organic compounds
(3aR*,6S*,7aR*)-7a-Chloro-6-methyl-2-(4-methylphenylsulfonyl)-2,3,3a,6,7,7a-hexahydro-3a,6-epoxy-1H-isoindole
aOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and bNigde University, Faculty of Arts and Sciences, Department of Chemistry, 51240 Nigde, Turkey
*Correspondence e-mail: etemel@omu.edu.tr
In the title compound, C16H18ClNO3S, the six-membered ring has a boat conformation. The two five-membered rings with the bridging O atom adopt envelope conformations, whereas the N-containing five-membered ring adopts a twisted conformation. In the crystal, C—H⋯O hydrogen bonds link the molecules into a three-dimensional network.
Related literature
For background to the intramolecular Diels–Alder reaction with furan (IMDAF) as diene partner, see: Lipshutz (1986); Heiner et al. (1996); Prajapati et al. (2000); Kappe et al. (1997); Padwa et al. (1997). For our studies of the intramolecular reaction of furan with a carbon side chain, see: Demircan & Parsons (1998, 2002); Demircan et al. (2006); Karaarslan et al. (2007). For our investigation of whether the protective group on nitrogen influences the cycloaddition process, see: Koşar et al. (2006); Arslan et al. (2008); Temel et al. (2011); Demircan et al. (2011). For puckering analysis, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812009658/zq2155sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812009658/zq2155Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812009658/zq2155Isup3.cml
N-(2-chloroprop-2-en-1-yl)-4-methyl-N-[(5-methyl-2-furyl)methyl] benzenesulfonamide (3) (1 g, 2.94 mmol) and 50 ml water were placed in a 100 ml two neck flask, equipped with a condenser. The mixture was stirred at 371 K for 24 h and monitored by thin layer
The reaction mixture was then poured into 50 ml e thyl acetate; aqueous part was further washed with 3x50 ml ethyl acetate. The combined organic phases were washed with 50 ml brine, dried over magnesium sulfate and concentrated under reduced pressure. Subsequently, the residue was subjected to flash to afford the title compound (4) as pale yellow crystals, re-crystallized from dichloromethane - hexane(1:4), (0.73 g, 73%).H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.96, 0.97 and 0.93 Å for CH3, CH2 and aromatic CH, respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq (aromatic or methylene C) or 1.5Ueq (methyl C).
The intramolecular Diels–Alder reaction with furan (IMDAF) as diene partner provides a facile route to the synthesis of complicated multicyclic structures via oxanobornenes in synthetic organic chemistry (Lipshutz, 1986). However, in many cases, the
process of IMDAF requires high pressure (Heiner et al., 1996) or the employment of catalysis (Prajapati et al., 2000) to proceed, the most extensively studied five-membered heterocycle for this is furan (Kappe et al., 1997; Padwa et al., 1997).We have been studying intramolecular
reaction of furan with carbon side chain (Demircan & Parsons, 1998; 2002; Demircan et al., 2006; Karaarslan et al., 2007) and recently reported that under thermal conditions the bromofurfurylalkenes (1), with heteroatom possessed in a side chain, undergo intramolecular cycloadditions and give heterofused tricycles (2) (32–44% overall) as shown in Figure 4. We have also been researching whether the protective group on nitrogen influences process or not; it is noteworthy that the exchange of the protective group from tert-butoxy (Boc) group to tosyl group increases yield and accelerate the process. We have already reported our findings since 2005 (Koşar et al., 2006; Arslan et al., 2008; Temel et al., 2011; Demircan et al., 2011), now we report the new tricyclic structure, (3aR,6S,7aR)-7a-chloro-6-methyl-2-[(4-methylphenyl) sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole (4), derived from the furan moiety (3) via thermal IMDAF in aqueous media with 73% yield (Figure 5).The molecular structure of the title compound is shown in Figure 1. The title compound contains non-planar five- and six-membered rings. The six membered ring (C9—C14) has a boat conformation with puckering parameters Q = 0.944 (2) Å, θ = 89.03 (12)°, φ = 119.03 (14)°. The two five-membered rings with bridging oxygen (O3/C11/C10/C9/C14 and O3/C11—C14) adopt envelope configurations, whereas the N-containing five membered ring adopts a twisted conformation with the total puckering parameters of 0.6053 (19)°, 0.502 (2)° and 0.324 (2)°, respectively (Cremer & Pople, 1975). The crystal packing is stabilized by intermolecular C—H···O type hydrogen bonds (Table 1). Atom C13 in the reference molecule acts as a hydrogen bond donor to the bridging oxygen atom O3iii forming a C(4) chain running parallel to the c axis (iii = x, -y + 3/2, z - 1/2). Similarly, atom C5 acts as a hydrogen bond donor to the bridging oxygen atom O3ii forming a C(9) chain running parallel to the a axis (ii = x+1, y, z). The intersection of the C(4) and C(9) chains produce R43(25) rings parallel to the ac plane (Fig. 2). The C2—H2···O1i (i = -x + 1, -y + 1, -z + 1) hydrogen bond produces dimeric R22(10) rings while the combination of C2—H2···O1i and C13—H13···O3iii hydrogen bonds generate R66(38) rings (Fig. 3) (Bernstein et al., 1995).
For background to the intramolecular Diels–Alder reaction with furan (IMDAF) as diene partner, see: Lipshutz (1986); Heiner et al. (1996); Prajapati et al. (2000); Kappe et al. (1997); Padwa et al. (1997). For our studies of the intramolecular
reaction of furan with a carbon side chain, see: Demircan & Parsons (1998, 2002); Demircan et al. (2006); Karaarslan et al. (2007). For our investigation of whether the protective group on nitrogen influences the process, see: Koşar et al. (2006); Arslan et al. (2008); Temel et al. (2011); Demircan et al. (2011). For puckering analysis, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C16H18ClNO3S | F(000) = 712 |
Mr = 339.82 | Dx = 1.414 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 18547 reflections |
a = 10.0523 (5) Å | θ = 2.0–28.0° |
b = 15.5135 (6) Å | µ = 0.38 mm−1 |
c = 11.2729 (6) Å | T = 296 K |
β = 114.800 (4)° | Block, colourless |
V = 1595.84 (13) Å3 | 0.78 × 0.72 × 0.60 mm |
Z = 4 |
Stoe IPDS 2 diffractometer | 3312 independent reflections |
Radiation source: fine-focus sealed tube | 2841 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.5°, θmin = 2.2° |
rotation method scans | h = −12→12 |
Absorption correction: integration (X-RED; Stoe & Cie, 2001) | k = −19→19 |
Tmin = 0.746, Tmax = 0.843 | l = −14→14 |
18547 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.051P)2 + 0.5399P] where P = (Fo2 + 2Fc2)/3 |
3312 reflections | (Δ/σ)max = 0.001 |
201 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
C16H18ClNO3S | V = 1595.84 (13) Å3 |
Mr = 339.82 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.0523 (5) Å | µ = 0.38 mm−1 |
b = 15.5135 (6) Å | T = 296 K |
c = 11.2729 (6) Å | 0.78 × 0.72 × 0.60 mm |
β = 114.800 (4)° |
Stoe IPDS 2 diffractometer | 3312 independent reflections |
Absorption correction: integration (X-RED; Stoe & Cie, 2001) | 2841 reflections with I > 2σ(I) |
Tmin = 0.746, Tmax = 0.843 | Rint = 0.026 |
18547 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.34 e Å−3 |
3312 reflections | Δρmin = −0.37 e Å−3 |
201 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C10 | 0.4256 (2) | 0.89806 (12) | 0.5996 (2) | 0.0456 (4) | |
H10A | 0.4404 | 0.9512 | 0.5614 | 0.055* | |
H10B | 0.4544 | 0.9065 | 0.6923 | 0.055* | |
C11 | 0.2649 (2) | 0.86575 (12) | 0.52936 (19) | 0.0454 (4) | |
C12 | 0.2241 (2) | 0.86741 (15) | 0.3842 (2) | 0.0569 (5) | |
H12 | 0.1614 | 0.9066 | 0.3244 | 0.068* | |
C13 | 0.2935 (2) | 0.80336 (14) | 0.35758 (19) | 0.0524 (5) | |
H13 | 0.2893 | 0.7876 | 0.2765 | 0.063* | |
C16 | 0.1574 (3) | 0.90085 (17) | 0.5776 (3) | 0.0670 (6) | |
H16A | 0.0624 | 0.8764 | 0.5276 | 0.101* | |
H16B | 0.1522 | 0.9624 | 0.5680 | 0.101* | |
H16C | 0.1888 | 0.8862 | 0.6681 | 0.101* | |
O1 | 0.61916 (15) | 0.52146 (9) | 0.65522 (14) | 0.0526 (3) | |
O2 | 0.79916 (16) | 0.62551 (11) | 0.80370 (14) | 0.0587 (4) | |
O3 | 0.28849 (13) | 0.77360 (8) | 0.55435 (12) | 0.0413 (3) | |
C1 | 0.77799 (19) | 0.60653 (11) | 0.56803 (19) | 0.0411 (4) | |
C2 | 0.7250 (2) | 0.55616 (12) | 0.4569 (2) | 0.0460 (4) | |
H2 | 0.6428 | 0.5217 | 0.4375 | 0.055* | |
C3 | 0.7952 (2) | 0.55757 (13) | 0.3748 (2) | 0.0520 (5) | |
H3 | 0.7594 | 0.5236 | 0.2999 | 0.062* | |
C4 | 0.9179 (2) | 0.60826 (14) | 0.4013 (2) | 0.0530 (5) | |
C5 | 0.9670 (2) | 0.65924 (15) | 0.5121 (3) | 0.0627 (6) | |
H5 | 1.0481 | 0.6945 | 0.5308 | 0.075* | |
C6 | 0.8985 (2) | 0.65894 (14) | 0.5953 (2) | 0.0562 (5) | |
H6 | 0.9331 | 0.6937 | 0.6693 | 0.067* | |
C7 | 0.9952 (3) | 0.60749 (19) | 0.3123 (3) | 0.0746 (7) | |
H7A | 1.0581 | 0.5580 | 0.3314 | 0.112* | |
H7B | 1.0526 | 0.6590 | 0.3257 | 0.112* | |
H7C | 0.9241 | 0.6050 | 0.2230 | 0.112* | |
C8 | 0.5981 (2) | 0.76445 (12) | 0.68794 (18) | 0.0433 (4) | |
H8A | 0.7017 | 0.7778 | 0.7207 | 0.052* | |
H8B | 0.5676 | 0.7709 | 0.7585 | 0.052* | |
C9 | 0.50862 (19) | 0.82243 (11) | 0.57366 (17) | 0.0388 (4) | |
C14 | 0.38083 (19) | 0.76143 (11) | 0.48755 (16) | 0.0377 (4) | |
C15 | 0.4437 (2) | 0.67277 (12) | 0.5043 (2) | 0.0465 (4) | |
H15A | 0.3726 | 0.6299 | 0.5025 | 0.056* | |
H15B | 0.4764 | 0.6595 | 0.4367 | 0.056* | |
Cl1 | 0.61872 (6) | 0.85248 (4) | 0.48951 (6) | 0.06283 (18) | |
N1 | 0.56832 (16) | 0.67646 (10) | 0.63391 (15) | 0.0429 (4) | |
S1 | 0.69313 (5) | 0.60262 (3) | 0.67681 (5) | 0.04233 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C10 | 0.0524 (11) | 0.0356 (9) | 0.0507 (11) | −0.0016 (8) | 0.0233 (9) | −0.0048 (8) |
C11 | 0.0477 (10) | 0.0396 (9) | 0.0482 (10) | 0.0060 (8) | 0.0194 (9) | −0.0017 (8) |
C12 | 0.0608 (13) | 0.0518 (12) | 0.0460 (11) | 0.0136 (10) | 0.0106 (10) | 0.0068 (9) |
C13 | 0.0617 (12) | 0.0560 (12) | 0.0343 (9) | 0.0062 (10) | 0.0150 (9) | −0.0004 (8) |
C16 | 0.0531 (12) | 0.0716 (15) | 0.0790 (16) | 0.0095 (11) | 0.0304 (12) | −0.0167 (13) |
O1 | 0.0568 (8) | 0.0384 (7) | 0.0644 (9) | −0.0005 (6) | 0.0272 (7) | 0.0103 (6) |
O2 | 0.0523 (8) | 0.0646 (10) | 0.0461 (8) | 0.0066 (7) | 0.0079 (7) | 0.0030 (7) |
O3 | 0.0394 (6) | 0.0404 (7) | 0.0464 (7) | −0.0014 (5) | 0.0202 (6) | 0.0000 (5) |
C1 | 0.0347 (9) | 0.0351 (9) | 0.0498 (10) | 0.0034 (7) | 0.0141 (8) | 0.0043 (8) |
C2 | 0.0425 (9) | 0.0377 (10) | 0.0560 (11) | −0.0035 (8) | 0.0191 (9) | 0.0003 (8) |
C3 | 0.0515 (11) | 0.0491 (12) | 0.0552 (11) | 0.0028 (9) | 0.0222 (10) | −0.0006 (9) |
C4 | 0.0419 (10) | 0.0527 (12) | 0.0673 (13) | 0.0126 (9) | 0.0258 (10) | 0.0169 (10) |
C5 | 0.0428 (11) | 0.0602 (13) | 0.0863 (17) | −0.0092 (10) | 0.0282 (12) | 0.0013 (12) |
C6 | 0.0413 (10) | 0.0536 (12) | 0.0699 (14) | −0.0096 (9) | 0.0195 (10) | −0.0109 (10) |
C7 | 0.0634 (14) | 0.0879 (19) | 0.0885 (18) | 0.0160 (13) | 0.0475 (14) | 0.0213 (15) |
C8 | 0.0438 (10) | 0.0382 (9) | 0.0429 (9) | −0.0027 (7) | 0.0132 (8) | −0.0068 (7) |
C9 | 0.0436 (9) | 0.0352 (9) | 0.0428 (9) | −0.0058 (7) | 0.0233 (8) | −0.0024 (7) |
C14 | 0.0386 (9) | 0.0379 (9) | 0.0357 (9) | −0.0002 (7) | 0.0148 (7) | −0.0035 (7) |
C15 | 0.0402 (9) | 0.0401 (10) | 0.0494 (11) | 0.0012 (8) | 0.0094 (8) | −0.0076 (8) |
Cl1 | 0.0688 (3) | 0.0623 (3) | 0.0770 (4) | −0.0109 (3) | 0.0498 (3) | 0.0005 (3) |
N1 | 0.0385 (8) | 0.0383 (8) | 0.0441 (8) | 0.0008 (6) | 0.0097 (7) | −0.0032 (6) |
S1 | 0.0401 (2) | 0.0385 (2) | 0.0444 (3) | 0.00261 (18) | 0.01385 (19) | 0.00562 (19) |
C10—C9 | 1.537 (2) | C3—C4 | 1.385 (3) |
C10—C11 | 1.554 (3) | C3—H3 | 0.9300 |
C10—H10A | 0.9700 | C4—C5 | 1.383 (3) |
C10—H10B | 0.9700 | C4—C7 | 1.505 (3) |
C11—O3 | 1.457 (2) | C5—C6 | 1.377 (3) |
C11—C16 | 1.501 (3) | C5—H5 | 0.9300 |
C11—C12 | 1.511 (3) | C6—H6 | 0.9300 |
C12—C13 | 1.319 (3) | C7—H7A | 0.9600 |
C12—H12 | 0.9300 | C7—H7B | 0.9600 |
C13—C14 | 1.504 (3) | C7—H7C | 0.9600 |
C13—H13 | 0.9300 | C8—N1 | 1.473 (2) |
C16—H16A | 0.9600 | C8—C9 | 1.518 (3) |
C16—H16B | 0.9600 | C8—H8A | 0.9700 |
C16—H16C | 0.9600 | C8—H8B | 0.9700 |
O1—S1 | 1.4302 (14) | C9—C14 | 1.563 (2) |
O2—S1 | 1.4245 (15) | C9—Cl1 | 1.7952 (17) |
O3—C14 | 1.432 (2) | C14—C15 | 1.492 (2) |
C1—C2 | 1.380 (3) | C15—N1 | 1.473 (2) |
C1—C6 | 1.382 (3) | C15—H15A | 0.9700 |
C1—S1 | 1.7643 (19) | C15—H15B | 0.9700 |
C2—C3 | 1.380 (3) | N1—S1 | 1.6159 (16) |
C2—H2 | 0.9300 | ||
C9—C10—C11 | 100.86 (14) | C5—C6—H6 | 120.3 |
C9—C10—H10A | 111.6 | C1—C6—H6 | 120.3 |
C11—C10—H10A | 111.6 | C4—C7—H7A | 109.5 |
C9—C10—H10B | 111.6 | C4—C7—H7B | 109.5 |
C11—C10—H10B | 111.6 | H7A—C7—H7B | 109.5 |
H10A—C10—H10B | 109.4 | C4—C7—H7C | 109.5 |
O3—C11—C16 | 111.69 (17) | H7A—C7—H7C | 109.5 |
O3—C11—C12 | 100.03 (15) | H7B—C7—H7C | 109.5 |
C16—C11—C12 | 118.48 (19) | N1—C8—C9 | 104.64 (14) |
O3—C11—C10 | 99.65 (14) | N1—C8—H8A | 110.8 |
C16—C11—C10 | 116.82 (17) | C9—C8—H8A | 110.8 |
C12—C11—C10 | 107.31 (17) | N1—C8—H8B | 110.8 |
C13—C12—C11 | 107.74 (18) | C9—C8—H8B | 110.8 |
C13—C12—H12 | 126.1 | H8A—C8—H8B | 108.9 |
C11—C12—H12 | 126.1 | C8—C9—C10 | 117.81 (15) |
C12—C13—C14 | 104.62 (17) | C8—C9—C14 | 102.03 (13) |
C12—C13—H13 | 127.7 | C10—C9—C14 | 102.13 (14) |
C14—C13—H13 | 127.7 | C8—C9—Cl1 | 108.97 (13) |
C11—C16—H16A | 109.5 | C10—C9—Cl1 | 113.96 (13) |
C11—C16—H16B | 109.5 | C14—C9—Cl1 | 110.94 (12) |
H16A—C16—H16B | 109.5 | O3—C14—C15 | 112.85 (15) |
C11—C16—H16C | 109.5 | O3—C14—C13 | 102.29 (14) |
H16A—C16—H16C | 109.5 | C15—C14—C13 | 124.43 (16) |
H16B—C16—H16C | 109.5 | O3—C14—C9 | 97.98 (12) |
C14—O3—C11 | 96.70 (13) | C15—C14—C9 | 106.57 (14) |
C2—C1—C6 | 120.26 (19) | C13—C14—C9 | 109.59 (15) |
C2—C1—S1 | 119.75 (14) | N1—C15—C14 | 103.22 (14) |
C6—C1—S1 | 119.98 (16) | N1—C15—H15A | 111.1 |
C3—C2—C1 | 119.22 (18) | C14—C15—H15A | 111.1 |
C3—C2—H2 | 120.4 | N1—C15—H15B | 111.1 |
C1—C2—H2 | 120.4 | C14—C15—H15B | 111.1 |
C2—C3—C4 | 121.6 (2) | H15A—C15—H15B | 109.1 |
C2—C3—H3 | 119.2 | C15—N1—C8 | 112.74 (14) |
C4—C3—H3 | 119.2 | C15—N1—S1 | 119.98 (12) |
C5—C4—C3 | 117.9 (2) | C8—N1—S1 | 122.37 (12) |
C5—C4—C7 | 121.2 (2) | O2—S1—O1 | 120.46 (9) |
C3—C4—C7 | 120.9 (2) | O2—S1—N1 | 106.49 (9) |
C6—C5—C4 | 121.5 (2) | O1—S1—N1 | 106.87 (8) |
C6—C5—H5 | 119.3 | O2—S1—C1 | 108.24 (9) |
C4—C5—H5 | 119.3 | O1—S1—C1 | 106.29 (9) |
C5—C6—C1 | 119.5 (2) | N1—S1—C1 | 107.98 (8) |
C9—C10—C11—O3 | 34.16 (17) | C12—C13—C14—C15 | 162.03 (19) |
C9—C10—C11—C16 | 154.56 (19) | C12—C13—C14—C9 | −70.3 (2) |
C9—C10—C11—C12 | −69.61 (18) | C8—C9—C14—O3 | 83.30 (14) |
O3—C11—C12—C13 | −30.6 (2) | C10—C9—C14—O3 | −38.96 (16) |
C16—C11—C12—C13 | −152.2 (2) | Cl1—C9—C14—O3 | −160.76 (11) |
C10—C11—C12—C13 | 72.9 (2) | C8—C9—C14—C15 | −33.50 (18) |
C11—C12—C13—C14 | −0.8 (2) | C10—C9—C14—C15 | −155.76 (15) |
C16—C11—O3—C14 | 174.89 (17) | Cl1—C9—C14—C15 | 82.44 (16) |
C12—C11—O3—C14 | 48.62 (16) | C8—C9—C14—C13 | −170.56 (15) |
C10—C11—O3—C14 | −61.04 (15) | C10—C9—C14—C13 | 67.19 (17) |
C6—C1—C2—C3 | 1.2 (3) | Cl1—C9—C14—C13 | −54.62 (17) |
S1—C1—C2—C3 | −177.82 (15) | O3—C14—C15—N1 | −80.61 (17) |
C1—C2—C3—C4 | 0.0 (3) | C13—C14—C15—N1 | 154.70 (18) |
C2—C3—C4—C5 | −1.2 (3) | C9—C14—C15—N1 | 25.80 (18) |
C2—C3—C4—C7 | 178.6 (2) | C14—C15—N1—C8 | −8.4 (2) |
C3—C4—C5—C6 | 1.1 (3) | C14—C15—N1—S1 | −164.23 (13) |
C7—C4—C5—C6 | −178.7 (2) | C9—C8—N1—C15 | −12.7 (2) |
C4—C5—C6—C1 | 0.1 (3) | C9—C8—N1—S1 | 142.44 (13) |
C2—C1—C6—C5 | −1.3 (3) | C15—N1—S1—O2 | 178.27 (15) |
S1—C1—C6—C5 | 177.75 (17) | C8—N1—S1—O2 | 24.88 (17) |
N1—C8—C9—C10 | 137.96 (16) | C15—N1—S1—O1 | −51.77 (16) |
N1—C8—C9—C14 | 27.15 (17) | C8—N1—S1—O1 | 154.84 (15) |
N1—C8—C9—Cl1 | −90.22 (14) | C15—N1—S1—C1 | 62.21 (16) |
C11—C10—C9—C8 | −108.28 (17) | C8—N1—S1—C1 | −91.18 (16) |
C11—C10—C9—C14 | 2.47 (17) | C2—C1—S1—O2 | 153.66 (15) |
C11—C10—C9—Cl1 | 122.17 (14) | C6—C1—S1—O2 | −25.36 (19) |
C11—O3—C14—C15 | 173.57 (15) | C2—C1—S1—O1 | 22.93 (17) |
C11—O3—C14—C13 | −50.39 (16) | C6—C1—S1—O1 | −156.09 (16) |
C11—O3—C14—C9 | 61.76 (14) | C2—C1—S1—N1 | −91.44 (16) |
C12—C13—C14—O3 | 32.9 (2) | C6—C1—S1—N1 | 89.54 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.93 | 2.48 | 3.368 (2) | 159 |
C5—H5···O3ii | 0.93 | 2.62 | 3.539 (2) | 169 |
C13—H13···O3iii | 0.93 | 2.67 | 3.601 (2) | 174 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H18ClNO3S |
Mr | 339.82 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 10.0523 (5), 15.5135 (6), 11.2729 (6) |
β (°) | 114.800 (4) |
V (Å3) | 1595.84 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.38 |
Crystal size (mm) | 0.78 × 0.72 × 0.60 |
Data collection | |
Diffractometer | Stoe IPDS 2 |
Absorption correction | Integration (X-RED; Stoe & Cie, 2001) |
Tmin, Tmax | 0.746, 0.843 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18547, 3312, 2841 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.101, 1.05 |
No. of reflections | 3312 |
No. of parameters | 201 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.37 |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.93 | 2.48 | 3.368 (2) | 159.1 |
C5—H5···O3ii | 0.93 | 2.62 | 3.539 (2) | 168.9 |
C13—H13···O3iii | 0.93 | 2.67 | 3.601 (2) | 174.0 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) x, −y+3/2, z−1/2. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant F.279 of University Research Fund) and also the Scientific & Technological Research Council of Turkey (TÜBİTAK) for the financial support of this work (PN 107 T831).
References
Arslan, H., Demircan, A. & Göktürk, E. (2008). Spectrochim. Acta Part A, 69, 105–112. CrossRef Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Demircan, A., Karaarslan, M. & Turac, E. (2006). Heterocycl. Commun. 12, 233–240. CrossRef CAS Google Scholar
Demircan, A. & Parsons, P. J. (1998). Synlett, pp. 1215–1216. CrossRef Google Scholar
Demircan, A. & Parsons, P. J. (2002). Heterocycl. Commun. 8, 531–536. CAS Google Scholar
Demircan, A., Şahin, E., Beyazova, G., Karaaslan, M. & Hökelek, T. (2011). Acta Cryst. E67, o1085–o1086. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Heiner, T., Kozhushkov, S. I., Noltemeyer, M., Haumann, T., Boese, R. & de Meijere, A. (1996). Tetrahedron, 52, 12185–12196. CSD CrossRef CAS Web of Science Google Scholar
Kappe, C. O., Murphree, S. S. & Padwa, A. (1997). Tetrahedron, 53, 14179–14233. CrossRef CAS Google Scholar
Karaarslan, M., Göktürk, E. & Demircan, A. (2007). J. Chem. Res. 2, 117–120. CrossRef Google Scholar
Koşar, B., Demircan, A., Karaarslan, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o765–o767. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lipshutz, B. H. (1986). Chem. Rev. 86, 795–819. CrossRef CAS Web of Science Google Scholar
Padwa, A., Dimitroff, M., Waterson, A. G. & Wu, T. (1997). J. Org. Chem. 62, 4088–4096. CrossRef CAS Web of Science Google Scholar
Prajapati, D., Laskar, D. D. & Sandhu, J. S. (2000). Tetrahedron Lett. 41, 8639–8643. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2001). X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Temel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304–o1305. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The intramolecular Diels–Alder reaction with furan (IMDAF) as diene partner provides a facile route to the synthesis of complicated multicyclic structures via oxanobornenes in synthetic organic chemistry (Lipshutz, 1986). However, in many cases, the cyclization process of IMDAF requires high pressure (Heiner et al., 1996) or the employment of Lewis acid catalysis (Prajapati et al., 2000) to proceed, the most extensively studied five-membered heterocycle for this cycloaddition is furan (Kappe et al., 1997; Padwa et al., 1997).
We have been studying intramolecular free radical reaction of furan with carbon side chain (Demircan & Parsons, 1998; 2002; Demircan et al., 2006; Karaarslan et al., 2007) and recently reported that under thermal conditions the bromofurfurylalkenes (1), with heteroatom possessed in a side chain, undergo intramolecular cycloadditions and give heterofused tricycles (2) (32–44% overall) as shown in Figure 4. We have also been researching whether the protective group on nitrogen influences cycloaddition process or not; it is noteworthy that the exchange of the protective group from tert-butoxy (Boc) group to tosyl group increases yield and accelerate the cycloaddition process. We have already reported our findings since 2005 (Koşar et al., 2006; Arslan et al., 2008; Temel et al., 2011; Demircan et al., 2011), now we report the new tricyclic structure, (3aR,6S,7aR)-7a-chloro-6-methyl-2-[(4-methylphenyl) sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole (4), derived from the furan moiety (3) via thermal IMDAF in aqueous media with 73% yield (Figure 5).
The molecular structure of the title compound is shown in Figure 1. The title compound contains non-planar five- and six-membered rings. The six membered ring (C9—C14) has a boat conformation with puckering parameters Q = 0.944 (2) Å, θ = 89.03 (12)°, φ = 119.03 (14)°. The two five-membered rings with bridging oxygen (O3/C11/C10/C9/C14 and O3/C11—C14) adopt envelope configurations, whereas the N-containing five membered ring adopts a twisted conformation with the total puckering parameters of 0.6053 (19)°, 0.502 (2)° and 0.324 (2)°, respectively (Cremer & Pople, 1975). The crystal packing is stabilized by intermolecular C—H···O type hydrogen bonds (Table 1). Atom C13 in the reference molecule acts as a hydrogen bond donor to the bridging oxygen atom O3iii forming a C(4) chain running parallel to the c axis (iii = x, -y + 3/2, z - 1/2). Similarly, atom C5 acts as a hydrogen bond donor to the bridging oxygen atom O3ii forming a C(9) chain running parallel to the a axis (ii = x+1, y, z). The intersection of the C(4) and C(9) chains produce R43(25) rings parallel to the ac plane (Fig. 2). The C2—H2···O1i (i = -x + 1, -y + 1, -z + 1) hydrogen bond produces dimeric R22(10) rings while the combination of C2—H2···O1i and C13—H13···O3iii hydrogen bonds generate R66(38) rings (Fig. 3) (Bernstein et al., 1995).