metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m413-m414

cis-Tetra­aqua­bis­­{5-[4-(1H-imidazol-1-yl-κN3)phen­yl]tetra­zolido}manganese(II) dihydrate

aCollege of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: firefire66@126.com

(Received 13 February 2012; accepted 8 March 2012; online 14 March 2012)

In the title compound, [Mn(C10H7N6)2(H2O)4]·2H2O, the complex unit comprises an Mn2+ ion, coordinated by two imidazole N atoms from cis-related monodentate 5-[4-(imidazol-1-yl)phen­yl]tetra­zolide ligands and four water mol­ecules, together with two water mol­ecules of solvation. The Mn2+ ion lies on a twofold rotation axis and has a slightly distorted octa­hedral geometry. The mol­ecules are connected by O—H⋯N and O—H⋯O hydrogen bonds involving both coordinated and solvent water mol­ecules, generating a three-dimensional structure. Two C atoms of the imidazole ring of the ligand are each disordered over two sites with occupancy factors of 0.75 and 0.25.

Related literature

For general background to the use of nitro­gen-containing ligands in the construction of supra­molecular coordination compounds, see: Qi et al. (2008[Qi, Y., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 3602-3608.]). For the structure of the anhydrous trans-isomer of the title complex, see: Cheng (2011[Cheng, X.-C. (2011). Acta Cryst. E67, m1757.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C10H7N6)2(H2O)4]·2H2O

  • Mr = 585.47

  • Monoclinic, C 2/c

  • a = 19.239 (3) Å

  • b = 13.141 (2) Å

  • c = 13.417 (2) Å

  • β = 129.912 (2)°

  • V = 2601.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.50 × 0.45 × 0.35 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.764, Tmax = 0.826

  • 7759 measured reflections

  • 2962 independent reflections

  • 2246 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.04

  • 2962 reflections

  • 219 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O3W 0.79 (4) 1.91 (4) 2.690 (4) 169 (2)
O1W—H12W⋯O3Wi 0.82 (3) 1.95 (3) 2.762 (3) 168 (4)
O2W—H21W⋯N4ii 0.79 (4) 2.07 (4) 2.847 (4) 169 (3)
O2W—H22W⋯N5iii 0.85 (3) 1.97 (3) 2.812 (3) 170 (4)
O3W—H31W⋯N3iv 0.83 (4) 1.97 (3) 2.786 (3) 167 (3)
O3W—H31W⋯N4iv 0.83 (4) 2.62 (3) 3.308 (3) 142 (3)
O3W—H32W⋯N6v 0.82 (3) 1.95 (3) 2.757 (3) 172 (2)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{3\over 2}}]; (iv) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+2]; (v) [x, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc.,Madison Wisconsion, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc.,Madison Wisconsion, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, much study has been focused on using nitrogen-containing ligands and 1,4-benzenedicarboxylic acid to construct supramolecular coordination compounds. The reason is that these supramolecular coordination assemblies exhibit not only a variety of architectures but also have potential applications as functional materials (Qi et al., 2008). In this paper, we report the synthesis and structure of the title complex [Mn(timb)2(H2O)4] . 2H2O, {Htimb = 5-[4-imidazol-1-yl)phenyl]tetrazole}, synthesized by the hydrothermal reaction of manganese(II) acetate with Htimb in the presence of 1,4-benzenedicarboxylic acid.

In the title compound the coordination polyhedron comprises a Mn2+ ion, two monodentate cis-related timb- ligands and four coordinated water molecules, together with two water molecules of solvation (Fig. 1). The Mn2+ lies on a twofold rotation axis and the complex has a slightly distorted octahedral geometry. Both the coordinated and solvent water molecules form intermolecular O—H···O and O—H···N hydrogen-bonding interactions (Table 1) to form a three-dimensional supramolecular network. Two atoms of the imidazole ring (C2, C3) are disordered over two sites (C2A and C3A, respectively), with occupancy factors of 0.75 and 0.25. The structure of the anhydrous trans-isomer of the title complex has previously been reported (Cheng, 2011).

Related literature top

For general background to the use of nitrogen-containing ligands in the construction of supramolecular coordination compounds, see: Qi et al. (2008). For the structure of the anhydrous trans-isomer of the title complex, see: Cheng (2011).

Experimental top

A mixture of Mn(OAc)2 (0.098 g, 0.4 mmol), 5-[4-imidazol-1-yl)phenyl]tetrazole (Htimb) (0.064 g, 0.3 mmol), 1,4-benzendicarboxylic acid (0.066 g, 0.4 mmol) and water (9 ml) was stirred for 30 min in air. The mixture was then transferred to a 18 ml Teflon-lined hydrothermal bomb. The bomb was kept at 433 K for 75 h under autogenous pressure. The product was washed with distilled water and dried, giving the yellow title compound.

Refinement top

Hydrogen atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). Water H atoms were located in a difference-Fourier analysis and both positional and isotropic displacement parameters were allowed to refine. Atom pairs C2, C2A and C3, C3A represent disordered atoms of the imidazole ring of the ligand, having site occupancies of 0.75 and 0.25.

Structure description top

In recent years, much study has been focused on using nitrogen-containing ligands and 1,4-benzenedicarboxylic acid to construct supramolecular coordination compounds. The reason is that these supramolecular coordination assemblies exhibit not only a variety of architectures but also have potential applications as functional materials (Qi et al., 2008). In this paper, we report the synthesis and structure of the title complex [Mn(timb)2(H2O)4] . 2H2O, {Htimb = 5-[4-imidazol-1-yl)phenyl]tetrazole}, synthesized by the hydrothermal reaction of manganese(II) acetate with Htimb in the presence of 1,4-benzenedicarboxylic acid.

In the title compound the coordination polyhedron comprises a Mn2+ ion, two monodentate cis-related timb- ligands and four coordinated water molecules, together with two water molecules of solvation (Fig. 1). The Mn2+ lies on a twofold rotation axis and the complex has a slightly distorted octahedral geometry. Both the coordinated and solvent water molecules form intermolecular O—H···O and O—H···N hydrogen-bonding interactions (Table 1) to form a three-dimensional supramolecular network. Two atoms of the imidazole ring (C2, C3) are disordered over two sites (C2A and C3A, respectively), with occupancy factors of 0.75 and 0.25. The structure of the anhydrous trans-isomer of the title complex has previously been reported (Cheng, 2011).

For general background to the use of nitrogen-containing ligands in the construction of supramolecular coordination compounds, see: Qi et al. (2008). For the structure of the anhydrous trans-isomer of the title complex, see: Cheng (2011).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for the title complex, showing the partial disorder in the imidaziole ring of the ligand. Displacement ellipsoids are drawn at the 30% probability level. For symmetry code (i): -x - 1, y, -z + 5/2.
cis-Tetraaquabis{5-[4-(1H-imidazol-1-yl- κN3)phenyl]tetrazolido}manganese(II) dihydrate top
Crystal data top
[Mn(C10H7N6)2(H2O)4]·2H2OF(000) = 1212
Mr = 585.47Dx = 1.495 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7759 reflections
a = 19.239 (3) Åθ = 2.1–27.5°
b = 13.141 (2) ŵ = 0.57 mm1
c = 13.417 (2) ÅT = 296 K
β = 129.912 (2)°Block, yellow
V = 2601.8 (7) Å30.50 × 0.45 × 0.35 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
2962 independent reflections
Radiation source: fine-focus sealed tube2246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.764, Tmax = 0.826k = 1716
7759 measured reflectionsl = 1217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0453P)2 + 1.08P]
where P = (Fo2 + 2Fc2)/3
2962 reflections(Δ/σ)max = 0.002
219 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Mn(C10H7N6)2(H2O)4]·2H2OV = 2601.8 (7) Å3
Mr = 585.47Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.239 (3) ŵ = 0.57 mm1
b = 13.141 (2) ÅT = 296 K
c = 13.417 (2) Å0.50 × 0.45 × 0.35 mm
β = 129.912 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2962 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2246 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.826Rint = 0.027
7759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.21 e Å3
2962 reflectionsΔρmin = 0.27 e Å3
219 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.500000.64609 (3)1.250000.0381 (2)
O1W0.50199 (14)0.52591 (12)1.13954 (19)0.0494 (6)
O2W0.35299 (11)0.62992 (13)1.09094 (17)0.0487 (6)
N10.53170 (13)0.76342 (13)1.16074 (18)0.0471 (6)
N20.58359 (12)0.81830 (13)1.06351 (18)0.0439 (6)
N30.72694 (13)0.88544 (13)0.73642 (18)0.0457 (6)
N40.73655 (13)0.84944 (13)0.65176 (19)0.0476 (6)
N50.70484 (12)0.75736 (14)0.61811 (17)0.0476 (7)
N60.67343 (12)0.72992 (13)0.67890 (17)0.0452 (6)
C10.54836 (16)0.74146 (16)1.0828 (2)0.0499 (8)
C20.5739 (3)0.8554 (3)1.2134 (4)0.0586 (16)0.750
C30.6063 (3)0.8903 (3)1.1558 (4)0.0600 (15)0.750
C40.61025 (13)0.81709 (14)0.98504 (19)0.0371 (6)
C50.64673 (17)0.90308 (16)0.9751 (2)0.0500 (8)
C60.67239 (17)0.90067 (16)0.8996 (2)0.0503 (8)
C70.66198 (13)0.81344 (14)0.83318 (19)0.0358 (6)
C80.62672 (15)0.72795 (16)0.8463 (2)0.0469 (7)
C90.60114 (15)0.72957 (16)0.9219 (2)0.0495 (8)
C100.68777 (13)0.80981 (14)0.75070 (19)0.0358 (6)
C2A0.5081 (10)0.8671 (8)1.1261 (14)0.067 (5)0.250
C3A0.5379 (10)0.9036 (8)1.0642 (14)0.070 (5)0.250
O3W0.63171 (12)0.47411 (14)1.12748 (17)0.0481 (6)
H10.536600.677901.044300.0600*
H50.654000.962301.019000.0600*
H20.579700.888501.279800.0710*0.750
H30.637300.951001.174000.0710*0.750
H90.577700.671200.930000.0590*
H11W0.5443 (19)0.510 (2)1.146 (2)0.065 (9)*
H12W0.457 (2)0.524 (2)1.062 (3)0.069 (9)*
H21W0.3226 (18)0.6277 (18)1.111 (3)0.063 (8)*
H22W0.329 (2)0.666 (2)1.023 (3)0.078 (10)*
H60.697100.958700.893300.0600*
H80.620100.668300.803500.0560*
H21A0.477600.905701.145400.0810*0.250
H31A0.529100.968101.029200.0830*0.250
H31W0.6792 (19)0.508 (2)1.171 (3)0.070 (9)*
H32W0.6465 (17)0.415 (2)1.150 (2)0.060 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0532 (3)0.0388 (2)0.0477 (3)0.00000.0440 (2)0.0000
O1W0.0568 (11)0.0558 (10)0.0539 (11)0.0025 (8)0.0439 (10)0.0081 (8)
O2W0.0539 (10)0.0631 (10)0.0514 (10)0.0093 (8)0.0440 (9)0.0084 (8)
N10.0636 (12)0.0482 (10)0.0584 (11)0.0029 (9)0.0524 (10)0.0005 (8)
N20.0619 (11)0.0410 (9)0.0575 (11)0.0042 (8)0.0515 (10)0.0015 (8)
N30.0657 (12)0.0424 (9)0.0591 (12)0.0070 (8)0.0539 (11)0.0051 (8)
N40.0638 (12)0.0487 (10)0.0596 (11)0.0038 (9)0.0530 (11)0.0039 (9)
N50.0626 (12)0.0505 (11)0.0531 (11)0.0060 (9)0.0479 (10)0.0068 (8)
N60.0611 (11)0.0448 (10)0.0509 (10)0.0094 (8)0.0456 (10)0.0075 (8)
C10.0740 (16)0.0430 (11)0.0625 (14)0.0077 (11)0.0574 (14)0.0020 (10)
C20.089 (3)0.052 (2)0.080 (3)0.017 (2)0.075 (2)0.0164 (19)
C30.092 (3)0.0465 (18)0.084 (3)0.0215 (19)0.076 (3)0.0183 (18)
C40.0430 (11)0.0414 (10)0.0436 (11)0.0005 (8)0.0354 (10)0.0034 (8)
C50.0795 (16)0.0366 (11)0.0686 (15)0.0057 (10)0.0634 (14)0.0049 (10)
C60.0797 (16)0.0372 (11)0.0717 (15)0.0079 (10)0.0658 (15)0.0016 (10)
C70.0413 (11)0.0400 (10)0.0390 (11)0.0004 (8)0.0317 (10)0.0022 (8)
C80.0650 (14)0.0426 (11)0.0553 (13)0.0131 (10)0.0488 (13)0.0109 (10)
C90.0695 (15)0.0439 (12)0.0624 (14)0.0187 (11)0.0548 (13)0.0082 (10)
C100.0420 (11)0.0375 (10)0.0399 (11)0.0011 (8)0.0318 (10)0.0019 (8)
C2A0.108 (10)0.058 (6)0.100 (9)0.028 (7)0.096 (9)0.021 (6)
C3A0.120 (11)0.045 (5)0.106 (10)0.021 (6)0.101 (9)0.020 (6)
O3W0.0543 (11)0.0420 (9)0.0597 (10)0.0019 (8)0.0420 (9)0.0048 (8)
Geometric parameters (Å, º) top
Mn1—O1W2.183 (2)N4—N51.299 (3)
Mn1—O2W2.203 (2)N5—N61.339 (4)
Mn1—N12.263 (2)N6—C101.329 (3)
Mn1—O1Wi2.183 (2)C2—C31.347 (9)
Mn1—O2Wi2.203 (2)C2A—C3A1.36 (3)
Mn1—N1i2.263 (2)C4—C51.381 (4)
O1W—H12W0.82 (3)C4—C91.371 (3)
O1W—H11W0.79 (4)C5—C61.383 (5)
O2W—H21W0.79 (4)C6—C71.385 (3)
O2W—H22W0.85 (3)C7—C101.476 (4)
O3W—H32W0.82 (3)C7—C81.381 (3)
O3W—H31W0.83 (4)C8—C91.383 (4)
N1—C21.372 (5)C1—H10.9300
N1—C11.308 (4)C2—H20.9300
N1—C2A1.417 (11)C2A—H21A0.9300
N2—C41.437 (4)C3—H30.9300
N2—C31.388 (5)C3A—H31A0.9300
N2—C3A1.428 (16)C5—H50.9300
N2—C11.331 (4)C6—H60.9300
N3—C101.333 (3)C8—H80.9300
N3—N41.348 (3)C9—H90.9300
O1W—Mn1—O2W80.99 (9)N1—C1—N2113.9 (2)
O1W—Mn1—N190.32 (8)N1—C2—C3110.1 (4)
O1W—Mn1—O1Wi87.31 (8)N1—C2A—C3A111.5 (15)
O1W—Mn1—O2Wi90.98 (8)N2—C3—C2106.5 (4)
O1W—Mn1—N1i168.63 (10)N2—C3A—C2A103.2 (9)
O2W—Mn1—N199.64 (8)N2—C4—C9119.9 (2)
O1Wi—Mn1—O2W90.98 (8)C5—C4—C9119.9 (3)
O2W—Mn1—O2Wi168.93 (7)N2—C4—C5120.27 (19)
O2W—Mn1—N1i87.94 (8)C4—C5—C6119.6 (2)
O1Wi—Mn1—N1168.63 (10)C5—C6—C7121.2 (2)
O2Wi—Mn1—N187.94 (8)C6—C7—C10122.0 (2)
N1—Mn1—N1i94.10 (8)C8—C7—C10119.89 (19)
O1Wi—Mn1—O2Wi80.99 (9)C6—C7—C8118.1 (3)
O1Wi—Mn1—N1i90.32 (8)C7—C8—C9121.1 (2)
O2Wi—Mn1—N1i99.64 (8)C4—C9—C8120.1 (2)
H11W—O1W—H12W108 (3)N3—C10—C7125.22 (18)
Mn1—O1W—H11W125.7 (18)N6—C10—C7123.8 (2)
Mn1—O1W—H12W115 (2)N3—C10—N6111.0 (2)
H21W—O2W—H22W112 (4)N2—C1—H1123.00
Mn1—O2W—H21W117 (2)N1—C1—H1123.00
Mn1—O2W—H22W117 (3)N1—C2—H2125.00
H31W—O3W—H32W107 (3)C3—C2—H2125.00
Mn1—N1—C1124.09 (14)C3A—C2A—H21A124.00
Mn1—N1—C2A133.7 (9)N1—C2A—H21A124.00
C1—N1—C2103.8 (3)C2—C3—H3127.00
C1—N1—C2A98.1 (8)N2—C3—H3127.00
Mn1—N1—C2126.8 (2)N2—C3A—H31A129.00
C3A—N2—C4121.6 (7)C2A—C3A—H31A128.00
C1—N2—C3A101.7 (8)C4—C5—H5120.00
C3—N2—C4127.3 (3)C6—C5—H5120.00
C1—N2—C4126.86 (19)C5—C6—H6119.00
C1—N2—C3104.6 (3)C7—C6—H6119.00
N4—N3—C10104.79 (18)C9—C8—H8120.00
N3—N4—N5109.4 (2)C7—C8—H8119.00
N4—N5—N6109.5 (2)C8—C9—H9120.00
N5—N6—C10105.31 (19)C4—C9—H9120.00
O1W—Mn1—N1—C14.3 (2)N4—N3—C10—N60.1 (3)
O1W—Mn1—N1—C2154.2 (4)N4—N3—C10—C7179.0 (2)
O2W—Mn1—N1—C185.2 (2)N3—N4—N5—N60.1 (3)
O2W—Mn1—N1—C2124.9 (4)N4—N5—N6—C100.0 (3)
O2Wi—Mn1—N1—C186.7 (2)N5—N6—C10—N30.1 (3)
O2Wi—Mn1—N1—C263.3 (4)N5—N6—C10—C7179.1 (2)
N1i—Mn1—N1—C1173.8 (2)N1—C2—C3—N20.2 (5)
N1i—Mn1—N1—C236.3 (4)N2—C4—C5—C6179.8 (2)
Mn1—N1—C1—N2166.66 (17)C9—C4—C5—C61.1 (4)
C2—N1—C1—N211.0 (3)N2—C4—C9—C8180.0 (2)
Mn1—N1—C2—C3161.0 (3)C5—C4—C9—C81.3 (4)
C1—N1—C2—C36.3 (5)C4—C5—C6—C70.2 (4)
C3—N2—C1—N111.3 (4)C5—C6—C7—C81.2 (4)
C4—N2—C1—N1179.0 (2)C5—C6—C7—C10179.1 (2)
C1—N2—C3—C26.5 (5)C6—C7—C8—C91.0 (4)
C4—N2—C3—C2174.1 (3)C10—C7—C8—C9179.3 (2)
C1—N2—C4—C5179.5 (2)C6—C7—C10—N33.6 (4)
C1—N2—C4—C90.8 (4)C6—C7—C10—N6175.4 (2)
C3—N2—C4—C514.5 (4)C8—C7—C10—N3176.1 (2)
C3—N2—C4—C9164.2 (3)C8—C7—C10—N64.9 (4)
C10—N3—N4—N50.1 (3)C7—C8—C9—C40.2 (4)
Symmetry code: (i) x+1, y, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O3W0.79 (4)1.91 (4)2.690 (4)169 (2)
O1W—H12W···O3Wii0.82 (3)1.95 (3)2.762 (3)168 (4)
O2W—H21W···N4iii0.79 (4)2.07 (4)2.847 (4)169 (3)
O2W—H22W···N5iv0.85 (3)1.97 (3)2.812 (3)170 (4)
O3W—H31W···N3v0.83 (4)1.97 (3)2.786 (3)167 (3)
O3W—H31W···N4v0.83 (4)2.62 (3)3.308 (3)142 (3)
O3W—H32W···N6vi0.82 (3)1.95 (3)2.757 (3)172 (2)
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x1/2, y+3/2, z+1/2; (iv) x+1, y, z+3/2; (v) x+3/2, y+3/2, z+2; (vi) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C10H7N6)2(H2O)4]·2H2O
Mr585.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)19.239 (3), 13.141 (2), 13.417 (2)
β (°) 129.912 (2)
V3)2601.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.50 × 0.45 × 0.35
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.764, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
7759, 2962, 2246
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.04
No. of reflections2962
No. of parameters219
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O3W0.79 (4)1.91 (4)2.690 (4)169 (2)
O1W—H12W···O3Wi0.82 (3)1.95 (3)2.762 (3)168 (4)
O2W—H21W···N4ii0.79 (4)2.07 (4)2.847 (4)169 (3)
O2W—H22W···N5iii0.85 (3)1.97 (3)2.812 (3)170 (4)
O3W—H31W···N3iv0.83 (4)1.97 (3)2.786 (3)167 (3)
O3W—H31W···N4iv0.83 (4)2.62 (3)3.308 (3)142 (3)
O3W—H32W···N6v0.82 (3)1.95 (3)2.757 (3)172 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1/2, y+3/2, z+1/2; (iii) x+1, y, z+3/2; (iv) x+3/2, y+3/2, z+2; (v) x, y+1, z+1/2.
 

Acknowledgements

This work was supported by the Science and Technology Foundation of Southwest University (SWUB2007035) and the Science and Technology Innovation Foundation for Students of Southwest University.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc.,Madison Wisconsion, USA.  Google Scholar
First citationCheng, X.-C. (2011). Acta Cryst. E67, m1757.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQi, Y., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 3602–3608.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m413-m414
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds