (8)0.0043 (8)
C20.0425 (9)0.0377 (10)0.0560 (11)0.0035 (8)0.0191 (9)0.0003 (8)
C30.0515 (11)0.0491 (12)0.0552 (11)0.0028 (9)0.0222 (10)0.0006 (9)
C40.0419 (10)0.0527 (12)0.0673 (13)0.0126 (9)0.0258 (10)0.0169 (10)
C50.0428 (11)0.0602 (13)0.0863 (17)0.0092 (10)0.0282 (12)0.0013 (12)
C60.0413 (10)0.0536 (12)0.0699 (14)0.0096 (9)0.0195 (10)0.0109 (10)
C70.0634 (14)0.0879 (19)0.0885 (18)0.0160 (13)0.0475 (14)0.0213 (15)
C80.0438 (10)0.0382 (9)0.0429 (9)0.0027 (7)0.0132 (8)0.0068 (7)
C90.0436 (9)0.0352 (9)0.0428 (9)0.0058 (7)0.0233 (8)0.0024 (7)
C140.0386 (9)0.0379 (9)0.0357 (9)0.0002 (7)0.0148 (7)0.0035 (7)
C150.0402 (9)0.0401 (10)0.0494 (11)0.0012 (8)0.0094 (8)0.0076 (8)
Cl10.0688 (3)0.0623 (3)0.0770 (4)0.0109 (3)0.0498 (3)0.0005 (3)
N10.0385 (8)0.0383 (8)0.0441 (8)0.0008 (6)0.0097 (7)0.0032 (6)
S10.0401 (2)0.0385 (2)0.0444 (3)0.00261 (18)0.01385 (19)0.00562 (19)
Geometric parameters (Å, º) top
C10—C91.537 (2)C3—C41.385 (3)
C10—C111.554 (3)C3—H30.9300
C10—H10A0.9700C4—C51.383 (3)
C10—H10B0.9700C4—C71.505 (3)
C11—O31.457 (2)C5—C61.377 (3)
C11—C161.501 (3)C5—H50.9300
C11—C121.511 (3)C6—H60.9300
C12—C131.319 (3)C7—H7A0.9600
C12—H120.9300C7—H7B0.9600
C13—C141.504 (3)C7—H7C0.9600
C13—H130.9300C8—N11.473 (2)
C16—H16A0.9600C8—C91.518 (3)
C16—H16B0.9600C8—H8A0.9700
C16—H16C0.9600C8—H8B0.9700
O1—S11.4302 (14)C9—C141.563 (2)
O2—S11.4245 (15)C9—Cl11.7952 (17)
O3—C141.432 (2)C14—C151.492 (2)
C1—C21.380 (3)C15—N11.473 (2)
C1—C61.382 (3)C15—H15A0.9700
C1—S11.7643 (19)C15—H15B0.9700
C2—C31.380 (3)N1—S11.6159 (16)
C2—H20.9300
C9—C10—C11100.86 (14)C5—C6—H6120.3
C9—C10—H10A111.6C1—C6—H6120.3
C11—C10—H10A111.6C4—C7—H7A109.5
C9—C10—H10B111.6C4—C7—H7B109.5
C11—C10—H10B111.6H7A—C7—H7B109.5
H10A—C10—H10B109.4C4—C7—H7C109.5
O3—C11—C16111.69 (17)H7A—C7—H7C109.5
O3—C11—C12100.03 (15)H7B—C7—H7C109.5
C16—C11—C12118.48 (19)N1—C8—C9104.64 (14)
O3—C11—C1099.65 (14)N1—C8—H8A110.8
C16—C11—C10116.82 (17)C9—C8—H8A110.8
C12—C11—C10107.31 (17)N1—C8—H8B110.8
C13—C12—C11107.74 (18)C9—C8—H8B110.8
C13—C12—H12126.1H8A—C8—H8B108.9
C11—C12—H12126.1C8—C9—C10117.81 (15)
C12—C13—C14104.62 (17)C8—C9—C14102.03 (13)
C12—C13—H13127.7C10—C9—C14102.13 (14)
C14—C13—H13127.7C8—C9—Cl1108.97 (13)
C11—C16—H16A109.5C10—C9—Cl1113.96 (13)
C11—C16—H16B109.5C14—C9—Cl1110.94 (12)
H16A—C16—H16B109.5O3—C14—C15112.85 (15)
C11—C16—H16C109.5O3—C14—C13102.29 (14)
H16A—C16—H16C109.5C15—C14—C13124.43 (16)
H16B—C16—H16C109.5O3—C14—C997.98 (12)
C14—O3—C1196.70 (13)C15—C14—C9106.57 (14)
C2—C1—C6120.26 (19)C13—C14—C9109.59 (15)
C2—C1—S1119.75 (14)N1—C15—C14103.22 (14)
C6—C1—S1119.98 (16)N1—C15—H15A111.1
C3—C2—C1119.22 (18)C14—C15—H15A111.1
C3—C2—H2120.4N1—C15—H15B111.1
C1—C2—H2120.4C14—C15—H15B111.1
C2—C3—C4121.6 (2)H15A—C15—H15B109.1
C2—C3—H3119.2C15—N1—C8112.74 (14)
C4—C3—H3119.2C15—N1—S1119.98 (12)
C5—C4—C3117.9 (2)C8—N1—S1122.37 (12)
C5—C4—C7121.2 (2)O2—S1—O1120.46 (9)
C3—C4—C7120.9 (2)O2—S1—N1106.49 (9)
C6—C5—C4121.5 (2)O1—S1—N1106.87 (8)
C6—C5—H5119.3O2—S1—C1108.24 (9)
C4—C5—H5119.3O1—S1—C1106.29 (9)
C5—C6—C1119.5 (2)N1—S1—C1107.98 (8)
C9—C10—C11—O334.16 (17)C12—C13—C14—C15162.03 (19)
C9—C10—C11—C16154.56 (19)C12—C13—C14—C970.3 (2)
C9—C10—C11—C1269.61 (18)C8—C9—C14—O383.30 (14)
O3—C11—C12—C1330.6 (2)C10—C9—C14—O338.96 (16)
C16—C11—C12—C13152.2 (2)Cl1—C9—C14—O3160.76 (11)
C10—C11—C12—C1372.9 (2)C8—C9—C14—C1533.50 (18)
C11—C12—C13—C140.8 (2)C10—C9—C14—C15155.76 (15)
C16—C11—O3—C14174.89 (17)Cl1—C9—C14—C1582.44 (16)
C12—C11—O3—C1448.62 (16)C8—C9—C14—C13170.56 (15)
C10—C11—O3—C1461.04 (15)C10—C9—C14—C1367.19 (17)
C6—C1—C2—C31.2 (3)Cl1—C9—C14—C1354.62 (17)
S1—C1—C2—C3177.82 (15)O3—C14—C15—N180.61 (17)
C1—C2—C3—C40.0 (3)C13—C14—C15—N1154.70 (18)
C2—C3—C4—C51.2 (3)C9—C14—C15—N125.80 (18)
C2—C3—C4—C7178.6 (2)C14—C15—N1—C88.4 (2)
C3—C4—C5—C61.1 (3)C14—C15—N1—S1164.23 (13)
C7—C4—C5—C6178.7 (2)C9—C8—N1—C1512.7 (2)
C4—C5—C6—C10.1 (3)C9—C8—N1—S1142.44 (13)
C2—C1—C6—C51.3 (3)C15—N1—S1—O2178.27 (15)
S1—C1—C6—C5177.75 (17)C8—N1—S1—O224.88 (17)
N1—C8—C9—C10137.96 (16)C15—N1—S1—O151.77 (16)
N1—C8—C9—C1427.15 (17)C8—N1—S1—O1154.84 (15)
N1—C8—C9—Cl190.22 (14)C15—N1—S1—C162.21 (16)
C11—C10—C9—C8108.28 (17)C8—N1—S1—C191.18 (16)
C11—C10—C9—C142.47 (17)C2—C1—S1—O2153.66 (15)
C11—C10—C9—Cl1122.17 (14)C6—C1—S1—O225.36 (19)
C11—O3—C14—C15173.57 (15)C2—C1—S1—O122.93 (17)
C11—O3—C14—C1350.39 (16)C6—C1—S1—O1156.09 (16)
C11—O3—C14—C961.76 (14)C2—C1—S1—N191.44 (16)
C12—C13—C14—O332.9 (2)C6—C1—S1—N189.54 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.483.368 (2)159
C5—H5···O3ii0.932.623.539 (2)169
C13—H13···O3iii0.932.673.601 (2)174
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H18ClNO3S
Mr339.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.0523 (5), 15.5135 (6), 11.2729 (6)
β (°) 114.800 (4)
V3)1595.84 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.78 × 0.72 × 0.60
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2001)
Tmin, Tmax0.746, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
18547, 3312, 2841
Rint0.026
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.05
No. of reflections3312
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.37

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.483.368 (2)159.1
C5—H5···O3ii0.932.623.539 (2)168.9
C13—H13···O3iii0.932.673.601 (2)174.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant F.279 of University Research Fund) and also the Scientific & Technological Research Council of Turkey (TÜBİTAK) for the financial support of this work (PN 107 T831).

References

First citationArslan, H., Demircan, A. & Göktürk, E. (2008). Spectrochim. Acta Part A, 69, 105–112.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDemircan, A., Karaarslan, M. & Turac, E. (2006). Heterocycl. Commun. 12, 233–240.  CrossRef CAS Google Scholar
First citationDemircan, A. & Parsons, P. J. (1998). Synlett, pp. 1215–1216.  CrossRef Google Scholar
First citationDemircan, A. & Parsons, P. J. (2002). Heterocycl. Commun. 8, 531–536.  CAS Google Scholar
First citationDemircan, A., Şahin, E., Beyazova, G., Karaaslan, M. & Hökelek, T. (2011). Acta Cryst. E67, o1085–o1086.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHeiner, T., Kozhushkov, S. I., Noltemeyer, M., Haumann, T., Boese, R. & de Meijere, A. (1996). Tetrahedron, 52, 12185–12196.  CSD CrossRef CAS Web of Science Google Scholar
First citationKappe, C. O., Murphree, S. S. & Padwa, A. (1997). Tetrahedron, 53, 14179–14233.  CrossRef CAS Google Scholar
First citationKaraarslan, M., Göktürk, E. & Demircan, A. (2007). J. Chem. Res. 2, 117–120.  CrossRef Google Scholar
First citationKoşar, B., Demircan, A., Karaarslan, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o765–o767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLipshutz, B. H. (1986). Chem. Rev. 86, 795–819.  CrossRef CAS Web of Science Google Scholar
First citationPadwa, A., Dimitroff, M., Waterson, A. G. & Wu, T. (1997). J. Org. Chem. 62, 4088–4096.  CrossRef CAS Web of Science Google Scholar
First citationPrajapati, D., Laskar, D. D. & Sandhu, J. S. (2000). Tetrahedron Lett. 41, 8639–8643.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTemel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304–o1305.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1102-o1103
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds