organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-(2-Hy­dr­oxy­propan-2-yl)-1H-1,2,3-triazol-1-yl]phenol

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: chdsguo@sdnu.edu.cn

(Received 17 March 2012; accepted 24 March 2012; online 31 March 2012)

In the title compound, C11H13N3O2, the 1,2,3-triazole ring and the phenol ring form a dihedral angle of 55.46 (5)°. In the crystal, inversion-related mol­ecules associate through pairs of hy­droxy–phenol O—H⋯O hydrogen bonds, giving centrosymmetric cyclic dimers [graph set R22(18)]. These dimers are linked into infinite chains along [001], giving an overall two-dimensional network structure parallel to the bc plane through hy­droxy O—H⋯N and triazole C—H⋯N hydrogen bonds.

Related literature

For general background to 1,2,3-triazole derivatives, see: Shia et al. (2002[Shia, K. S., Li, W. T., Chang, C. M., Hsu, M. C., Chern, J. H., Leong, M. K., Tseng, S. N., Lee, C. C., Lee, Y. C., Chen, S. J., Peng, K. C., Tseng, H. Y., Chang, Y. L., Tai, C. L. & Shih, S. R. (2002). J. Med. Chem. 45, 1644-1655.]); Orgueira et al. (2005[Orgueira, H. A., Fokas, D., Isome, Y., Chan, P. C.-M. & Baldino, C. M. (2005). Tetrahedron Lett. 46, 2911-2914.]); Crowley & Bandeen (2010[Crowley, J. D. & Bandeen, P. H. (2010). Dalton Trans. pp. 612-623.]). For related structures, see: Zou et al. (2006[Zou, W.-Q., Li, Y., Zheng, F.-K., Guo, G.-C. & Huang, J.-S. (2006). Acta Cryst. E62, o3591-o3593.]); Danielraj et al. (2010[Danielraj, P., Varghese, B. & Sankararaman, S. (2010). Acta Cryst. C66, m366-m370.]); Stöger et al. (2011[Stöger, B., Lumpi, D. & Fröhlich, J. (2011). Acta Cryst. C67, o464-o468.]). For bond-length data, see: Banerjee et al. (2002[Banerjee, S., Mukherjee, A. K., Goswami, D., De, A. U. & Helliwell, M. (2002). Cryst. Res. Technol. 37, 309-317.]); Janas & Sobota (2005[Janas, Z. & Sobota, P. (2005). Coord. Chem. Rev. 249, 2144-2155.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13N3O2

  • Mr = 219.24

  • Monoclinic, P 21 /c

  • a = 11.599 (2) Å

  • b = 9.0747 (18) Å

  • c = 10.743 (2) Å

  • β = 107.081 (3)°

  • V = 1080.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.983

  • 5462 measured reflections

  • 1994 independent reflections

  • 1696 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.109

  • S = 1.05

  • 1994 reflections

  • 149 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.89 2.7090 (15) 173
O1—H1⋯N3ii 0.82 2.05 2.8665 (16) 171
C7—H7⋯N2ii 0.93 2.40 3.2738 (19) 157
Symmetry codes: (i) -x+1, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2,3-Triazole derivatives have received much attention owing to their wide applications in drug discovery, materials and supramolecular chemistry (Shia et al., 2002; Orgueira et al., 2005; Crowley & Bandeen 2010). Numerous crystal structures of triazole derivatives have been described (Danielraj et al., 2010; Stöger et al., 2011). We report here the structure of a new triazole compound, 2-[4-(2-hydroxypropan-2-yl)-1H-1,2,3-triazol-1-yl]phenol, C11H13N3O2.

The title compound, shown in Fig. 1, contains a 1,2,3-triazole ring and a phenol ring which are non-coplanar with a dihedral angle of 55.46 (5)°, larger than that reported previously for a similar structure [14.34 (17)°] (Zou et al., 2006). This difference may be ascribed to the steric repulsion between the heterocyclic N atom, N2, and the phenolic hydroxyl oxygen atom, O2. The bond lengths of C7—N1, C8—N3 and N1—N2 are shorter than the normal C—N single bond length (1.483 Å) (Banerjee et al., 2002) and N—N single bond length (1.467 Å) (Janas & Sobota, 2005), showing an obvious electron delocalization in the triazole ring.

The packing of the title compound is stabilized by intermolecular O—H···O, O—H···N and C—H···N hydrogen bonds (Table 1). Two inversion- related molecules form a centrosymmetric dimer through intermolecular hydroxyl O2—H···O1i hydrogen bonds, locally creating an R22(18) motif (Bernstein et al., 1995) (Fig. 2). These dimers are linked into chains which give an overall two-dimensional network structure through intermolecular hydroxyl O1—H···N3ii and triazole C7—H7···N2ii hydrogen-bonding interactions, which include a cyclic R22(8) motif (Fig. 3). For symmetry codes (i) and (ii), see Table 1.

Related literature top

For general background to 1,2,3-triazole derivatives, see: Shia et al. (2002); Orgueira et al. (2005); Crowley & Bandeen (2010). For related structures, see: Zou et al. (2006); Danielraj et al. (2010); Stöger et al. (2011). For bond-length data, see: Banerjee et al. (2002); Janas & Sobota (2005). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

2-Methylbut-3-yn-2-ol (0.093 g, 1.1 mmol) was added to a suspension of 2-azidophenol (0.135 g, 1.0 mmol), CuI (0.019 g, 0.10 mmol), Et3N (0.5 ml) and ascorbic acid (0.018 g, 0.10 mmol) in CH3CN (2.0 ml) and continuously stirred at 298 K for 0.5 h. The resulting mixture was extracted with CH2Cl2 and the organic layer was washed with brine, then dried over anhydrous MgSO4. After removal of the solvent under reduced pressure, the crude product was purified by recrystallization from CH2Cl2/pentane to afford the title compound as a pale yellow solid (95% yield). Single crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow diffusion of pentane into a solution of the title compound in CH2Cl2 at 298 K.

Refinement top

All H atoms were placed in geometrically idealized positions and refined using a riding model with C—H = 0.93 Å and Uiso(H)= 1.2Ueq(C) (aromatic); C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) (methyl); O—H= 0.82 Å and Uiso(H)= 1.5Ueq(O) (hydroxyl).

Structure description top

1,2,3-Triazole derivatives have received much attention owing to their wide applications in drug discovery, materials and supramolecular chemistry (Shia et al., 2002; Orgueira et al., 2005; Crowley & Bandeen 2010). Numerous crystal structures of triazole derivatives have been described (Danielraj et al., 2010; Stöger et al., 2011). We report here the structure of a new triazole compound, 2-[4-(2-hydroxypropan-2-yl)-1H-1,2,3-triazol-1-yl]phenol, C11H13N3O2.

The title compound, shown in Fig. 1, contains a 1,2,3-triazole ring and a phenol ring which are non-coplanar with a dihedral angle of 55.46 (5)°, larger than that reported previously for a similar structure [14.34 (17)°] (Zou et al., 2006). This difference may be ascribed to the steric repulsion between the heterocyclic N atom, N2, and the phenolic hydroxyl oxygen atom, O2. The bond lengths of C7—N1, C8—N3 and N1—N2 are shorter than the normal C—N single bond length (1.483 Å) (Banerjee et al., 2002) and N—N single bond length (1.467 Å) (Janas & Sobota, 2005), showing an obvious electron delocalization in the triazole ring.

The packing of the title compound is stabilized by intermolecular O—H···O, O—H···N and C—H···N hydrogen bonds (Table 1). Two inversion- related molecules form a centrosymmetric dimer through intermolecular hydroxyl O2—H···O1i hydrogen bonds, locally creating an R22(18) motif (Bernstein et al., 1995) (Fig. 2). These dimers are linked into chains which give an overall two-dimensional network structure through intermolecular hydroxyl O1—H···N3ii and triazole C7—H7···N2ii hydrogen-bonding interactions, which include a cyclic R22(8) motif (Fig. 3). For symmetry codes (i) and (ii), see Table 1.

For general background to 1,2,3-triazole derivatives, see: Shia et al. (2002); Orgueira et al. (2005); Crowley & Bandeen (2010). For related structures, see: Zou et al. (2006); Danielraj et al. (2010); Stöger et al. (2011). For bond-length data, see: Banerjee et al. (2002); Janas & Sobota (2005). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the the 30% probability level.
[Figure 2] Fig. 2. A centrosymmetric dimer of the title compound formed by intermolecular O—H···O hydrogen bonds, showing the R22(18) motif. For the sake of clarity, H atoms not involved in the motif have been omitted. For symmetry code (i), see Table 1.
[Figure 3] Fig. 3. A hydrogen-bonded chain of the title compound, showing the R22(18) and R22(8) motifs. For the sake of clarity, H atoms not involved in the motifs have been omitted. For symmetry code (iii), -x + 1, y - 1/2, -z - 1/2. For symmetry code (ii), see Table 1.
2-[4-(2-Hydroxypropan-2-yl)-1H-1,2,3-triazol-1-yl]phenol top
Crystal data top
C11H13N3O2F(000) = 464
Mr = 219.24Dx = 1.347 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2071 reflections
a = 11.599 (2) Åθ = 2.9–23.0°
b = 9.0747 (18) ŵ = 0.10 mm1
c = 10.743 (2) ÅT = 298 K
β = 107.081 (3)°Block, pale yellow
V = 1080.9 (3) Å30.40 × 0.30 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1994 independent reflections
Radiation source: fine-focus sealed tube1696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1412
Tmin = 0.963, Tmax = 0.983k = 1010
5462 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.1715P]
where P = (Fo2 + 2Fc2)/3
1994 reflections(Δ/σ)max < 0.001
149 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C11H13N3O2V = 1080.9 (3) Å3
Mr = 219.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.599 (2) ŵ = 0.10 mm1
b = 9.0747 (18) ÅT = 298 K
c = 10.743 (2) Å0.40 × 0.30 × 0.18 mm
β = 107.081 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1994 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1696 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.983Rint = 0.025
5462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
1994 reflectionsΔρmin = 0.24 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.57130 (10)0.27595 (13)0.05416 (11)0.0285 (3)
N20.50492 (12)0.30872 (16)0.06770 (11)0.0374 (3)
N30.39371 (11)0.32767 (15)0.06404 (11)0.0352 (3)
O10.26044 (9)0.18448 (11)0.16529 (9)0.0321 (3)
H10.29760.19140.24280.048*
O20.65112 (10)0.05481 (13)0.07335 (11)0.0447 (3)
H20.68320.01440.09930.067*
C10.93917 (15)0.1799 (2)0.14569 (17)0.0443 (4)
H1A1.02100.15840.16630.053*
C20.90012 (16)0.2893 (2)0.21198 (17)0.0478 (5)
H2A0.95520.34090.27800.057*
C30.77857 (14)0.32227 (18)0.18018 (15)0.0391 (4)
H30.75170.39710.22390.047*
C40.69727 (13)0.24373 (16)0.08337 (13)0.0293 (3)
C50.73520 (13)0.13098 (17)0.01699 (14)0.0314 (4)
C60.85794 (14)0.10189 (19)0.04891 (15)0.0389 (4)
H60.88570.02870.00430.047*
C70.50258 (13)0.27627 (17)0.13542 (13)0.0312 (4)
H70.52730.25810.22450.037*
C80.38921 (13)0.30876 (15)0.05978 (13)0.0276 (3)
C90.27444 (13)0.32016 (16)0.09872 (14)0.0312 (4)
C100.28121 (17)0.44984 (19)0.18952 (18)0.0495 (5)
H10A0.20950.45300.21670.074*
H10B0.28810.53960.14490.074*
H10C0.35030.43910.26450.074*
C110.16508 (15)0.3294 (2)0.01930 (17)0.0495 (5)
H11A0.16180.24380.07270.074*
H11B0.17040.41620.06840.074*
H11C0.09350.33410.00820.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0282 (6)0.0342 (7)0.0230 (6)0.0021 (5)0.0074 (5)0.0005 (5)
N20.0356 (7)0.0538 (9)0.0229 (6)0.0069 (6)0.0088 (5)0.0035 (6)
N30.0327 (7)0.0475 (8)0.0254 (6)0.0055 (6)0.0083 (5)0.0012 (6)
O10.0347 (6)0.0357 (6)0.0252 (5)0.0038 (4)0.0077 (4)0.0015 (4)
O20.0401 (7)0.0444 (7)0.0469 (7)0.0023 (5)0.0084 (5)0.0152 (5)
C10.0284 (8)0.0522 (11)0.0519 (10)0.0023 (7)0.0114 (8)0.0061 (8)
C20.0364 (10)0.0517 (11)0.0479 (10)0.0050 (8)0.0010 (8)0.0062 (8)
C30.0380 (9)0.0414 (9)0.0358 (9)0.0011 (7)0.0079 (7)0.0057 (7)
C40.0293 (8)0.0325 (8)0.0276 (7)0.0014 (6)0.0106 (6)0.0045 (6)
C50.0317 (8)0.0341 (8)0.0291 (8)0.0019 (6)0.0100 (6)0.0018 (6)
C60.0376 (9)0.0413 (9)0.0422 (9)0.0056 (7)0.0187 (7)0.0014 (7)
C70.0326 (8)0.0404 (9)0.0218 (7)0.0003 (6)0.0098 (6)0.0011 (6)
C80.0324 (8)0.0276 (8)0.0224 (7)0.0006 (6)0.0077 (6)0.0024 (6)
C90.0309 (8)0.0322 (8)0.0319 (8)0.0018 (6)0.0113 (6)0.0025 (6)
C100.0594 (12)0.0372 (10)0.0632 (12)0.0013 (8)0.0355 (10)0.0056 (8)
C110.0327 (9)0.0685 (13)0.0466 (10)0.0057 (8)0.0107 (8)0.0180 (9)
Geometric parameters (Å, º) top
N1—N21.3428 (16)C3—H30.9300
N1—C71.3441 (18)C4—C51.390 (2)
N1—C41.4316 (19)C5—C61.388 (2)
N2—N31.3134 (18)C6—H60.9300
N3—C81.3575 (18)C7—C81.360 (2)
O1—C91.4568 (18)C7—H70.9300
O1—H10.8200C8—C91.512 (2)
O2—C51.3472 (18)C9—C111.510 (2)
O2—H20.8200C9—C101.516 (2)
C1—C21.374 (3)C10—H10A0.9600
C1—C61.376 (2)C10—H10B0.9600
C1—H1A0.9300C10—H10C0.9600
C2—C31.383 (2)C11—H11A0.9600
C2—H2A0.9300C11—H11B0.9600
C3—C41.379 (2)C11—H11C0.9600
N2—N1—C7110.68 (12)N1—C7—C8105.44 (12)
N2—N1—C4121.00 (11)N1—C7—H7127.3
C7—N1—C4128.31 (12)C8—C7—H7127.3
N3—N2—N1106.67 (11)N3—C8—C7107.72 (13)
N2—N3—C8109.48 (12)N3—C8—C9123.57 (13)
C9—O1—H1109.5C7—C8—C9128.70 (13)
C5—O2—H2109.5O1—C9—C11105.78 (12)
C2—C1—C6120.43 (15)O1—C9—C8108.19 (11)
C2—C1—H1A119.8C11—C9—C8111.25 (12)
C6—C1—H1A119.8O1—C9—C10109.42 (12)
C1—C2—C3119.74 (16)C11—C9—C10111.68 (14)
C1—C2—H2A120.1C8—C9—C10110.36 (13)
C3—C2—H2A120.1C9—C10—H10A109.5
C4—C3—C2119.74 (15)C9—C10—H10B109.5
C4—C3—H3120.1H10A—C10—H10B109.5
C2—C3—H3120.1C9—C10—H10C109.5
C3—C4—C5121.17 (14)H10A—C10—H10C109.5
C3—C4—N1119.17 (13)H10B—C10—H10C109.5
C5—C4—N1119.62 (13)C9—C11—H11A109.5
O2—C5—C6123.59 (14)C9—C11—H11B109.5
O2—C5—C4118.42 (13)H11A—C11—H11B109.5
C6—C5—C4117.99 (14)C9—C11—H11C109.5
C1—C6—C5120.90 (15)H11A—C11—H11C109.5
C1—C6—H6119.5H11B—C11—H11C109.5
C5—C6—H6119.5
C7—N1—N2—N30.92 (17)C2—C1—C6—C50.6 (3)
C4—N1—N2—N3177.94 (12)O2—C5—C6—C1177.47 (15)
N1—N2—N3—C80.68 (16)C4—C5—C6—C11.6 (2)
C6—C1—C2—C30.7 (3)N2—N1—C7—C80.77 (16)
C1—C2—C3—C40.9 (3)C4—N1—C7—C8177.98 (14)
C2—C3—C4—C50.2 (2)N2—N3—C8—C70.22 (17)
C2—C3—C4—N1178.08 (14)N2—N3—C8—C9178.97 (13)
N2—N1—C4—C3125.90 (15)N1—C7—C8—N30.34 (16)
C7—N1—C4—C355.5 (2)N1—C7—C8—C9178.33 (14)
N2—N1—C4—C556.22 (19)N3—C8—C9—O1125.29 (14)
C7—N1—C4—C5122.42 (16)C7—C8—C9—O153.19 (19)
C3—C4—C5—O2177.68 (14)N3—C8—C9—C119.5 (2)
N1—C4—C5—O20.2 (2)C7—C8—C9—C11168.97 (16)
C3—C4—C5—C61.5 (2)N3—C8—C9—C10115.03 (16)
N1—C4—C5—C6179.33 (13)C7—C8—C9—C1066.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.892.7090 (15)173
O1—H1···N3ii0.822.052.8665 (16)171
C7—H7···N2ii0.932.403.2738 (19)157
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H13N3O2
Mr219.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.599 (2), 9.0747 (18), 10.743 (2)
β (°) 107.081 (3)
V3)1080.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.30 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.963, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
5462, 1994, 1696
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.05
No. of reflections1994
No. of parameters149
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.24

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.892.7090 (15)173.4
O1—H1···N3ii0.822.052.8665 (16)170.7
C7—H7···N2ii0.932.403.2738 (19)156.5
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant No. 20572064) and the Natural Science Foundation of Shandong Province (grant No. ZR2010BM022) is gratefully acknowledged.

References

First citationBanerjee, S., Mukherjee, A. K., Goswami, D., De, A. U. & Helliwell, M. (2002). Cryst. Res. Technol. 37, 309–317.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrowley, J. D. & Bandeen, P. H. (2010). Dalton Trans. pp. 612–623.  Web of Science CSD CrossRef PubMed Google Scholar
First citationDanielraj, P., Varghese, B. & Sankararaman, S. (2010). Acta Cryst. C66, m366–m370.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJanas, Z. & Sobota, P. (2005). Coord. Chem. Rev. 249, 2144–2155.  Web of Science CrossRef CAS Google Scholar
First citationOrgueira, H. A., Fokas, D., Isome, Y., Chan, P. C.-M. & Baldino, C. M. (2005). Tetrahedron Lett. 46, 2911–2914.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShia, K. S., Li, W. T., Chang, C. M., Hsu, M. C., Chern, J. H., Leong, M. K., Tseng, S. N., Lee, C. C., Lee, Y. C., Chen, S. J., Peng, K. C., Tseng, H. Y., Chang, Y. L., Tai, C. L. & Shih, S. R. (2002). J. Med. Chem. 45, 1644–1655.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStöger, B., Lumpi, D. & Fröhlich, J. (2011). Acta Cryst. C67, o464–o468.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZou, W.-Q., Li, Y., Zheng, F.-K., Guo, G.-C. & Huang, J.-S. (2006). Acta Cryst. E62, o3591–o3593.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds