metal-organic compounds
Bis(acetato-κO)(di-2-pyridylamine-κ2N2,N2′)palladium(II)
aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr
In the title complex, [Pd(CH3COO)2(C10H9N3)], the PdII ion is four-coordinated in a slightly distorted square-planar environment by two pyridine N atoms of the chelating di-2-pyridylamine (dpa) ligand and two O atoms from two anionic acetate ligands. The dpa ligand coordinates the PdII atom in a boat conformation of the resulting chelate ring; the dihedral angle between the pyridine rings is 39.3 (2)°. The two acetate anions coordinate the PdII atom as monodentate ligands and are located on the same sides of the PdN2O2 unit plane. The carboxylate groups of the anionic ligands appear to be delocalized on the basis of the C—O bond lengths. Two complex molecules are assembled through intermolecular N—H⋯O hydrogen bonds, forming a dimer-type species. Intermolecular C—H⋯O hydrogen bonds further stabilize the crystal structure.
Related literature
For the crystal structures of the related PdII complexes [PdX2(dpa)] (X = Cl or Br), see: Rauterkus et al. (2003); Yao et al. (2003).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
To a solution of Pd(CH3CO2)2 (0.1128 g, 0.502 mmol) in acetone (30 ml) was added di-2-pyridylamine (0.0873 g, 0.510 mmol) and stirred for 20 h at room temperature. After removal of the formed black precipitate by filtration, the solvent of the filtrate was evaporated, and the residue was washed with ether and dried under vacuum, to give a yellow powder (0.1462 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.
Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.95 Å (CH) or 0.98 Å (CH3) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Nitrogen-bound H atom was located from the difference Fourier map and refined isotropically: N—H = 0.93 (6) Å. The highest peak (0.99 e Å-3) and the deepest hole (-0.81 e Å-3) in the difference Fourier map are located 0.87 Å and 0.83 Å from the Pd1 atom, respectively.
Crystal structures of PdII complexes with di-2-pyridylamine (dpa; C10H9N3) and halogen ions, [PdX2(dpa)] (X = Cl or Br), have been reported previously (Rauterkus et al., 2003; Yao et al., 2003).
In the title complex, [Pd(C2H3O2)2(dpa)], the PdII ion is four-coordinated in a slightly distorted square-planar environment by two pyridine N atoms of the chelating dpa ligand and two O atoms from two anionic acetato ligands (Fig. 1). The dpa ligand coordinates the Pd atom in a boat conformation. The dihedral angle between the least-squares planes of the two pyridine rings is 39.3 (2)°. The Pd—N and Pd—O bond lengths are nearly equivalent [Pd—N: 2.003 (5) and 2.004 (5) Å; Pd—O: 2.004 (4) and 2.006 (4) Å] (Table 1). The two acetate anions coordinate the Pd atom as monodentate ligands via one O atom and are located on the same sides of the PdN2O2 unit plane. The carboxylate groups of the anionic ligands appear to be delocalized on the basis of the C—O bond lengths [C—O: 1.217 (7)–1.274 (8) Å]. Two complex molecules are assembled through intermolecular N—H···O hydrogen bonds, forming a dimer-type species (Fig. 2 and Table 2). Intra- and intermolecular C—H···O hydrogen bonds stabilize further the π···π interactions between the pyridine rings are present, the shortest ring centroid···centroid distance being 4.646 (4) Å.
(Table 2). The complex molecules are stacked into columns along the a axis. In the columns, several intermolecularFor the crystal structures of the related PdII complexes [PdX2(dpa)] (X = Cl or Br), see: Rauterkus et al. (2003); Yao et al. (2003).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.[Pd(C2H3O2)2(C10H9N3)] | F(000) = 792 |
Mr = 395.69 | Dx = 1.769 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2370 reflections |
a = 8.565 (3) Å | θ = 2.2–25.4° |
b = 12.245 (5) Å | µ = 1.27 mm−1 |
c = 14.230 (5) Å | T = 200 K |
β = 95.406 (8)° | Block, yellow |
V = 1485.8 (10) Å3 | 0.24 × 0.10 × 0.10 mm |
Z = 4 |
Bruker SMART 1000 CCD diffractometer | 2925 independent reflections |
Radiation source: fine-focus sealed tube | 1807 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.102 |
φ and ω scans | θmax = 26.1°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −10→10 |
Tmin = 0.777, Tmax = 1.000 | k = −11→15 |
8823 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.92 | w = 1/[σ2(Fo2) + (0.0372P)2] where P = (Fo2 + 2Fc2)/3 |
2925 reflections | (Δ/σ)max < 0.001 |
205 parameters | Δρmax = 0.99 e Å−3 |
0 restraints | Δρmin = −0.81 e Å−3 |
[Pd(C2H3O2)2(C10H9N3)] | V = 1485.8 (10) Å3 |
Mr = 395.69 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.565 (3) Å | µ = 1.27 mm−1 |
b = 12.245 (5) Å | T = 200 K |
c = 14.230 (5) Å | 0.24 × 0.10 × 0.10 mm |
β = 95.406 (8)° |
Bruker SMART 1000 CCD diffractometer | 2925 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1807 reflections with I > 2σ(I) |
Tmin = 0.777, Tmax = 1.000 | Rint = 0.102 |
8823 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.116 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.92 | Δρmax = 0.99 e Å−3 |
2925 reflections | Δρmin = −0.81 e Å−3 |
205 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.51039 (5) | 0.13264 (4) | 0.30290 (3) | 0.02916 (18) | |
O1 | 0.3650 (5) | 0.0500 (3) | 0.2099 (3) | 0.0364 (11) | |
O2 | 0.3760 (6) | −0.1097 (4) | 0.2847 (3) | 0.0481 (13) | |
O3 | 0.6539 (5) | 0.1464 (4) | 0.1999 (3) | 0.0381 (11) | |
O4 | 0.8275 (6) | 0.0325 (4) | 0.2707 (3) | 0.0532 (14) | |
N1 | 0.3580 (5) | 0.1270 (4) | 0.4014 (3) | 0.0262 (11) | |
N2 | 0.5642 (6) | 0.1362 (5) | 0.5225 (4) | 0.0332 (13) | |
H2N | 0.584 (7) | 0.126 (5) | 0.587 (5) | 0.044 (19)* | |
N3 | 0.6529 (6) | 0.2246 (4) | 0.3902 (3) | 0.0282 (12) | |
C1 | 0.2031 (7) | 0.1222 (5) | 0.3758 (5) | 0.0372 (16) | |
H1 | 0.1674 | 0.1271 | 0.3107 | 0.045* | |
C2 | 0.0939 (8) | 0.1103 (5) | 0.4403 (5) | 0.0409 (17) | |
H2 | −0.0150 | 0.1079 | 0.4202 | 0.049* | |
C3 | 0.1467 (8) | 0.1020 (5) | 0.5356 (5) | 0.0390 (17) | |
H3 | 0.0743 | 0.0927 | 0.5816 | 0.047* | |
C4 | 0.3021 (7) | 0.1074 (5) | 0.5617 (4) | 0.0359 (16) | |
H4 | 0.3404 | 0.1006 | 0.6263 | 0.043* | |
C5 | 0.4063 (7) | 0.1232 (5) | 0.4931 (4) | 0.0263 (13) | |
C6 | 0.6661 (7) | 0.2077 (5) | 0.4830 (4) | 0.0262 (14) | |
C7 | 0.7804 (7) | 0.2595 (6) | 0.5429 (5) | 0.0364 (17) | |
H7 | 0.7931 | 0.2425 | 0.6083 | 0.044* | |
C8 | 0.8744 (8) | 0.3357 (6) | 0.5056 (5) | 0.0386 (17) | |
H8 | 0.9526 | 0.3732 | 0.5449 | 0.046* | |
C9 | 0.8537 (7) | 0.3569 (5) | 0.4105 (4) | 0.0353 (16) | |
H9 | 0.9170 | 0.4101 | 0.3836 | 0.042* | |
C10 | 0.7421 (8) | 0.3015 (5) | 0.3549 (5) | 0.0368 (16) | |
H10 | 0.7272 | 0.3179 | 0.2894 | 0.044* | |
C11 | 0.3268 (7) | −0.0486 (6) | 0.2199 (4) | 0.0334 (16) | |
C12 | 0.2142 (9) | −0.0922 (6) | 0.1420 (6) | 0.061 (2) | |
H12A | 0.2635 | −0.1524 | 0.1103 | 0.092* | |
H12B | 0.1858 | −0.0339 | 0.0964 | 0.092* | |
H12C | 0.1196 | −0.1188 | 0.1684 | 0.092* | |
C13 | 0.7840 (9) | 0.0952 (6) | 0.2073 (4) | 0.0374 (17) | |
C14 | 0.8867 (9) | 0.1172 (7) | 0.1291 (5) | 0.060 (2) | |
H14A | 0.9949 | 0.1288 | 0.1561 | 0.089* | |
H14B | 0.8491 | 0.1827 | 0.0943 | 0.089* | |
H14C | 0.8827 | 0.0546 | 0.0861 | 0.089* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.0331 (3) | 0.0294 (3) | 0.0243 (3) | −0.0019 (3) | −0.00082 (19) | −0.0001 (2) |
O1 | 0.053 (3) | 0.028 (3) | 0.025 (2) | −0.004 (2) | −0.010 (2) | −0.002 (2) |
O2 | 0.072 (4) | 0.039 (3) | 0.032 (2) | 0.002 (3) | −0.004 (2) | 0.005 (2) |
O3 | 0.044 (3) | 0.047 (3) | 0.024 (2) | −0.001 (2) | 0.004 (2) | 0.000 (2) |
O4 | 0.055 (3) | 0.064 (4) | 0.040 (3) | 0.012 (3) | 0.000 (2) | 0.018 (3) |
N1 | 0.026 (3) | 0.025 (3) | 0.027 (3) | 0.000 (2) | −0.002 (2) | 0.003 (2) |
N2 | 0.037 (3) | 0.033 (3) | 0.029 (3) | 0.002 (3) | −0.002 (2) | 0.003 (3) |
N3 | 0.031 (3) | 0.024 (3) | 0.029 (3) | 0.002 (2) | 0.003 (2) | 0.002 (2) |
C1 | 0.036 (4) | 0.036 (4) | 0.039 (4) | −0.001 (3) | −0.004 (3) | 0.000 (3) |
C2 | 0.032 (4) | 0.030 (4) | 0.061 (5) | −0.005 (3) | 0.006 (3) | 0.003 (4) |
C3 | 0.038 (4) | 0.035 (4) | 0.046 (4) | 0.002 (3) | 0.013 (3) | 0.004 (3) |
C4 | 0.041 (4) | 0.038 (4) | 0.029 (3) | 0.003 (3) | 0.005 (3) | 0.006 (3) |
C5 | 0.031 (3) | 0.019 (3) | 0.029 (3) | −0.002 (3) | 0.004 (3) | −0.006 (3) |
C6 | 0.025 (3) | 0.022 (4) | 0.032 (3) | 0.002 (3) | 0.008 (3) | 0.002 (3) |
C7 | 0.028 (4) | 0.049 (5) | 0.032 (4) | 0.002 (3) | −0.001 (3) | −0.006 (3) |
C8 | 0.030 (4) | 0.047 (5) | 0.039 (4) | −0.010 (3) | 0.002 (3) | −0.009 (3) |
C9 | 0.034 (4) | 0.032 (4) | 0.042 (4) | −0.005 (3) | 0.012 (3) | −0.004 (3) |
C10 | 0.042 (4) | 0.034 (4) | 0.035 (4) | −0.004 (3) | 0.004 (3) | 0.003 (3) |
C11 | 0.037 (4) | 0.029 (4) | 0.033 (4) | 0.000 (3) | 0.002 (3) | −0.002 (3) |
C12 | 0.072 (6) | 0.036 (4) | 0.069 (5) | −0.008 (4) | −0.030 (5) | −0.002 (4) |
C13 | 0.053 (5) | 0.031 (4) | 0.028 (4) | −0.003 (4) | 0.004 (3) | −0.004 (3) |
C14 | 0.064 (5) | 0.062 (6) | 0.056 (5) | 0.010 (5) | 0.024 (4) | 0.012 (4) |
Pd1—N3 | 2.003 (5) | C3—H3 | 0.9500 |
Pd1—O1 | 2.004 (4) | C4—C5 | 1.396 (8) |
Pd1—N1 | 2.004 (4) | C4—H4 | 0.9500 |
Pd1—O3 | 2.006 (4) | C6—C7 | 1.390 (8) |
O1—C11 | 1.262 (7) | C7—C8 | 1.372 (9) |
O2—C11 | 1.231 (7) | C7—H7 | 0.9500 |
O3—C13 | 1.274 (8) | C8—C9 | 1.372 (9) |
O4—C13 | 1.217 (7) | C8—H8 | 0.9500 |
N1—C5 | 1.333 (7) | C9—C10 | 1.363 (9) |
N1—C1 | 1.344 (7) | C9—H9 | 0.9500 |
N2—C5 | 1.386 (7) | C10—H10 | 0.9500 |
N2—C6 | 1.392 (8) | C11—C12 | 1.497 (9) |
N2—H2N | 0.93 (6) | C12—H12A | 0.9800 |
N3—C6 | 1.331 (7) | C12—H12B | 0.9800 |
N3—C10 | 1.341 (8) | C12—H12C | 0.9800 |
C1—C2 | 1.378 (8) | C13—C14 | 1.506 (9) |
C1—H1 | 0.9500 | C14—H14A | 0.9800 |
C2—C3 | 1.391 (9) | C14—H14B | 0.9800 |
C2—H2 | 0.9500 | C14—H14C | 0.9800 |
C3—C4 | 1.350 (9) | ||
N3—Pd1—O1 | 175.98 (19) | N3—C6—N2 | 120.0 (6) |
N3—Pd1—N1 | 89.13 (19) | C7—C6—N2 | 118.1 (5) |
O1—Pd1—N1 | 92.25 (18) | C8—C7—C6 | 118.5 (6) |
N3—Pd1—O3 | 91.49 (19) | C8—C7—H7 | 120.7 |
O1—Pd1—O3 | 86.87 (18) | C6—C7—H7 | 120.7 |
N1—Pd1—O3 | 176.08 (19) | C7—C8—C9 | 119.0 (6) |
C11—O1—Pd1 | 124.0 (4) | C7—C8—H8 | 120.5 |
C13—O3—Pd1 | 119.4 (4) | C9—C8—H8 | 120.5 |
C5—N1—C1 | 118.1 (5) | C10—C9—C8 | 119.8 (6) |
C5—N1—Pd1 | 121.6 (4) | C10—C9—H9 | 120.1 |
C1—N1—Pd1 | 120.2 (4) | C8—C9—H9 | 120.1 |
C5—N2—C6 | 125.6 (5) | N3—C10—C9 | 121.7 (6) |
C5—N2—H2N | 111 (4) | N3—C10—H10 | 119.2 |
C6—N2—H2N | 115 (4) | C9—C10—H10 | 119.2 |
C6—N3—C10 | 118.9 (6) | O2—C11—O1 | 126.4 (6) |
C6—N3—Pd1 | 121.2 (4) | O2—C11—C12 | 119.3 (6) |
C10—N3—Pd1 | 119.9 (4) | O1—C11—C12 | 114.4 (6) |
N1—C1—C2 | 122.6 (6) | C11—C12—H12A | 109.5 |
N1—C1—H1 | 118.7 | C11—C12—H12B | 109.5 |
C2—C1—H1 | 118.7 | H12A—C12—H12B | 109.5 |
C1—C2—C3 | 118.5 (6) | C11—C12—H12C | 109.5 |
C1—C2—H2 | 120.7 | H12A—C12—H12C | 109.5 |
C3—C2—H2 | 120.7 | H12B—C12—H12C | 109.5 |
C4—C3—C2 | 119.1 (6) | O4—C13—O3 | 125.1 (6) |
C4—C3—H3 | 120.5 | O4—C13—C14 | 120.1 (7) |
C2—C3—H3 | 120.5 | O3—C13—C14 | 114.7 (6) |
C3—C4—C5 | 119.6 (6) | C13—C14—H14A | 109.5 |
C3—C4—H4 | 120.2 | C13—C14—H14B | 109.5 |
C5—C4—H4 | 120.2 | H14A—C14—H14B | 109.5 |
N1—C5—N2 | 119.6 (5) | C13—C14—H14C | 109.5 |
N1—C5—C4 | 122.0 (5) | H14A—C14—H14C | 109.5 |
N2—C5—C4 | 118.4 (5) | H14B—C14—H14C | 109.5 |
N3—C6—C7 | 121.8 (6) | ||
N1—Pd1—O1—C11 | −66.8 (5) | C6—N2—C5—N1 | 38.0 (9) |
O3—Pd1—O1—C11 | 117.1 (5) | C6—N2—C5—C4 | −141.4 (6) |
N3—Pd1—O3—C13 | 72.3 (5) | C3—C4—C5—N1 | −3.8 (10) |
O1—Pd1—O3—C13 | −111.3 (5) | C3—C4—C5—N2 | 175.5 (6) |
N3—Pd1—N1—C5 | −35.4 (5) | C10—N3—C6—C7 | −6.7 (9) |
O1—Pd1—N1—C5 | 148.3 (5) | Pd1—N3—C6—C7 | 170.5 (5) |
N3—Pd1—N1—C1 | 147.5 (5) | C10—N3—C6—N2 | 173.6 (6) |
O1—Pd1—N1—C1 | −28.7 (5) | Pd1—N3—C6—N2 | −9.3 (8) |
N1—Pd1—N3—C6 | 36.1 (5) | C5—N2—C6—N3 | −37.1 (9) |
O3—Pd1—N3—C6 | −147.8 (5) | C5—N2—C6—C7 | 143.1 (6) |
N1—Pd1—N3—C10 | −146.8 (5) | N3—C6—C7—C8 | 4.6 (10) |
O3—Pd1—N3—C10 | 29.3 (5) | N2—C6—C7—C8 | −175.6 (6) |
C5—N1—C1—C2 | −1.9 (10) | C6—C7—C8—C9 | −0.8 (10) |
Pd1—N1—C1—C2 | 175.2 (5) | C7—C8—C9—C10 | −0.7 (10) |
N1—C1—C2—C3 | −0.6 (10) | C6—N3—C10—C9 | 5.0 (9) |
C1—C2—C3—C4 | 1.0 (10) | Pd1—N3—C10—C9 | −172.2 (5) |
C2—C3—C4—C5 | 1.1 (10) | C8—C9—C10—N3 | −1.3 (10) |
C1—N1—C5—N2 | −175.2 (5) | Pd1—O1—C11—O2 | −3.0 (10) |
Pd1—N1—C5—N2 | 7.7 (8) | Pd1—O1—C11—C12 | 178.9 (5) |
C1—N1—C5—C4 | 4.1 (9) | Pd1—O3—C13—O4 | 3.9 (9) |
Pd1—N1—C5—C4 | −173.0 (5) | Pd1—O3—C13—C14 | −176.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O2i | 0.93 (6) | 1.83 (7) | 2.762 (7) | 179 (6) |
C1—H1···O1 | 0.95 | 2.50 | 2.983 (8) | 111 |
C2—H2···O4ii | 0.95 | 2.58 | 3.302 (9) | 133 |
C10—H10···O3 | 0.95 | 2.51 | 2.954 (8) | 109 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Pd(C2H3O2)2(C10H9N3)] |
Mr | 395.69 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 200 |
a, b, c (Å) | 8.565 (3), 12.245 (5), 14.230 (5) |
β (°) | 95.406 (8) |
V (Å3) | 1485.8 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.27 |
Crystal size (mm) | 0.24 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.777, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8823, 2925, 1807 |
Rint | 0.102 |
(sin θ/λ)max (Å−1) | 0.619 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.116, 0.92 |
No. of reflections | 2925 |
No. of parameters | 205 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.99, −0.81 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97.
Pd1—N3 | 2.003 (5) | Pd1—N1 | 2.004 (4) |
Pd1—O1 | 2.004 (4) | Pd1—O3 | 2.006 (4) |
N3—Pd1—N1 | 89.13 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O2i | 0.93 (6) | 1.83 (7) | 2.762 (7) | 179 (6) |
C2—H2···O4ii | 0.95 | 2.58 | 3.302 (9) | 133.0 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y, z. |
Acknowledgements
This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0030747).
References
Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Rauterkus, M. J., Fakih, S., Mock, C., Puscasu, I. & Krebs, B. (2003). Inorg. Chim. Acta, 350, 355–365. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yao, W.-R., Liu, Z.-H. & Zhang, Q.-F. (2003). Acta Cryst. C59, m139–m140. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Crystal structures of PdII complexes with di-2-pyridylamine (dpa; C10H9N3) and halogen ions, [PdX2(dpa)] (X = Cl or Br), have been reported previously (Rauterkus et al., 2003; Yao et al., 2003).
In the title complex, [Pd(C2H3O2)2(dpa)], the PdII ion is four-coordinated in a slightly distorted square-planar environment by two pyridine N atoms of the chelating dpa ligand and two O atoms from two anionic acetato ligands (Fig. 1). The dpa ligand coordinates the Pd atom in a boat conformation. The dihedral angle between the least-squares planes of the two pyridine rings is 39.3 (2)°. The Pd—N and Pd—O bond lengths are nearly equivalent [Pd—N: 2.003 (5) and 2.004 (5) Å; Pd—O: 2.004 (4) and 2.006 (4) Å] (Table 1). The two acetate anions coordinate the Pd atom as monodentate ligands via one O atom and are located on the same sides of the PdN2O2 unit plane. The carboxylate groups of the anionic ligands appear to be delocalized on the basis of the C—O bond lengths [C—O: 1.217 (7)–1.274 (8) Å]. Two complex molecules are assembled through intermolecular N—H···O hydrogen bonds, forming a dimer-type species (Fig. 2 and Table 2). Intra- and intermolecular C—H···O hydrogen bonds stabilize further the crystal structure (Table 2). The complex molecules are stacked into columns along the a axis. In the columns, several intermolecular π···π interactions between the pyridine rings are present, the shortest ring centroid···centroid distance being 4.646 (4) Å.