metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m523-m524

catena-Poly[(di­aqua­strontium)-bis­­{μ-5-[4-(1H-imidazol-1-yl)phen­yl]tetra­zolido}]

aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, bSchool of Environment Science and Engineering, Donghua University, Shanghai 200051, People's Republic of China, and cCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@163.com

(Received 17 March 2012; accepted 27 March 2012; online 31 March 2012)

In the title complex polymer, [Sr(C10H7N6)2(H2O)2]n, the SrII atom lies on an inversion centre and is coordinated by four N atoms from two bidentate bridging trans-related 5-[4-(1H-imidazol-1-yl)phen­yl]tetra­zolide ligands [Sr—N = 2.387 (4) Å for the tetrazolide moiety and Sr—N = 2.273 (5) Å for the imidazole moiety], and by two O atoms from water mol­ecules [Sr—O = 2.464 (4) Å], giving a distorted octa­hedral coordination. Pairs of ligand bridges link the complex units, forming chains which extend along [111] and are inter-associated through Owater—H⋯N hydrogen bonds, giving a two-dimensional network structure parallel to (001). Weak ππ stacking inter­actions between the benzene and imidazole rings are also present [minimum ring centroid separation = 3.691 (4) Å].

Related literature

For our previous work on imidazole derivatives as ligands, see: Tong et al. (2011[Tong, S.-W., Li, S.-J., Song, W.-D., Miao, D.-L. & An, J.-B. (2011). Acta Cryst. E67, m1870-m1871.]); Li et al. (2010[Li, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010). Acta Cryst. E66, m1096-m1097.]). Wang et al. (2010[Wang, H., Li, X.-F., Song, W.-D., Ma, X.-T. & Liu, J.-H. (2010). Acta Cryst. E66, m151.]). For related structures, see: Huang et al. (2009[Huang, R. Y., Zhu, K., Chen, H., Liu, G. X. & Ren, X. M. (2009). Wuji Huaxue Xuebao, 25, 162-165.]); Cheng (2011[Cheng, X.-C. (2011). Acta Cryst. E67, m1757.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr(C10H7N6)2(H2O)2]

  • Mr = 546.08

  • Triclinic, [P \overline 1]

  • a = 7.6210 (6) Å

  • b = 8.0589 (7) Å

  • c = 9.1641 (9) Å

  • α = 102.783 (1)°

  • β = 97.544 (1)°

  • γ = 106.036 (2)°

  • V = 516.29 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.66 mm−1

  • T = 298 K

  • 0.37 × 0.30 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.439, Tmax = 0.605

  • 2616 measured reflections

  • 1789 independent reflections

  • 1756 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.118

  • S = 1.17

  • 1789 reflections

  • 161 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯N1i 0.85 2.07 2.915 (7) 171
O1—H1D⋯N2ii 0.85 2.10 2.948 (6) 171
Symmetry codes: (i) x, y+1, z+1; (ii) -x, -y-1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, our research group has shown great interest in the solid-state coordination chemistry of N-heterocyclic carboxylic acids, such as 2-propyl-1H-imidazole-4,5-dicarboxylic acid and 1H-benzimidazole-5,6-dicarboxylic acid. We have synthesized a number of metal complexes using the monoanionic 5-[(4-imidazol-1-yl)phenyl]tetrazolide ligand with a series of metals, e.g. Mn, Cd and Sr (Tong et al., 2011; Li et al., 2010; Wang et al., 2010). In this paper, we report the structure of a new strontium complex with this ligand, obtained under hydrothermal conditions, the title complex polymer, [Sr(C10H7N6)2(H2O)2]n. The centrosymmetric complex molecule (Fig. 1) comprises a SrII ion coordinated by four N atoms from the two bidentate bridging trans- related 5-[(4-imidazol-1-yl)phenyl]tetrazolido ligands (two tetrazole and two imidazole) and two O atoms from the water molecules, giving a distorted octahedral stereochemistry [Sr—N = 2.273 (4), 2.387 (5) Å and Sr—O = 2.464 (4) Å]. Duplex bridging ligand molecules link the complex molecules forming polymer chains which extend along [111] and are inter-associated through water O—H···N hydrogen bonds (Table 1) giving a two-dimensional network structure. Weak ππ stacking interactions are also present between the phenyl and the imidazole rings [minimum ring centroid separation, 3.691 (4) Å]. The structures of similar complexes are also known (Huang et al., 2009; Cheng, 2011).

Related literature top

For our previous work on imidazole derivatives as ligands, see: Tong et al. (2011); Li et al. (2010). Wang et al. (2010). For related structures, see: Huang et al. (2009); Cheng (2011).

Experimental top

A mixture of strontium chloride (0.1 mmol, 0.027 g) and 5-[4-imidazol-1-yl)phenyl]tetrazole (0.2 mmol, 0.043 g) in 12 ml of water was sealed in an autoclave equipped with a Teflon liner (25 ml) and then heated at 413 K for 3 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

H atoms of the water molecule were located in a difference-Fourier map and refined as riding with an O—H distance restraint of 0.85 Å, with Uiso(H) = 1.2 Ueq(O). The imidazolyl and phenyl H atoms were located in a difference-Fourier but were refined as riding with C—H = 0.93 Å also with Uiso(H) = 1.2Ueq(C).

Structure description top

Recently, our research group has shown great interest in the solid-state coordination chemistry of N-heterocyclic carboxylic acids, such as 2-propyl-1H-imidazole-4,5-dicarboxylic acid and 1H-benzimidazole-5,6-dicarboxylic acid. We have synthesized a number of metal complexes using the monoanionic 5-[(4-imidazol-1-yl)phenyl]tetrazolide ligand with a series of metals, e.g. Mn, Cd and Sr (Tong et al., 2011; Li et al., 2010; Wang et al., 2010). In this paper, we report the structure of a new strontium complex with this ligand, obtained under hydrothermal conditions, the title complex polymer, [Sr(C10H7N6)2(H2O)2]n. The centrosymmetric complex molecule (Fig. 1) comprises a SrII ion coordinated by four N atoms from the two bidentate bridging trans- related 5-[(4-imidazol-1-yl)phenyl]tetrazolido ligands (two tetrazole and two imidazole) and two O atoms from the water molecules, giving a distorted octahedral stereochemistry [Sr—N = 2.273 (4), 2.387 (5) Å and Sr—O = 2.464 (4) Å]. Duplex bridging ligand molecules link the complex molecules forming polymer chains which extend along [111] and are inter-associated through water O—H···N hydrogen bonds (Table 1) giving a two-dimensional network structure. Weak ππ stacking interactions are also present between the phenyl and the imidazole rings [minimum ring centroid separation, 3.691 (4) Å]. The structures of similar complexes are also known (Huang et al., 2009; Cheng, 2011).

For our previous work on imidazole derivatives as ligands, see: Tong et al. (2011); Li et al. (2010). Wang et al. (2010). For related structures, see: Huang et al. (2009); Cheng (2011).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for the title complex showing 30% probability ellipsoids. For symmetry codes: (i) x + 1, y + 1, z + 1; (ii) -x, -y, -z; (iii) -x + 1, -y + 1, -z + 1.
catena-Poly[(diaquastrontium)-bis{µ-5-[4-(1H-imidazol- 1-yl)phenyl]tetrazolido}] top
Crystal data top
[Sr(C10H7N6)2(H2O)2]Z = 1
Mr = 546.08F(000) = 276
Triclinic, P1Dx = 1.756 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6210 (6) ÅCell parameters from 2869 reflections
b = 8.0589 (7) Åθ = 2.8–28.3°
c = 9.1641 (9) ŵ = 2.66 mm1
α = 102.783 (1)°T = 298 K
β = 97.544 (1)°Block, colourless
γ = 106.036 (2)°0.37 × 0.30 × 0.21 mm
V = 516.29 (8) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1789 independent reflections
Radiation source: fine-focus sealed tube1756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
φ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.439, Tmax = 0.605k = 97
2616 measured reflectionsl = 109
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0473P)2 + 1.6581P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
1789 reflectionsΔρmax = 0.79 e Å3
161 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.260 (15)
Crystal data top
[Sr(C10H7N6)2(H2O)2]γ = 106.036 (2)°
Mr = 546.08V = 516.29 (8) Å3
Triclinic, P1Z = 1
a = 7.6210 (6) ÅMo Kα radiation
b = 8.0589 (7) ŵ = 2.66 mm1
c = 9.1641 (9) ÅT = 298 K
α = 102.783 (1)°0.37 × 0.30 × 0.21 mm
β = 97.544 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1789 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1756 reflections with I > 2σ(I)
Tmin = 0.439, Tmax = 0.605Rint = 0.013
2616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.17Δρmax = 0.79 e Å3
1789 reflectionsΔρmin = 0.43 e Å3
161 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.500000.500000.500000.0271 (2)
O10.3110 (6)0.2631 (5)0.5968 (5)0.0511 (12)
N10.0566 (7)0.7449 (6)0.3419 (5)0.0468 (16)
N20.2033 (7)0.8777 (6)0.4402 (6)0.0478 (16)
N30.3273 (6)0.8089 (6)0.4930 (6)0.0480 (16)
N40.2656 (6)0.6290 (6)0.4306 (5)0.0451 (14)
N50.3031 (6)0.1033 (6)0.0479 (5)0.0411 (12)
N60.4352 (6)0.3262 (6)0.2555 (5)0.0435 (14)
C10.0992 (7)0.5942 (7)0.3381 (6)0.0402 (17)
C20.0161 (7)0.4150 (7)0.2417 (6)0.0418 (17)
C30.1352 (8)0.3925 (8)0.1057 (7)0.0477 (17)
C40.2324 (8)0.2232 (7)0.0114 (7)0.0481 (17)
C50.2105 (7)0.0735 (7)0.0516 (6)0.0403 (17)
C60.0955 (8)0.0935 (7)0.1875 (6)0.0473 (17)
C70.0003 (8)0.2634 (7)0.2825 (6)0.0454 (17)
C80.3753 (8)0.1501 (7)0.1989 (6)0.0433 (17)
C90.4015 (8)0.3956 (7)0.1358 (6)0.0460 (17)
C100.3208 (8)0.2604 (7)0.0071 (6)0.0475 (17)
H1C0.209000.273100.619300.0610*
H1D0.292300.154100.550300.0610*
H30.149800.492700.077600.0580*
H40.312600.210000.079100.0570*
H60.082100.007100.215600.0570*
H70.076700.276000.374800.0540*
H80.382000.069000.255900.0520*
H90.429700.517100.141800.0550*
H100.284200.271600.090200.0570*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0303 (4)0.0239 (4)0.0238 (4)0.0093 (2)0.0006 (2)0.0018 (2)
O10.049 (2)0.043 (2)0.061 (2)0.0155 (17)0.0138 (19)0.0107 (18)
N10.046 (3)0.043 (2)0.050 (3)0.016 (2)0.007 (2)0.009 (2)
N20.049 (3)0.036 (2)0.054 (3)0.013 (2)0.007 (2)0.006 (2)
N30.044 (3)0.038 (2)0.057 (3)0.012 (2)0.004 (2)0.008 (2)
N40.044 (2)0.036 (2)0.049 (3)0.0105 (19)0.004 (2)0.0048 (19)
N50.045 (2)0.040 (2)0.037 (2)0.0126 (19)0.0065 (19)0.0099 (18)
N60.048 (3)0.039 (2)0.039 (2)0.012 (2)0.0053 (19)0.0061 (19)
C10.039 (3)0.041 (3)0.041 (3)0.015 (2)0.008 (2)0.009 (2)
C20.039 (3)0.044 (3)0.042 (3)0.014 (2)0.010 (2)0.009 (2)
C30.049 (3)0.042 (3)0.051 (3)0.018 (2)0.001 (3)0.011 (2)
C40.049 (3)0.046 (3)0.045 (3)0.017 (2)0.002 (2)0.008 (2)
C50.040 (3)0.042 (3)0.038 (3)0.012 (2)0.010 (2)0.009 (2)
C60.055 (3)0.039 (3)0.044 (3)0.010 (2)0.004 (2)0.013 (2)
C70.048 (3)0.044 (3)0.038 (3)0.009 (2)0.003 (2)0.009 (2)
C80.051 (3)0.039 (3)0.039 (3)0.015 (2)0.005 (2)0.010 (2)
C90.056 (3)0.039 (3)0.042 (3)0.013 (2)0.008 (2)0.013 (2)
C100.061 (3)0.041 (3)0.038 (3)0.013 (3)0.006 (2)0.012 (2)
Geometric parameters (Å, º) top
Sr1—O12.464 (4)N6—C91.363 (7)
Sr1—N62.273 (4)C1—C21.473 (8)
Sr1—N4i2.387 (5)C2—C71.387 (8)
Sr1—N4ii2.387 (5)C2—C31.386 (8)
Sr1—O1iii2.464 (4)C3—C41.382 (9)
Sr1—N6iii2.273 (4)C4—C51.382 (8)
O1—H1C0.8500C5—C61.375 (8)
O1—H1D0.8500C6—C71.385 (8)
N1—N21.362 (7)C9—C101.352 (8)
N1—C11.336 (8)C3—H30.9300
N2—N31.313 (7)C4—H40.9300
N3—N41.355 (7)C6—H60.9300
N4—C11.350 (7)C7—H70.9300
N5—C81.347 (7)C8—H80.9300
N5—C101.375 (7)C9—H90.9300
N5—C51.435 (7)C10—H100.9300
N6—C81.321 (7)
O1—Sr1—N694.69 (16)N1—C1—N4110.9 (5)
O1—Sr1—N4i81.30 (16)N4—C1—C2124.4 (5)
O1—Sr1—N4ii98.70 (16)N1—C1—C2124.7 (5)
O1—Sr1—O1iii180.00C3—C2—C7118.4 (5)
O1—Sr1—N6iii85.31 (16)C1—C2—C7119.8 (5)
N4i—Sr1—N690.56 (16)C1—C2—C3121.7 (5)
N4ii—Sr1—N689.44 (16)C2—C3—C4120.9 (6)
O1iii—Sr1—N685.31 (16)C3—C4—C5120.0 (6)
N6—Sr1—N6iii180.00N5—C5—C4121.0 (5)
N4i—Sr1—N4ii180.00N5—C5—C6119.2 (5)
O1iii—Sr1—N4i98.70 (16)C4—C5—C6119.8 (5)
N4i—Sr1—N6iii89.44 (16)C5—C6—C7120.0 (5)
O1iii—Sr1—N4ii81.30 (16)C2—C7—C6120.9 (5)
N4ii—Sr1—N6iii90.56 (16)N5—C8—N6111.2 (5)
O1iii—Sr1—N6iii94.69 (16)N6—C9—C10109.4 (5)
H1C—O1—H1D108.00N5—C10—C9106.7 (5)
Sr1—O1—H1D119.00C2—C3—H3120.00
Sr1—O1—H1C118.00C4—C3—H3120.00
N2—N1—C1105.0 (5)C3—C4—H4120.00
N1—N2—N3109.8 (5)C5—C4—H4120.00
N2—N3—N4108.9 (5)C5—C6—H6120.00
N3—N4—C1105.5 (5)C7—C6—H6120.00
Sr1iv—N4—N3110.5 (3)C2—C7—H7120.00
Sr1iv—N4—C1143.5 (4)C6—C7—H7120.00
C8—N5—C10106.5 (5)N5—C8—H8124.00
C5—N5—C8128.0 (5)N6—C8—H8124.00
C5—N5—C10125.3 (4)N6—C9—H9125.00
Sr1—N6—C8131.1 (4)C10—C9—H9125.00
Sr1—N6—C9120.4 (4)N5—C10—H10127.00
C8—N6—C9106.2 (4)C9—C10—H10127.00
O1—Sr1—N6—C820.5 (5)C10—N5—C8—N60.7 (7)
O1—Sr1—N6—C9139.5 (4)C5—N5—C10—C9174.7 (5)
N4i—Sr1—N6—C860.8 (5)C8—N5—C10—C90.6 (7)
N4i—Sr1—N6—C9139.2 (4)Sr1—N6—C8—N5161.7 (4)
N4ii—Sr1—N6—C8119.2 (5)C9—N6—C8—N50.5 (7)
N4ii—Sr1—N6—C940.8 (4)Sr1—N6—C9—C10164.3 (4)
O1iii—Sr1—N6—C8159.5 (5)C8—N6—C9—C100.1 (7)
O1iii—Sr1—N6—C940.5 (4)N1—C1—C2—C326.5 (9)
C1—N1—N2—N30.3 (6)N1—C1—C2—C7156.8 (6)
N2—N1—C1—N40.3 (6)N4—C1—C2—C3151.0 (6)
N2—N1—C1—C2177.6 (5)N4—C1—C2—C725.6 (8)
N1—N2—N3—N40.1 (6)C1—C2—C3—C4175.4 (6)
N2—N3—N4—C10.1 (6)C7—C2—C3—C41.3 (9)
N2—N3—N4—Sr1iv173.6 (4)C1—C2—C7—C6174.8 (5)
N3—N4—C1—N10.2 (6)C3—C2—C7—C62.0 (9)
N3—N4—C1—C2177.6 (5)C2—C3—C4—C50.5 (9)
Sr1iv—N4—C1—N1170.0 (4)C3—C4—C5—N5177.0 (5)
Sr1iv—N4—C1—C27.8 (10)C3—C4—C5—C61.7 (9)
C8—N5—C5—C419.4 (9)N5—C5—C6—C7177.7 (5)
C8—N5—C5—C6159.3 (6)C4—C5—C6—C71.0 (9)
C10—N5—C5—C4166.4 (6)C5—C6—C7—C20.8 (9)
C10—N5—C5—C614.9 (8)N6—C9—C10—N50.3 (7)
C5—N5—C8—N6174.4 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z; (iii) x+1, y+1, z+1; (iv) x1, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···N1v0.852.072.915 (7)171
O1—H1D···N2vi0.852.102.948 (6)171
Symmetry codes: (v) x, y+1, z+1; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formula[Sr(C10H7N6)2(H2O)2]
Mr546.08
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.6210 (6), 8.0589 (7), 9.1641 (9)
α, β, γ (°)102.783 (1), 97.544 (1), 106.036 (2)
V3)516.29 (8)
Z1
Radiation typeMo Kα
µ (mm1)2.66
Crystal size (mm)0.37 × 0.30 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.439, 0.605
No. of measured, independent and
observed [I > 2σ(I)] reflections
2616, 1789, 1756
Rint0.013
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.118, 1.17
No. of reflections1789
No. of parameters161
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.43

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···N1i0.852.072.915 (7)171
O1—H1D···N2ii0.852.102.948 (6)171
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z.
 

Acknowledgements

We acknowledge the Public Science and Technology Research Funds Projects of Ocean (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003-018(c)], the Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121) and the Guangdong Province Key Project in the Field of Social Development [grant No. A2009011-007(c)].

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, X.-C. (2011). Acta Cryst. E67, m1757.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, R. Y., Zhu, K., Chen, H., Liu, G. X. & Ren, X. M. (2009). Wuji Huaxue Xuebao, 25, 162–165.  CAS Google Scholar
First citationLi, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010). Acta Cryst. E66, m1096–m1097.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, S.-W., Li, S.-J., Song, W.-D., Miao, D.-L. & An, J.-B. (2011). Acta Cryst. E67, m1870–m1871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, H., Li, X.-F., Song, W.-D., Ma, X.-T. & Liu, J.-H. (2010). Acta Cryst. E66, m151.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m523-m524
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds