metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(acetato-κO)(di-2-pyridyl­amine-κ2N2,N2′)palladium(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 14 March 2012; accepted 20 March 2012; online 31 March 2012)

In the title complex, [Pd(CH3COO)2(C10H9N3)], the PdII ion is four-coordinated in a slightly distorted square-planar environment by two pyridine N atoms of the chelating di-2-pyridyl­amine (dpa) ligand and two O atoms from two anionic acetate ligands. The dpa ligand coordinates the PdII atom in a boat conformation of the resulting chelate ring; the dihedral angle between the pyridine rings is 39.3 (2)°. The two acetate anions coordinate the PdII atom as monodentate ligands and are located on the same sides of the PdN2O2 unit plane. The carboxyl­ate groups of the anionic ligands appear to be delocalized on the basis of the C—O bond lengths. Two complex mol­ecules are assembled through inter­molecular N—H⋯O hydrogen bonds, forming a dimer-type species. Inter­molecular C—H⋯O hydrogen bonds further stabilize the crystal structure.

Related literature

For the crystal structures of the related PdII complexes [PdX2(dpa)] (X = Cl or Br), see: Rauterkus et al. (2003[Rauterkus, M. J., Fakih, S., Mock, C., Puscasu, I. & Krebs, B. (2003). Inorg. Chim. Acta, 350, 355-365.]); Yao et al. (2003[Yao, W.-R., Liu, Z.-H. & Zhang, Q.-F. (2003). Acta Cryst. C59, m139-m140.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C2H3O2)2(C10H9N3)]

  • Mr = 395.69

  • Monoclinic, P 21 /n

  • a = 8.565 (3) Å

  • b = 12.245 (5) Å

  • c = 14.230 (5) Å

  • β = 95.406 (8)°

  • V = 1485.8 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 200 K

  • 0.24 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.777, Tmax = 1.000

  • 8823 measured reflections

  • 2925 independent reflections

  • 1807 reflections with I > 2σ(I)

  • Rint = 0.102

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.116

  • S = 0.92

  • 2925 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—N3 2.003 (5)
Pd1—O1 2.004 (4)
Pd1—N1 2.004 (4)
Pd1—O3 2.006 (4)
N3—Pd1—N1 89.13 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O2i 0.93 (6) 1.83 (7) 2.762 (7) 179 (6)
C2—H2⋯O4ii 0.95 2.58 3.302 (9) 133
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Crystal structures of PdII complexes with di-2-pyridylamine (dpa; C10H9N3) and halogen ions, [PdX2(dpa)] (X = Cl or Br), have been reported previously (Rauterkus et al., 2003; Yao et al., 2003).

In the title complex, [Pd(C2H3O2)2(dpa)], the PdII ion is four-coordinated in a slightly distorted square-planar environment by two pyridine N atoms of the chelating dpa ligand and two O atoms from two anionic acetato ligands (Fig. 1). The dpa ligand coordinates the Pd atom in a boat conformation. The dihedral angle between the least-squares planes of the two pyridine rings is 39.3 (2)°. The Pd—N and Pd—O bond lengths are nearly equivalent [Pd—N: 2.003 (5) and 2.004 (5) Å; Pd—O: 2.004 (4) and 2.006 (4) Å] (Table 1). The two acetate anions coordinate the Pd atom as monodentate ligands via one O atom and are located on the same sides of the PdN2O2 unit plane. The carboxylate groups of the anionic ligands appear to be delocalized on the basis of the C—O bond lengths [C—O: 1.217 (7)–1.274 (8) Å]. Two complex molecules are assembled through intermolecular N—H···O hydrogen bonds, forming a dimer-type species (Fig. 2 and Table 2). Intra- and intermolecular C—H···O hydrogen bonds stabilize further the crystal structure (Table 2). The complex molecules are stacked into columns along the a axis. In the columns, several intermolecular π···π interactions between the pyridine rings are present, the shortest ring centroid···centroid distance being 4.646 (4) Å.

Related literature top

For the crystal structures of the related PdII complexes [PdX2(dpa)] (X = Cl or Br), see: Rauterkus et al. (2003); Yao et al. (2003).

Experimental top

To a solution of Pd(CH3CO2)2 (0.1128 g, 0.502 mmol) in acetone (30 ml) was added di-2-pyridylamine (0.0873 g, 0.510 mmol) and stirred for 20 h at room temperature. After removal of the formed black precipitate by filtration, the solvent of the filtrate was evaporated, and the residue was washed with ether and dried under vacuum, to give a yellow powder (0.1462 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.95 Å (CH) or 0.98 Å (CH3) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Nitrogen-bound H atom was located from the difference Fourier map and refined isotropically: N—H = 0.93 (6) Å. The highest peak (0.99 e Å-3) and the deepest hole (-0.81 e Å-3) in the difference Fourier map are located 0.87 Å and 0.83 Å from the Pd1 atom, respectively.

Structure description top

Crystal structures of PdII complexes with di-2-pyridylamine (dpa; C10H9N3) and halogen ions, [PdX2(dpa)] (X = Cl or Br), have been reported previously (Rauterkus et al., 2003; Yao et al., 2003).

In the title complex, [Pd(C2H3O2)2(dpa)], the PdII ion is four-coordinated in a slightly distorted square-planar environment by two pyridine N atoms of the chelating dpa ligand and two O atoms from two anionic acetato ligands (Fig. 1). The dpa ligand coordinates the Pd atom in a boat conformation. The dihedral angle between the least-squares planes of the two pyridine rings is 39.3 (2)°. The Pd—N and Pd—O bond lengths are nearly equivalent [Pd—N: 2.003 (5) and 2.004 (5) Å; Pd—O: 2.004 (4) and 2.006 (4) Å] (Table 1). The two acetate anions coordinate the Pd atom as monodentate ligands via one O atom and are located on the same sides of the PdN2O2 unit plane. The carboxylate groups of the anionic ligands appear to be delocalized on the basis of the C—O bond lengths [C—O: 1.217 (7)–1.274 (8) Å]. Two complex molecules are assembled through intermolecular N—H···O hydrogen bonds, forming a dimer-type species (Fig. 2 and Table 2). Intra- and intermolecular C—H···O hydrogen bonds stabilize further the crystal structure (Table 2). The complex molecules are stacked into columns along the a axis. In the columns, several intermolecular π···π interactions between the pyridine rings are present, the shortest ring centroid···centroid distance being 4.646 (4) Å.

For the crystal structures of the related PdII complexes [PdX2(dpa)] (X = Cl or Br), see: Rauterkus et al. (2003); Yao et al. (2003).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A structure detail of the title complex, with displacement ellipsoids drawn at the 40% probability level for non-H atoms.
[Figure 2] Fig. 2. A view of the unit-cell contents of the title complex. Intermolecular N—H···O hydrogen-bond interactions are drawn with dashed lines.
Bis(acetato-κO)(di-2-pyridylamine- κ2N2,N2')palladium(II) top
Crystal data top
[Pd(C2H3O2)2(C10H9N3)]F(000) = 792
Mr = 395.69Dx = 1.769 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2370 reflections
a = 8.565 (3) Åθ = 2.2–25.4°
b = 12.245 (5) ŵ = 1.27 mm1
c = 14.230 (5) ÅT = 200 K
β = 95.406 (8)°Block, yellow
V = 1485.8 (10) Å30.24 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2925 independent reflections
Radiation source: fine-focus sealed tube1807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.102
φ and ω scansθmax = 26.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.777, Tmax = 1.000k = 1115
8823 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0372P)2]
where P = (Fo2 + 2Fc2)/3
2925 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Pd(C2H3O2)2(C10H9N3)]V = 1485.8 (10) Å3
Mr = 395.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.565 (3) ŵ = 1.27 mm1
b = 12.245 (5) ÅT = 200 K
c = 14.230 (5) Å0.24 × 0.10 × 0.10 mm
β = 95.406 (8)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2925 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1807 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 1.000Rint = 0.102
8823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.99 e Å3
2925 reflectionsΔρmin = 0.81 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.51039 (5)0.13264 (4)0.30290 (3)0.02916 (18)
O10.3650 (5)0.0500 (3)0.2099 (3)0.0364 (11)
O20.3760 (6)0.1097 (4)0.2847 (3)0.0481 (13)
O30.6539 (5)0.1464 (4)0.1999 (3)0.0381 (11)
O40.8275 (6)0.0325 (4)0.2707 (3)0.0532 (14)
N10.3580 (5)0.1270 (4)0.4014 (3)0.0262 (11)
N20.5642 (6)0.1362 (5)0.5225 (4)0.0332 (13)
H2N0.584 (7)0.126 (5)0.587 (5)0.044 (19)*
N30.6529 (6)0.2246 (4)0.3902 (3)0.0282 (12)
C10.2031 (7)0.1222 (5)0.3758 (5)0.0372 (16)
H10.16740.12710.31070.045*
C20.0939 (8)0.1103 (5)0.4403 (5)0.0409 (17)
H20.01500.10790.42020.049*
C30.1467 (8)0.1020 (5)0.5356 (5)0.0390 (17)
H30.07430.09270.58160.047*
C40.3021 (7)0.1074 (5)0.5617 (4)0.0359 (16)
H40.34040.10060.62630.043*
C50.4063 (7)0.1232 (5)0.4931 (4)0.0263 (13)
C60.6661 (7)0.2077 (5)0.4830 (4)0.0262 (14)
C70.7804 (7)0.2595 (6)0.5429 (5)0.0364 (17)
H70.79310.24250.60830.044*
C80.8744 (8)0.3357 (6)0.5056 (5)0.0386 (17)
H80.95260.37320.54490.046*
C90.8537 (7)0.3569 (5)0.4105 (4)0.0353 (16)
H90.91700.41010.38360.042*
C100.7421 (8)0.3015 (5)0.3549 (5)0.0368 (16)
H100.72720.31790.28940.044*
C110.3268 (7)0.0486 (6)0.2199 (4)0.0334 (16)
C120.2142 (9)0.0922 (6)0.1420 (6)0.061 (2)
H12A0.26350.15240.11030.092*
H12B0.18580.03390.09640.092*
H12C0.11960.11880.16840.092*
C130.7840 (9)0.0952 (6)0.2073 (4)0.0374 (17)
C140.8867 (9)0.1172 (7)0.1291 (5)0.060 (2)
H14A0.99490.12880.15610.089*
H14B0.84910.18270.09430.089*
H14C0.88270.05460.08610.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0331 (3)0.0294 (3)0.0243 (3)0.0019 (3)0.00082 (19)0.0001 (2)
O10.053 (3)0.028 (3)0.025 (2)0.004 (2)0.010 (2)0.002 (2)
O20.072 (4)0.039 (3)0.032 (2)0.002 (3)0.004 (2)0.005 (2)
O30.044 (3)0.047 (3)0.024 (2)0.001 (2)0.004 (2)0.000 (2)
O40.055 (3)0.064 (4)0.040 (3)0.012 (3)0.000 (2)0.018 (3)
N10.026 (3)0.025 (3)0.027 (3)0.000 (2)0.002 (2)0.003 (2)
N20.037 (3)0.033 (3)0.029 (3)0.002 (3)0.002 (2)0.003 (3)
N30.031 (3)0.024 (3)0.029 (3)0.002 (2)0.003 (2)0.002 (2)
C10.036 (4)0.036 (4)0.039 (4)0.001 (3)0.004 (3)0.000 (3)
C20.032 (4)0.030 (4)0.061 (5)0.005 (3)0.006 (3)0.003 (4)
C30.038 (4)0.035 (4)0.046 (4)0.002 (3)0.013 (3)0.004 (3)
C40.041 (4)0.038 (4)0.029 (3)0.003 (3)0.005 (3)0.006 (3)
C50.031 (3)0.019 (3)0.029 (3)0.002 (3)0.004 (3)0.006 (3)
C60.025 (3)0.022 (4)0.032 (3)0.002 (3)0.008 (3)0.002 (3)
C70.028 (4)0.049 (5)0.032 (4)0.002 (3)0.001 (3)0.006 (3)
C80.030 (4)0.047 (5)0.039 (4)0.010 (3)0.002 (3)0.009 (3)
C90.034 (4)0.032 (4)0.042 (4)0.005 (3)0.012 (3)0.004 (3)
C100.042 (4)0.034 (4)0.035 (4)0.004 (3)0.004 (3)0.003 (3)
C110.037 (4)0.029 (4)0.033 (4)0.000 (3)0.002 (3)0.002 (3)
C120.072 (6)0.036 (4)0.069 (5)0.008 (4)0.030 (5)0.002 (4)
C130.053 (5)0.031 (4)0.028 (4)0.003 (4)0.004 (3)0.004 (3)
C140.064 (5)0.062 (6)0.056 (5)0.010 (5)0.024 (4)0.012 (4)
Geometric parameters (Å, º) top
Pd1—N32.003 (5)C3—H30.9500
Pd1—O12.004 (4)C4—C51.396 (8)
Pd1—N12.004 (4)C4—H40.9500
Pd1—O32.006 (4)C6—C71.390 (8)
O1—C111.262 (7)C7—C81.372 (9)
O2—C111.231 (7)C7—H70.9500
O3—C131.274 (8)C8—C91.372 (9)
O4—C131.217 (7)C8—H80.9500
N1—C51.333 (7)C9—C101.363 (9)
N1—C11.344 (7)C9—H90.9500
N2—C51.386 (7)C10—H100.9500
N2—C61.392 (8)C11—C121.497 (9)
N2—H2N0.93 (6)C12—H12A0.9800
N3—C61.331 (7)C12—H12B0.9800
N3—C101.341 (8)C12—H12C0.9800
C1—C21.378 (8)C13—C141.506 (9)
C1—H10.9500C14—H14A0.9800
C2—C31.391 (9)C14—H14B0.9800
C2—H20.9500C14—H14C0.9800
C3—C41.350 (9)
N3—Pd1—O1175.98 (19)N3—C6—N2120.0 (6)
N3—Pd1—N189.13 (19)C7—C6—N2118.1 (5)
O1—Pd1—N192.25 (18)C8—C7—C6118.5 (6)
N3—Pd1—O391.49 (19)C8—C7—H7120.7
O1—Pd1—O386.87 (18)C6—C7—H7120.7
N1—Pd1—O3176.08 (19)C7—C8—C9119.0 (6)
C11—O1—Pd1124.0 (4)C7—C8—H8120.5
C13—O3—Pd1119.4 (4)C9—C8—H8120.5
C5—N1—C1118.1 (5)C10—C9—C8119.8 (6)
C5—N1—Pd1121.6 (4)C10—C9—H9120.1
C1—N1—Pd1120.2 (4)C8—C9—H9120.1
C5—N2—C6125.6 (5)N3—C10—C9121.7 (6)
C5—N2—H2N111 (4)N3—C10—H10119.2
C6—N2—H2N115 (4)C9—C10—H10119.2
C6—N3—C10118.9 (6)O2—C11—O1126.4 (6)
C6—N3—Pd1121.2 (4)O2—C11—C12119.3 (6)
C10—N3—Pd1119.9 (4)O1—C11—C12114.4 (6)
N1—C1—C2122.6 (6)C11—C12—H12A109.5
N1—C1—H1118.7C11—C12—H12B109.5
C2—C1—H1118.7H12A—C12—H12B109.5
C1—C2—C3118.5 (6)C11—C12—H12C109.5
C1—C2—H2120.7H12A—C12—H12C109.5
C3—C2—H2120.7H12B—C12—H12C109.5
C4—C3—C2119.1 (6)O4—C13—O3125.1 (6)
C4—C3—H3120.5O4—C13—C14120.1 (7)
C2—C3—H3120.5O3—C13—C14114.7 (6)
C3—C4—C5119.6 (6)C13—C14—H14A109.5
C3—C4—H4120.2C13—C14—H14B109.5
C5—C4—H4120.2H14A—C14—H14B109.5
N1—C5—N2119.6 (5)C13—C14—H14C109.5
N1—C5—C4122.0 (5)H14A—C14—H14C109.5
N2—C5—C4118.4 (5)H14B—C14—H14C109.5
N3—C6—C7121.8 (6)
N1—Pd1—O1—C1166.8 (5)C6—N2—C5—N138.0 (9)
O3—Pd1—O1—C11117.1 (5)C6—N2—C5—C4141.4 (6)
N3—Pd1—O3—C1372.3 (5)C3—C4—C5—N13.8 (10)
O1—Pd1—O3—C13111.3 (5)C3—C4—C5—N2175.5 (6)
N3—Pd1—N1—C535.4 (5)C10—N3—C6—C76.7 (9)
O1—Pd1—N1—C5148.3 (5)Pd1—N3—C6—C7170.5 (5)
N3—Pd1—N1—C1147.5 (5)C10—N3—C6—N2173.6 (6)
O1—Pd1—N1—C128.7 (5)Pd1—N3—C6—N29.3 (8)
N1—Pd1—N3—C636.1 (5)C5—N2—C6—N337.1 (9)
O3—Pd1—N3—C6147.8 (5)C5—N2—C6—C7143.1 (6)
N1—Pd1—N3—C10146.8 (5)N3—C6—C7—C84.6 (10)
O3—Pd1—N3—C1029.3 (5)N2—C6—C7—C8175.6 (6)
C5—N1—C1—C21.9 (10)C6—C7—C8—C90.8 (10)
Pd1—N1—C1—C2175.2 (5)C7—C8—C9—C100.7 (10)
N1—C1—C2—C30.6 (10)C6—N3—C10—C95.0 (9)
C1—C2—C3—C41.0 (10)Pd1—N3—C10—C9172.2 (5)
C2—C3—C4—C51.1 (10)C8—C9—C10—N31.3 (10)
C1—N1—C5—N2175.2 (5)Pd1—O1—C11—O23.0 (10)
Pd1—N1—C5—N27.7 (8)Pd1—O1—C11—C12178.9 (5)
C1—N1—C5—C44.1 (9)Pd1—O3—C13—O43.9 (9)
Pd1—N1—C5—C4173.0 (5)Pd1—O3—C13—C14176.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2i0.93 (6)1.83 (7)2.762 (7)179 (6)
C1—H1···O10.952.502.983 (8)111
C2—H2···O4ii0.952.583.302 (9)133
C10—H10···O30.952.512.954 (8)109
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Pd(C2H3O2)2(C10H9N3)]
Mr395.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)8.565 (3), 12.245 (5), 14.230 (5)
β (°) 95.406 (8)
V3)1485.8 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.24 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.777, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8823, 2925, 1807
Rint0.102
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.116, 0.92
No. of reflections2925
No. of parameters205
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.99, 0.81

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97.

Selected geometric parameters (Å, º) top
Pd1—N32.003 (5)Pd1—N12.004 (4)
Pd1—O12.004 (4)Pd1—O32.006 (4)
N3—Pd1—N189.13 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2i0.93 (6)1.83 (7)2.762 (7)179 (6)
C2—H2···O4ii0.952.583.302 (9)133.0
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0030747).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRauterkus, M. J., Fakih, S., Mock, C., Puscasu, I. & Krebs, B. (2003). Inorg. Chim. Acta, 350, 355–365.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, W.-R., Liu, Z.-H. & Zhang, Q.-F. (2003). Acta Cryst. C59, m139–m140.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds