metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[2-({6-[(pyrimidin-2-ylsulfanyl-κS)meth­yl]pyridin-2-yl-κN}methyl­sulfan­yl)pyrimidine]­copper(I)]-μ-thio­cyanato-κ2N:S]

aDepartment of Chemistry, Shantou University, Shantou 515063, Guangdong, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 2 March 2012; accepted 10 March 2012; online 17 March 2012)

The N-heterocyclic ligand in the title compound, [Cu(NCS)(C15H13N5S2)]n, coordinates to the CuI atom through its pyridine N-donor site, and adjacent metal atoms are bridged by the thio­cyanate ion, forming a helical chain along the b axis. The geometry of the metal atom is tetra­hedral owing to a somewhat long intra­molecular Cu—S inter­action of 2.5621 (9) Å.

Related literature

For the synthesis of the N-heterocyle and its copper(I) adducts, see: Peng et al. (2006[Peng, R., Li, D., Wu, T., Zhou, X.-P. & Ng, S. W. (2006). Inorg. Chem. 45, 4035-4046.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)(C15H13N5S2)]

  • Mr = 449.04

  • Monoclinic, P 21 /n

  • a = 11.1706 (8) Å

  • b = 8.6735 (6) Å

  • c = 19.0956 (14) Å

  • β = 100.978 (1)°

  • V = 1816.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.56 mm−1

  • T = 293 K

  • 0.16 × 0.11 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.703, Tmax = 1.000

  • 10799 measured reflections

  • 4077 independent reflections

  • 3022 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.125

  • S = 1.04

  • 4077 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 1.18 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have previously reported the crystal structures of the copper(I) bromide and iodide adducts of 2,6-bis(2-pyrimidinesulfanylmethyl)pyridine. The ligand is a flexible thioether than can coordinate through the nitrogen and sulfur sites (Peng et al., 2006). In the present copper(I) thiocyanate adduct (Scheme I), the N-heterocyclic ligand coordinates to the CuI atom through its pyridyl N-donor site (Fig. 1). Adjacent metal atoms are bridged by the thiocyanate ion to form a helical chain running along the b-axis of the monoclinic unit cell (Fig. 2). The geometry of the metal atom is a tetrahedron owing to a somewhat long intramolecular sulfur–copper interaction of 2.5621 (9) Å.

Related literature top

For the synthesis of the N-heterocyle and its copper(I) adducts, see: Peng et al. (2006).

Experimental top

The ligand was synthesized as described by Peng et al. (2006). Copper(I) thiocyanate (0.012 g, 1 mmol), 2,6-bis(2-pyrimidinesulfanylmethyl)pyridine (0.032 g, 0.1 mmol) and acetonitrile (4 ml) were placed in a 13-ml, Teflon-line, stainless-steel Parr bomb. This was heated at 373 K for 48 h, and then cooled at 3 K a minute. The solution was filtered and the solvent allowed to evaporate over two weeks to give brown prisms.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The final difference Fourier map had a peak (1.179 eÅ-3in the vicinity of Cu1.

Structure description top

We have previously reported the crystal structures of the copper(I) bromide and iodide adducts of 2,6-bis(2-pyrimidinesulfanylmethyl)pyridine. The ligand is a flexible thioether than can coordinate through the nitrogen and sulfur sites (Peng et al., 2006). In the present copper(I) thiocyanate adduct (Scheme I), the N-heterocyclic ligand coordinates to the CuI atom through its pyridyl N-donor site (Fig. 1). Adjacent metal atoms are bridged by the thiocyanate ion to form a helical chain running along the b-axis of the monoclinic unit cell (Fig. 2). The geometry of the metal atom is a tetrahedron owing to a somewhat long intramolecular sulfur–copper interaction of 2.5621 (9) Å.

For the synthesis of the N-heterocyle and its copper(I) adducts, see: Peng et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of the polymeric chain structure of [Cu(NCS)(C16H13N5S2)]n at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The chain structure of the title compound, extending along the b-axis of the unit cell.
catena-Poly[[[2-({6-[(pyrimidin-2-ylsulfanyl-κS)methyl]pyridin-2- yl-κN}methylsulfanyl)pyrimidine]copper(I)]-µ-thiocyanato- κ2N:S] top
Crystal data top
[Cu(NCS)(C15H13N5S2)]F(000) = 912
Mr = 449.04Dx = 1.642 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2743 reflections
a = 11.1706 (8) Åθ = 2.6–25.0°
b = 8.6735 (6) ŵ = 1.56 mm1
c = 19.0956 (14) ÅT = 293 K
β = 100.978 (1)°Prism, brown
V = 1816.3 (2) Å30.16 × 0.11 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4077 independent reflections
Radiation source: fine-focus sealed tube3022 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.703, Tmax = 1.000k = 114
10799 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.7767P]
where P = (Fo2 + 2Fc2)/3
4077 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 1.18 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cu(NCS)(C15H13N5S2)]V = 1816.3 (2) Å3
Mr = 449.04Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1706 (8) ŵ = 1.56 mm1
b = 8.6735 (6) ÅT = 293 K
c = 19.0956 (14) Å0.16 × 0.11 × 0.06 mm
β = 100.978 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4077 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3022 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 1.000Rint = 0.028
10799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04Δρmax = 1.18 e Å3
4077 reflectionsΔρmin = 0.51 e Å3
235 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.40542 (4)0.22472 (5)0.23431 (3)0.06021 (17)
S10.39013 (7)0.38008 (9)0.11883 (4)0.0492 (2)
S20.51157 (8)0.14604 (12)0.39459 (5)0.0604 (2)
S30.05933 (8)0.47654 (10)0.29022 (5)0.0583 (2)
N10.4820 (3)0.2133 (3)0.02977 (15)0.0547 (7)
N20.6034 (2)0.4274 (3)0.07782 (14)0.0522 (6)
N30.5545 (2)0.3694 (3)0.26678 (12)0.0404 (5)
N40.6536 (3)0.3205 (4)0.49195 (15)0.0615 (8)
N50.4632 (3)0.2354 (4)0.51544 (18)0.0740 (9)
N60.2579 (3)0.3150 (3)0.25756 (16)0.0560 (7)
C10.5066 (3)0.3375 (4)0.07088 (15)0.0425 (6)
C20.5642 (3)0.1795 (4)0.00998 (18)0.0573 (8)
H20.55050.09490.04040.069*
C30.6680 (3)0.2642 (4)0.00794 (18)0.0565 (9)
H30.72480.23910.03600.068*
C40.6842 (3)0.3875 (4)0.03729 (18)0.0578 (9)
H40.75440.44650.04010.069*
C50.4517 (3)0.5411 (4)0.17298 (17)0.0508 (7)
H5A0.47920.61730.14240.061*
H5B0.38650.58750.19280.061*
C60.5557 (3)0.5052 (3)0.23334 (15)0.0428 (7)
C70.6469 (3)0.6129 (4)0.25452 (18)0.0542 (8)
H70.64540.70660.23070.065*
C80.7392 (3)0.5806 (5)0.31075 (19)0.0611 (9)
H80.80150.65130.32540.073*
C90.7378 (3)0.4420 (4)0.34490 (18)0.0549 (8)
H90.79930.41790.38340.066*
C100.6455 (3)0.3388 (4)0.32216 (16)0.0463 (7)
C110.6440 (3)0.1836 (4)0.35597 (19)0.0582 (8)
H11A0.71630.17360.39300.070*
H11B0.64870.10550.32020.070*
C120.5486 (3)0.2465 (4)0.47565 (18)0.0514 (8)
C130.6736 (4)0.3913 (5)0.5549 (2)0.0738 (11)
H130.74610.44540.56860.089*
C140.5936 (4)0.3884 (6)0.5997 (2)0.0797 (12)
H140.60950.43880.64350.096*
C150.4898 (4)0.3090 (7)0.5780 (2)0.0903 (15)
H150.43340.30510.60800.108*
C160.1773 (3)0.3838 (3)0.26969 (16)0.0443 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0529 (3)0.0354 (2)0.0982 (4)0.00026 (17)0.0294 (2)0.0022 (2)
S10.0522 (4)0.0427 (4)0.0549 (4)0.0001 (3)0.0157 (3)0.0011 (3)
S20.0644 (5)0.0590 (6)0.0588 (5)0.0066 (4)0.0142 (4)0.0121 (4)
S30.0532 (5)0.0343 (4)0.0968 (7)0.0037 (3)0.0376 (4)0.0064 (4)
N10.0595 (17)0.0439 (16)0.0633 (16)0.0106 (13)0.0185 (13)0.0113 (13)
N20.0567 (16)0.0472 (16)0.0533 (15)0.0099 (13)0.0123 (12)0.0070 (12)
N30.0459 (13)0.0321 (13)0.0478 (13)0.0040 (10)0.0206 (11)0.0004 (10)
N40.0522 (17)0.075 (2)0.0563 (17)0.0033 (15)0.0080 (13)0.0150 (15)
N50.0558 (18)0.095 (3)0.076 (2)0.0009 (17)0.0254 (15)0.0030 (19)
N60.0511 (15)0.0437 (15)0.0782 (18)0.0038 (13)0.0252 (14)0.0003 (14)
C10.0507 (16)0.0363 (15)0.0401 (14)0.0009 (13)0.0080 (12)0.0061 (12)
C20.066 (2)0.0468 (18)0.0612 (19)0.0061 (16)0.0175 (17)0.0147 (16)
C30.057 (2)0.058 (2)0.0585 (19)0.0017 (16)0.0199 (16)0.0053 (16)
C40.0519 (18)0.061 (2)0.063 (2)0.0144 (16)0.0168 (16)0.0090 (17)
C50.066 (2)0.0342 (16)0.0550 (17)0.0072 (15)0.0190 (15)0.0018 (14)
C60.0543 (16)0.0332 (15)0.0477 (15)0.0029 (13)0.0268 (13)0.0035 (12)
C70.068 (2)0.0411 (17)0.0615 (19)0.0099 (16)0.0331 (17)0.0036 (15)
C80.059 (2)0.063 (2)0.067 (2)0.0173 (18)0.0274 (18)0.0150 (18)
C90.0469 (17)0.065 (2)0.0551 (18)0.0031 (16)0.0159 (14)0.0075 (17)
C100.0495 (17)0.0447 (17)0.0506 (17)0.0086 (14)0.0244 (14)0.0015 (14)
C110.063 (2)0.057 (2)0.0587 (19)0.0121 (17)0.0203 (16)0.0087 (17)
C120.0459 (17)0.0512 (19)0.0583 (18)0.0115 (14)0.0133 (14)0.0189 (15)
C130.075 (3)0.076 (3)0.064 (2)0.008 (2)0.001 (2)0.010 (2)
C140.091 (3)0.081 (3)0.067 (2)0.017 (3)0.014 (2)0.004 (2)
C150.078 (3)0.128 (4)0.076 (3)0.016 (3)0.040 (2)0.006 (3)
C160.0457 (16)0.0334 (15)0.0566 (17)0.0040 (13)0.0166 (13)0.0032 (13)
Geometric parameters (Å, º) top
Cu1—N61.951 (3)C2—H20.9300
Cu1—N32.083 (2)C3—C41.364 (5)
Cu1—S3i2.2536 (9)C3—H30.9300
Cu1—S12.5621 (9)C4—H40.9300
S1—C11.767 (3)C5—C61.505 (4)
S1—C51.794 (3)C5—H5A0.9700
S2—C121.756 (4)C5—H5B0.9700
S2—C111.804 (3)C6—C71.385 (4)
S3—C161.653 (3)C7—C81.369 (5)
S3—Cu1ii2.2536 (9)C7—H70.9300
N1—C11.331 (4)C8—C91.369 (5)
N1—C21.331 (4)C8—H80.9300
N2—C11.319 (4)C9—C101.372 (5)
N2—C41.341 (4)C9—H90.9300
N3—C61.341 (4)C10—C111.494 (5)
N3—C101.346 (4)C11—H11A0.9700
N4—C121.322 (4)C11—H11B0.9700
N4—C131.329 (5)C13—C141.351 (6)
N5—C121.331 (4)C13—H130.9300
N5—C151.337 (6)C14—C151.344 (7)
N6—C161.140 (4)C14—H140.9300
C2—C31.367 (5)C15—H150.9300
N6—Cu1—N3110.66 (11)H5A—C5—H5B107.4
N6—Cu1—S3i128.26 (9)N3—C6—C7121.8 (3)
N3—Cu1—S3i118.42 (7)N3—C6—C5118.0 (3)
N6—Cu1—S193.67 (9)C7—C6—C5120.1 (3)
N3—Cu1—S181.83 (7)C8—C7—C6119.6 (3)
S3i—Cu1—S1108.00 (4)C8—C7—H7120.2
C1—S1—C5102.84 (15)C6—C7—H7120.2
C1—S1—Cu1113.65 (10)C7—C8—C9118.6 (3)
C5—S1—Cu187.58 (10)C7—C8—H8120.7
C12—S2—C11101.37 (17)C9—C8—H8120.7
C16—S3—Cu1ii103.70 (10)C8—C9—C10119.9 (3)
C1—N1—C2115.3 (3)C8—C9—H9120.1
C1—N2—C4114.7 (3)C10—C9—H9120.1
C6—N3—C10118.2 (3)N3—C10—C9122.0 (3)
C6—N3—Cu1117.9 (2)N3—C10—C11116.6 (3)
C10—N3—Cu1123.8 (2)C9—C10—C11121.4 (3)
C12—N4—C13115.2 (3)C10—C11—S2114.6 (2)
C12—N5—C15114.5 (3)C10—C11—H11A108.6
C16—N6—Cu1172.1 (3)S2—C11—H11A108.6
N2—C1—N1127.7 (3)C10—C11—H11B108.6
N2—C1—S1119.7 (2)S2—C11—H11B108.6
N1—C1—S1112.6 (2)H11A—C11—H11B107.6
N1—C2—C3122.7 (3)N4—C12—N5127.0 (3)
N1—C2—H2118.7N4—C12—S2119.9 (2)
C3—C2—H2118.7N5—C12—S2113.2 (3)
C4—C3—C2116.6 (3)N4—C13—C14123.2 (4)
C4—C3—H3121.7N4—C13—H13118.4
C2—C3—H3121.7C14—C13—H13118.4
N2—C4—C3123.0 (3)C15—C14—C13116.7 (4)
N2—C4—H4118.5C15—C14—H14121.7
C3—C4—H4118.5C13—C14—H14121.7
C6—C5—S1115.8 (2)N5—C15—C14123.5 (4)
C6—C5—H5A108.3N5—C15—H15118.2
S1—C5—H5A108.3C14—C15—H15118.2
C6—C5—H5B108.3N6—C16—S3177.0 (3)
S1—C5—H5B108.3
N6—Cu1—S1—C1178.20 (14)C10—N3—C6—C5178.1 (2)
N3—Cu1—S1—C171.44 (13)Cu1—N3—C6—C52.2 (3)
S3i—Cu1—S1—C145.88 (12)S1—C5—C6—N335.0 (3)
N6—Cu1—S1—C578.83 (14)S1—C5—C6—C7147.2 (2)
N3—Cu1—S1—C531.53 (12)N3—C6—C7—C80.5 (4)
S3i—Cu1—S1—C5148.84 (11)C5—C6—C7—C8178.2 (3)
N6—Cu1—N3—C667.0 (2)C6—C7—C8—C90.5 (5)
S3i—Cu1—N3—C6129.96 (18)C7—C8—C9—C100.4 (5)
S1—Cu1—N3—C623.86 (18)C6—N3—C10—C90.2 (4)
N6—Cu1—N3—C10108.6 (2)Cu1—N3—C10—C9175.4 (2)
S3i—Cu1—N3—C1054.4 (2)C6—N3—C10—C11177.3 (2)
S1—Cu1—N3—C10160.5 (2)Cu1—N3—C10—C117.0 (3)
C4—N2—C1—N11.0 (5)C8—C9—C10—N30.3 (5)
C4—N2—C1—S1177.9 (2)C8—C9—C10—C11177.2 (3)
C2—N1—C1—N21.8 (5)N3—C10—C11—S261.7 (3)
C2—N1—C1—S1177.2 (3)C9—C10—C11—S2120.8 (3)
C5—S1—C1—N24.7 (3)C12—S2—C11—C1079.1 (3)
Cu1—S1—C1—N297.7 (2)C13—N4—C12—N50.5 (6)
C5—S1—C1—N1176.2 (2)C13—N4—C12—S2179.2 (3)
Cu1—S1—C1—N183.2 (2)C15—N5—C12—N40.3 (6)
C1—N1—C2—C31.2 (5)C15—N5—C12—S2179.1 (3)
N1—C2—C3—C40.2 (6)C11—S2—C12—N40.6 (3)
C1—N2—C4—C30.3 (5)C11—S2—C12—N5179.5 (3)
C2—C3—C4—N20.7 (5)C12—N4—C13—C140.3 (6)
C1—S1—C5—C671.3 (2)N4—C13—C14—C150.0 (7)
Cu1—S1—C5—C642.4 (2)C12—N5—C15—C140.1 (7)
C10—N3—C6—C70.3 (4)C13—C14—C15—N50.2 (8)
Cu1—N3—C6—C7175.6 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(NCS)(C15H13N5S2)]
Mr449.04
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.1706 (8), 8.6735 (6), 19.0956 (14)
β (°) 100.978 (1)
V3)1816.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.16 × 0.11 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.703, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10799, 4077, 3022
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.04
No. of reflections4077
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 0.51

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Shantou University and the Ministry of Higher Education of Malaysia (grant No. UM·C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPeng, R., Li, D., Wu, T., Zhou, X.-P. & Ng, S. W. (2006). Inorg. Chem. 45, 4035–4046.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds