metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m433-m434

cis-Tetra­aqua­bis­­{5-[4-(1H-imidazol-1-yl-κN3)phen­yl]tetra­zolido}manganese(II) dihydrate

aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, bCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and cSchool of Enviroment Science and Engineering, Donghua University, Shanghai 200051, People's Republic of China
*Correspondence e-mail: songwd60@163.com

(Received 9 February 2012; accepted 9 March 2012; online 17 March 2012)

In the title compound, [Mn(C10H7N6)2(H2O)4]·2H2O, the Mn2+ lies on a twofold rotation axis and is six-coordinated by two N atoms from the cis-related monodentate 5-[4-(imidazol-1-yl)phen­yl]tetra­zolide ligands and four O atoms from the coordinated water mol­ecules. The complex mol­ecules are connected via water O—H⋯O and O—H⋯N hydrogen bonds and weak ππ stacking inter­actions between the benzene rings [minimum ring centroid separation = 3.750 (6) Å] into a three-dimensional polymeric structure. The imidazolyl group of the ligand is partially disordered over two sets of sites with refined occupancies of 0.531 (7):0.469 (7).

Related literature

For our previous work based on imidazole derivatives as ligands, see: Li, Song et al. (2011[Li, S. J., Song, W. D., Miao, D. L., Hu, S. W., Ji, L. L. & Ma, D. Y. (2011). Z. Anorg. Allg. Chem. 637, 1246-1252.]); Li, Ma et al. (2011[Li, S.-J., Ma, X.-T., Song, W.-D., Li, X.-F. & Liu, J.-H. (2011). Acta Cryst. E67, m295-m296.]); Fan et al. (2010[Fan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897-m898.]); Li et al. (2010[Li, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010). Acta Cryst. E66, m1096-m1097.]). For related structures, see: Huang et al. (2009[Huang, R. Y., Zhu, K., Chen, H., Liu, G. X. & Ren, X. M. (2009). Wuji Huaxue Xuebao, 25, 162-165.]); Cheng (2011[Cheng, X.-C. (2011). Acta Cryst. E67, m1757.]). An independent determination of the title structure is reported by Wang et al. (2012[Wang, X., Yan, S.-W., Chang, S.-C., Liang, Y.-C. & Zhang, F.-T. (2012). Acta Cryst. E68, m413-m414.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C10H7N6)2(H2O)4]·2H2O

  • Mr = 585.47

  • Monoclinic, C 2/c

  • a = 19.1342 (18) Å

  • b = 13.2100 (4) Å

  • c = 13.3280 (13) Å

  • β = 131.056 (2)°

  • V = 2540.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 294 K

  • 0.80 × 0.11 × 0.10 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.653, Tmax = 0.944

  • 8421 measured reflections

  • 2239 independent reflections

  • 1957 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.142

  • S = 1.31

  • 2239 reflections

  • 196 parameters

  • 512 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3E⋯N5i 0.85 2.65 3.397 (4) 147
O3—H3E⋯N6i 0.85 1.89 2.726 (4) 169
O3—H3D⋯N4ii 0.85 2.63 3.261 (5) 132
O3—H3D⋯N3ii 0.85 1.95 2.774 (5) 162
O2—H2D⋯O3iii 0.85 1.84 2.684 (4) 170
O2—H2C⋯O3 0.85 1.90 2.745 (4) 170
O1—H1D⋯N5iv 0.85 1.96 2.811 (4) 179
O1—H1C⋯N5v 0.85 2.62 3.396 (4) 152
O1—H1C⋯N4v 0.85 1.99 2.835 (4) 179
Symmetry codes: (i) x, y, z-1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+1; (iv) [-x+1, y, -z+{\script{5\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku/MSC, 1998)[Rigaku/MSC (1998). RAPID-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]; cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, our research group has shown great interest in the design and synthesis of interesting metal–organic comlexes with imidazole derivatives such as 2-propyl-imidazole-4,5-dicarboxylic acid (Fan et al., 2010; Li et al., 2010) and 2-ethyl-1H-imidazole-4,5-dicarboxylic acid (Li, Song et al., 2011; Li, Ma et al., 2011). In this paper, we report the synthesis and structure of a new MnII complex, [Mn(C10H7N6)2(H2O)4] . 2(H2O) and the structure is reported here.

As shown in the Fig. 1, the title complex molecule comprises the Mn2+ ion which lies on a crystallographic twofold rotation axis and is six-coordinated by two N atoms from the cis-related monodentate 5-[4-(imidazol-1-yl)phenyl]tetrazolide ligands and four O atoms from the coordinated water molecules. The complex has a slightly distorted octahedral geometry [Mn—N = 2.256 (4) Å; Mn—O = 2.177 (3) and 2.204 (3) Å]. In the crystal structure, the complex molecules are connected via water O—H···O and O—H···N hydrogen bonds (Table 1) into a three-dimensional supramolecular structure which is further stabilized by weak ππ stacking interactions between benzene rings [minimum ring centroid distance, 3.750 (6) Å]. The atoms C2 and C3 of the imidazolyl ring of the ligand are disordered over two sites (C2' and C3') with refined occupancies of 0.531 (7):0.469 (7), respectively. The structure of the anhydrous trans isomer of this complex has previosly been reported (Cheng, 2011).

Related literature top

For our previous work based on imidazole derivatives as ligands, see: Li, Song et al. (2011); Li, Ma et al. (2011); Fan et al. (2010); Li et al. (2010). For related structures, see: Huang et al. (2009); Cheng (2011). An independent determination of the title structure is reported by Wang et al. (2012).

Experimental top

A mixture of manganese(II) chloride (0.1 mmol, 0.020 g) and 5-[4-(imidazol-1-yl)phenyl]tetrazole (1-tetrazole-4-imidazole-benzene) (0.2 mmol, 0.043 g) in 15 ml of water was sealed in an autoclave equipped with a Teflon liner (25 ml) and then heated at 413 K for 3 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

H atoms of the water molecule were located in a difference-Fourier map and refined as riding with an O—H distance restraint of 0.85 Å, with Uiso(H) = 1.5 Ueq. The imidazolyl and phenyl H atoms were located in a difference-Fourier but were refined as riding with C—H = 0.93 Å and Uiso(H) = 1.5Ueq(C). The imidazolyl groups of the ligand are partially disordered over two sets of sites (C2, C2' and C3, C3') with refined occupancies of 0.531 (7) : 0.469 (7).

Structure description top

In recent years, our research group has shown great interest in the design and synthesis of interesting metal–organic comlexes with imidazole derivatives such as 2-propyl-imidazole-4,5-dicarboxylic acid (Fan et al., 2010; Li et al., 2010) and 2-ethyl-1H-imidazole-4,5-dicarboxylic acid (Li, Song et al., 2011; Li, Ma et al., 2011). In this paper, we report the synthesis and structure of a new MnII complex, [Mn(C10H7N6)2(H2O)4] . 2(H2O) and the structure is reported here.

As shown in the Fig. 1, the title complex molecule comprises the Mn2+ ion which lies on a crystallographic twofold rotation axis and is six-coordinated by two N atoms from the cis-related monodentate 5-[4-(imidazol-1-yl)phenyl]tetrazolide ligands and four O atoms from the coordinated water molecules. The complex has a slightly distorted octahedral geometry [Mn—N = 2.256 (4) Å; Mn—O = 2.177 (3) and 2.204 (3) Å]. In the crystal structure, the complex molecules are connected via water O—H···O and O—H···N hydrogen bonds (Table 1) into a three-dimensional supramolecular structure which is further stabilized by weak ππ stacking interactions between benzene rings [minimum ring centroid distance, 3.750 (6) Å]. The atoms C2 and C3 of the imidazolyl ring of the ligand are disordered over two sites (C2' and C3') with refined occupancies of 0.531 (7):0.469 (7), respectively. The structure of the anhydrous trans isomer of this complex has previosly been reported (Cheng, 2011).

For our previous work based on imidazole derivatives as ligands, see: Li, Song et al. (2011); Li, Ma et al. (2011); Fan et al. (2010); Li et al. (2010). For related structures, see: Huang et al. (2009); Cheng (2011). An independent determination of the title structure is reported by Wang et al. (2012).

Computing details top

Data collection: RAPID-AUTO (Rigaku/MSC, 1998); cell refinement: RAPID-AUTO (Rigaku/MSC, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom numbering scheme of the title compound, with non-H atoms shown as 30% probability displacement ellipsoids. For symmetry code (i): -x + 1, y, -z + 3/2.
cis-Tetraaquabis{5-[4-(1H-imidazol-1-yl- κN3)phenyl]tetrazolido}manganese(II) dihydrate top
Crystal data top
[Mn(C10H7N6)2(H2O)4]·2H2OF(000) = 1212
Mr = 585.47Dx = 1.531 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3180 reflections
a = 19.1342 (18) Åθ = 3.1–30.0°
b = 13.2100 (4) ŵ = 0.58 mm1
c = 13.3280 (13) ÅT = 294 K
β = 131.056 (2)°Block, colourless
V = 2540.3 (4) Å30.80 × 0.11 × 0.10 mm
Z = 4
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2239 independent reflections
Radiation source: fine-focus sealed tube1957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.653, Tmax = 0.944k = 1515
8421 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.31 w = 1/[σ2(Fo2) + (0.0076P)2 + 23.3787P]
where P = (Fo2 + 2Fc2)/3
2239 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.34 e Å3
512 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Mn(C10H7N6)2(H2O)4]·2H2OV = 2540.3 (4) Å3
Mr = 585.47Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.1342 (18) ŵ = 0.58 mm1
b = 13.2100 (4) ÅT = 294 K
c = 13.3280 (13) Å0.80 × 0.11 × 0.10 mm
β = 131.056 (2)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2239 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1957 reflections with I > 2σ(I)
Tmin = 0.653, Tmax = 0.944Rint = 0.042
8421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056512 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.31 w = 1/[σ2(Fo2) + (0.0076P)2 + 23.3787P]
where P = (Fo2 + 2Fc2)/3
2239 reflectionsΔρmax = 0.34 e Å3
196 parametersΔρmin = 0.55 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.50000.14050 (7)0.75000.0114 (2)
N10.4195 (3)0.3148 (3)0.9401 (4)0.0197 (8)
N20.4707 (3)0.2569 (3)0.8420 (4)0.0189 (8)
N30.2780 (3)0.3910 (3)1.2697 (4)0.0190 (8)
N40.2668 (3)0.3553 (3)1.3534 (4)0.0201 (8)
N50.2945 (2)0.2610 (3)1.3831 (3)0.0158 (8)
N60.3247 (2)0.2320 (3)1.3206 (3)0.0149 (7)
O10.65066 (19)0.1248 (2)0.9144 (3)0.0164 (7)
H1C0.68600.13150.89710.020*
H1D0.66800.16640.97570.020*
O20.5016 (2)0.0210 (2)0.6390 (3)0.0172 (7)
H2C0.45500.02600.55640.021*
H2D0.54830.00450.64770.021*
O30.3656 (2)0.0306 (2)0.3671 (3)0.0178 (7)
H3D0.31900.00690.33540.021*
H3E0.34660.09120.34260.021*
C10.4461 (3)0.2365 (3)0.9100 (5)0.0227 (10)
H10.44710.17080.93620.027*
C20.4225 (6)0.3504 (6)0.7794 (8)0.0186 (17)0.531 (7)
H20.41490.38140.71020.022*0.531 (7)
C30.3898 (6)0.3863 (6)0.8365 (8)0.0184 (17)0.531 (7)
H30.35530.44500.81390.022*0.531 (7)
C2'0.5005 (7)0.3579 (7)0.8818 (9)0.0181 (19)0.469 (7)
H2'0.53480.39380.86690.022*0.469 (7)
C3'0.4721 (7)0.3956 (7)0.9450 (9)0.0192 (19)0.469 (7)
H3'0.48400.45930.98280.023*0.469 (7)
C40.3907 (3)0.3145 (3)1.0161 (4)0.0148 (8)
C50.3558 (3)0.4030 (3)1.0259 (4)0.0172 (9)
H50.35010.46160.98220.021*
C60.3299 (3)0.4027 (3)1.1017 (4)0.0178 (9)
H60.30600.46131.10800.021*
C70.3392 (3)0.3158 (3)1.1684 (4)0.0133 (8)
C80.3722 (3)0.2276 (3)1.1547 (4)0.0153 (9)
H80.37670.16841.19630.018*
C90.3986 (3)0.2275 (3)1.0794 (4)0.0180 (9)
H90.42160.16871.07180.022*
C100.3140 (3)0.3136 (3)1.2521 (4)0.0139 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0141 (5)0.0116 (4)0.0135 (5)0.0000.0113 (4)0.000
N10.031 (2)0.0127 (17)0.031 (2)0.0007 (15)0.0271 (18)0.0012 (15)
N20.026 (2)0.0149 (18)0.0275 (19)0.0026 (16)0.0226 (17)0.0031 (15)
N30.027 (2)0.0169 (19)0.026 (2)0.0046 (16)0.0230 (18)0.0029 (15)
N40.029 (2)0.0180 (18)0.0255 (19)0.0026 (17)0.0233 (18)0.0018 (16)
N50.0204 (19)0.0150 (18)0.0179 (18)0.0006 (15)0.0152 (16)0.0009 (14)
N60.0191 (18)0.0152 (18)0.0150 (17)0.0001 (15)0.0132 (15)0.0001 (14)
O10.0183 (15)0.0209 (16)0.0174 (15)0.0029 (13)0.0148 (14)0.0036 (13)
O20.0157 (16)0.0216 (16)0.0178 (15)0.0008 (13)0.0124 (14)0.0021 (13)
O30.0195 (16)0.0145 (15)0.0229 (16)0.0009 (13)0.0155 (14)0.0001 (13)
C10.038 (3)0.015 (2)0.031 (2)0.0024 (19)0.030 (2)0.0001 (18)
C20.026 (4)0.015 (4)0.024 (4)0.001 (3)0.020 (3)0.001 (3)
C30.025 (4)0.012 (3)0.026 (4)0.002 (3)0.020 (3)0.001 (3)
C2'0.028 (4)0.013 (4)0.024 (4)0.006 (3)0.022 (3)0.003 (3)
C3'0.026 (4)0.018 (4)0.024 (4)0.003 (3)0.021 (3)0.001 (3)
C40.015 (2)0.017 (2)0.019 (2)0.0056 (16)0.0138 (17)0.0053 (16)
C50.024 (2)0.013 (2)0.021 (2)0.0015 (17)0.0177 (18)0.0002 (17)
C60.022 (2)0.016 (2)0.024 (2)0.0031 (17)0.0188 (19)0.0001 (17)
C70.014 (2)0.016 (2)0.0128 (19)0.0001 (16)0.0102 (17)0.0004 (16)
C80.018 (2)0.013 (2)0.0155 (19)0.0002 (17)0.0114 (17)0.0010 (16)
C90.021 (2)0.017 (2)0.023 (2)0.0031 (17)0.0173 (18)0.0016 (17)
C100.014 (2)0.0125 (19)0.016 (2)0.0001 (16)0.0098 (17)0.0007 (16)
Geometric parameters (Å, º) top
Mn1—O2i2.177 (3)O2—H2D0.8500
Mn1—O22.177 (3)O3—H3D0.8500
Mn1—O12.204 (3)O3—H3E0.8499
Mn1—O1i2.204 (3)C1—H10.9300
Mn1—N22.256 (4)C2—C31.349 (11)
Mn1—N2i2.256 (4)C2—H20.9300
N1—C11.327 (6)C3—H30.9300
N1—C41.436 (5)C2'—C3'1.361 (12)
N1—C3'1.438 (10)C2'—H2'0.9300
N1—C31.446 (9)C3'—H3'0.9300
N2—C11.293 (5)C4—C91.374 (6)
N2—C2'1.410 (10)C4—C51.393 (6)
N2—C21.436 (9)C5—C61.389 (6)
N3—C101.336 (5)C5—H50.9300
N3—N41.352 (5)C6—C71.390 (6)
N4—N51.309 (5)C6—H60.9300
N5—N61.346 (5)C7—C81.393 (6)
N6—C101.338 (5)C7—C101.478 (5)
O1—H1C0.8500C8—C91.388 (6)
O1—H1D0.8501C8—H80.9300
O2—H2C0.8500C9—H90.9300
O2i—Mn1—O287.07 (16)H3D—O3—H3E108.3
O2i—Mn1—O181.34 (11)N2—C1—N1115.9 (4)
O2—Mn1—O190.81 (11)N2—C1—H1122.0
O2i—Mn1—O1i90.81 (11)N1—C1—H1122.0
O2—Mn1—O1i81.34 (11)C3—C2—N2109.5 (7)
O1—Mn1—O1i169.20 (16)C3—C2—H2125.3
O2i—Mn1—N290.29 (12)N2—C2—H2125.3
O2—Mn1—N2169.50 (12)C2—C3—N1105.8 (7)
O1—Mn1—N298.84 (12)C2—C3—H3127.1
O1i—Mn1—N288.54 (12)N1—C3—H3127.1
O2i—Mn1—N2i169.50 (12)C3'—C2'—N2110.6 (7)
O2—Mn1—N2i90.29 (12)C3'—C2'—H2'124.7
O1—Mn1—N2i88.54 (12)N2—C2'—H2'124.7
O1i—Mn1—N2i98.84 (12)C2'—C3'—N1104.6 (7)
N2—Mn1—N2i94.05 (18)C2'—C3'—H3'127.7
C1—N1—C4127.8 (4)N1—C3'—H3'127.7
C1—N1—C3'101.3 (5)C9—C4—C5120.7 (4)
C4—N1—C3'123.5 (5)C9—C4—N1119.8 (4)
C1—N1—C3102.0 (4)C5—C4—N1119.5 (4)
C4—N1—C3125.7 (4)C6—C5—C4119.2 (4)
C3'—N1—C351.9 (5)C6—C5—H5120.4
C1—N2—C2'100.2 (5)C4—C5—H5120.4
C1—N2—C2101.3 (4)C5—C6—C7120.8 (4)
C2'—N2—C249.6 (5)C5—C6—H6119.6
C1—N2—Mn1125.0 (3)C7—C6—H6119.6
C2'—N2—Mn1131.7 (4)C6—C7—C8119.0 (4)
C2—N2—Mn1124.4 (4)C6—C7—C10122.0 (4)
C10—N3—N4104.9 (3)C8—C7—C10119.0 (4)
N5—N4—N3109.2 (3)C9—C8—C7120.5 (4)
N4—N5—N6109.8 (3)C9—C8—H8119.7
C10—N6—N5104.8 (3)C7—C8—H8119.7
Mn1—O1—H1C118.3C4—C9—C8119.8 (4)
Mn1—O1—H1D108.9C4—C9—H9120.1
H1C—O1—H1D108.4C8—C9—H9120.1
Mn1—O2—H2C110.6N3—C10—N6111.3 (4)
Mn1—O2—H2D125.2N3—C10—C7125.3 (4)
H2C—O2—H2D108.1N6—C10—C7123.4 (4)
O2i—Mn1—N2—C111.2 (4)C1—N2—C2'—C3'13.7 (9)
O2—Mn1—N2—C164.1 (9)C2—N2—C2'—C3'82.6 (9)
O1—Mn1—N2—C192.5 (4)Mn1—N2—C2'—C3'173.9 (5)
O1i—Mn1—N2—C179.6 (4)N2—C2'—C3'—N11.9 (10)
N2i—Mn1—N2—C1178.3 (5)C1—N1—C3'—C2'16.4 (8)
O2i—Mn1—N2—C2'144.8 (6)C4—N1—C3'—C2'168.1 (6)
O2—Mn1—N2—C2'139.8 (8)C3—N1—C3'—C2'80.2 (8)
O1—Mn1—N2—C2'63.5 (6)C1—N1—C4—C97.3 (7)
O1i—Mn1—N2—C2'124.4 (6)C3'—N1—C4—C9136.7 (6)
N2i—Mn1—N2—C2'25.6 (6)C3—N1—C4—C9159.1 (5)
O2i—Mn1—N2—C2151.5 (5)C1—N1—C4—C5173.4 (5)
O2—Mn1—N2—C276.1 (9)C3'—N1—C4—C542.6 (7)
O1—Mn1—N2—C2127.2 (5)C3—N1—C4—C521.6 (7)
O1i—Mn1—N2—C260.7 (5)C9—C4—C5—C60.6 (7)
N2i—Mn1—N2—C238.1 (4)N1—C4—C5—C6178.7 (4)
C10—N3—N4—N50.3 (5)C4—C5—C6—C70.6 (7)
N3—N4—N5—N60.1 (5)C5—C6—C7—C82.0 (7)
N4—N5—N6—C100.2 (4)C5—C6—C7—C10178.7 (4)
C2'—N2—C1—N127.0 (6)C6—C7—C8—C92.3 (6)
C2—N2—C1—N123.5 (6)C10—C7—C8—C9178.5 (4)
Mn1—N2—C1—N1170.9 (3)C5—C4—C9—C80.4 (7)
C4—N1—C1—N2178.7 (4)N1—C4—C9—C8178.9 (4)
C3'—N1—C1—N228.7 (6)C7—C8—C9—C41.0 (7)
C3—N1—C1—N224.4 (6)N4—N3—C10—N60.5 (5)
C1—N2—C2—C312.3 (8)N4—N3—C10—C7179.7 (4)
C2'—N2—C2—C381.5 (8)N5—N6—C10—N30.4 (5)
Mn1—N2—C2—C3160.0 (5)N5—N6—C10—C7179.7 (4)
N2—C2—C3—N11.1 (9)C6—C7—C10—N32.2 (7)
C1—N1—C3—C213.8 (7)C8—C7—C10—N3177.1 (4)
C4—N1—C3—C2171.3 (5)C6—C7—C10—N6178.0 (4)
C3'—N1—C3—C281.2 (8)C8—C7—C10—N62.8 (6)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3E···N5ii0.852.653.397 (4)147
O3—H3E···N6ii0.851.892.726 (4)169
O3—H3D···N4iii0.852.633.261 (5)132
O3—H3D···N3iii0.851.952.774 (5)162
O2—H2D···O3iv0.851.842.684 (4)170
O2—H2C···O30.851.902.745 (4)170
O1—H1D···N5v0.851.962.811 (4)179
O1—H1C···N5vi0.852.623.396 (4)152
O1—H1C···N4vi0.851.992.835 (4)179
Symmetry codes: (ii) x, y, z1; (iii) x+1/2, y1/2, z+3/2; (iv) x+1, y, z+1; (v) x+1, y, z+5/2; (vi) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C10H7N6)2(H2O)4]·2H2O
Mr585.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)19.1342 (18), 13.2100 (4), 13.3280 (13)
β (°) 131.056 (2)
V3)2540.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.80 × 0.11 × 0.10
Data collection
DiffractometerRigaku/MSC Mercury CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.653, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
8421, 2239, 1957
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.142, 1.31
No. of reflections2239
No. of parameters196
No. of restraints512
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0076P)2 + 23.3787P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.34, 0.55

Computer programs: RAPID-AUTO (Rigaku/MSC, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3E···N5i0.852.653.397 (4)147.3
O3—H3E···N6i0.851.892.726 (4)169.3
O3—H3D···N4ii0.852.633.261 (5)132.2
O3—H3D···N3ii0.851.952.774 (5)162.1
O2—H2D···O3iii0.851.842.684 (4)169.5
O2—H2C···O30.851.902.745 (4)169.7
O1—H1D···N5iv0.851.962.811 (4)178.6
O1—H1C···N5v0.852.623.396 (4)152.1
O1—H1C···N4v0.851.992.835 (4)178.6
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y1/2, z+3/2; (iii) x+1, y, z+1; (iv) x+1, y, z+5/2; (v) x+1/2, y+1/2, z1/2.
 

Acknowledgements

We acknowledge the public science and technology research funds projects of ocean (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003?018(c)], the Guangdong Chinese Academy of Science comprehensive strategic cooperation project (grant No. 2009B091300121) and the Guangdong Province key project in the field of social development [grant No. A2009011-007(c)].

References

First citationCheng, X.-C. (2011). Acta Cryst. E67, m1757.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897–m898.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHuang, R. Y., Zhu, K., Chen, H., Liu, G. X. & Ren, X. M. (2009). Wuji Huaxue Xuebao, 25, 162–165.  CAS Google Scholar
First citationLi, S.-J., Ma, X.-T., Song, W.-D., Li, X.-F. & Liu, J.-H. (2011). Acta Cryst. E67, m295–m296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010). Acta Cryst. E66, m1096–m1097.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, S. J., Song, W. D., Miao, D. L., Hu, S. W., Ji, L. L. & Ma, D. Y. (2011). Z. Anorg. Allg. Chem. 637, 1246–1252.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (1998). RAPID-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X., Yan, S.-W., Chang, S.-C., Liang, Y.-C. & Zhang, F.-T. (2012). Acta Cryst. E68, m413–m414.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m433-m434
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds