organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1443

2,3-Bis(thio­phen-2-yl)pyrazine­[2,3-f][1,10]phenanthroline

aSchool of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China, and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, People's Republic of China
*Correspondence e-mail: cgzheng@jiangnan.edu.cn

(Received 2 February 2012; accepted 6 April 2012; online 21 April 2012)

The mol­ecule of the title compound, C22H12N4S2, shows no crystallographic symmetry. The thiophene rings form different dihedral angles [40.15 (9) and 15.43 (10)°] with the pyrazine ring. A strong ππ stacking inter­action occurs between adjacent pyrazine­[2,3-f][1,10]phenanthroline units with an inter­planar distance of 3.4352 (16) Å.

Related literature

For the structure of 2,3-dithienyl­pyrazine­[2,3-f]-1,10-phenanthroline, see: Chen & Li (2004[Chen, J. P. & Li, X. C. C. (2004). US Patent 6713781 B1.]). For the properties of 2,3-dithienyl­pyrazine­[2,3-f]-1,10-phenanthroline, see: Armaroli et al. (1992[Armaroli, N., Cola, L. D., Balzani, V., Sauvage, J. P., Buchecker, C. O. D. & Kern, J. M. (1992). J. Chem. Soc. Faraday Trans. 88, 553-556.]); Aragoni et al. (2002[Aragoni, M. C., Arca, M., Demartin, F., Devillanova, F. A., Isaia, F., Garau, A., Lippolis, V., Jalali, F., Papke, U., Shamsipur, M., Tei, L., Yari, A. & Verani, G. (2002). Inorg. Chem. 41, 6623-6632.]); Bencini et al. (1999[Bencini, A., Bernardo, M. A., Bianchi, A., Fusi, V., Giorgi, C., Pina, F. & Valtancoli, B. (1999). Eur. J. Inorg. Chem. pp. 1911-1918.]).

[Scheme 1]

Experimental

Crystal data
  • C22H12N4S2

  • Mr = 396.48

  • Monoclinic, C 2/c

  • a = 27.016 (5) Å

  • b = 10.267 (2) Å

  • c = 13.835 (3) Å

  • β = 117.04 (3)°

  • V = 3418.1 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.763, Tmax = 1.000

  • 9577 measured reflections

  • 3867 independent reflections

  • 3057 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.130

  • S = 1.14

  • 3867 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,3-Dithienylpyrazine[2,3-f]-1,10-phenanthroline as a ligand is widely used as analytical probes, such as proton, ion sensors and organic light-emitting devices (Armaroli et al., 1992; Aragoni et al., 2002; Bencini et al., 1999; Chen & Li, 2004), due to its rigid structure and fluorescence property.

The molecule of the title compound, C22H12N4S2, is chemically symmetric but it shows no crystallographic symmetry. The dihedral angles between thiophene rings and pyrazine ring are 40.15 (9)° and 15.43 (10)°, respectively. The strong π-π stacking occurs in the crystal structure between parallel pyrazine[2,3-f]-1,10-phenanthroline molecules, the interplanar distance is 3.4352 (16) Å.

Related literature top

For the structure of 2,3-dithienylpyrazine[2,3-f]-1,10-phenanthroline, see: Chen & Li (2004). For the properties of 2,3-dithienylpyrazine[2,3-f]-1,10-phenanthroline, see: Armaroli et al. (1992); Aragoni et al. (2002); Bencini et al. (1999).

Experimental top

The title compound was synthesized by using 1,10-phenanthroline as the starting material according to the published route (Chen & Li, 2004). The single crystals were obtained by recrystallization from the mixture of methanol and methylene chloride at room temperature.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distance of 0.93 Å, and with Uiso(H)=1.2Uiso(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
2,3-Bis(thiophen-2-yl)pyrazine[2,3-f][1,10]phenanthroline top
Crystal data top
C22H12N4S2F(000) = 1632
Mr = 396.48Dx = 1.541 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7427 reflections
a = 27.016 (5) Åθ = 3.0–27.5°
b = 10.267 (2) ŵ = 0.33 mm1
c = 13.835 (3) ÅT = 293 K
β = 117.04 (3)°Block, yellow
V = 3418.1 (15) Å30.30 × 0.30 × 0.10 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3867 independent reflections
Radiation source: fine-focus sealed tube3057 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.1°
phi and ω scansh = 3434
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1311
Tmin = 0.763, Tmax = 1.000l = 1715
9577 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0537P)2 + 1.3889P]
where P = (Fo2 + 2Fc2)/3
3867 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C22H12N4S2V = 3418.1 (15) Å3
Mr = 396.48Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.016 (5) ŵ = 0.33 mm1
b = 10.267 (2) ÅT = 293 K
c = 13.835 (3) Å0.30 × 0.30 × 0.10 mm
β = 117.04 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3867 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3057 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 1.000Rint = 0.039
9577 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.14Δρmax = 0.41 e Å3
3867 reflectionsΔρmin = 0.45 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20867 (3)0.16082 (6)0.37184 (6)0.0384 (2)
S20.10144 (3)0.41137 (6)0.25638 (6)0.0385 (2)
C130.00055 (10)0.1677 (2)0.12409 (19)0.0261 (5)
C160.04190 (9)0.0932 (2)0.07706 (18)0.0253 (5)
N40.09519 (9)0.2440 (2)0.02141 (17)0.0345 (5)
C110.03747 (9)0.0587 (2)0.16463 (18)0.0245 (5)
C120.01743 (9)0.0683 (2)0.14262 (18)0.0245 (5)
N10.09256 (8)0.08207 (19)0.21974 (15)0.0259 (4)
C90.10654 (9)0.1492 (2)0.24045 (18)0.0243 (5)
N20.05183 (8)0.17051 (19)0.18208 (15)0.0260 (4)
N30.13437 (8)0.0055 (2)0.02387 (16)0.0318 (5)
C150.07901 (9)0.0118 (2)0.03844 (18)0.0264 (5)
C140.05811 (10)0.1460 (2)0.06220 (18)0.0274 (5)
C100.12755 (9)0.0183 (2)0.25369 (18)0.0244 (5)
C180.11870 (11)0.2366 (3)0.0142 (2)0.0362 (6)
H180.13370.31960.03430.043*
C190.15243 (10)0.1264 (3)0.0490 (2)0.0363 (6)
H190.19020.13890.09290.044*
C20.18659 (10)0.0169 (2)0.30092 (19)0.0267 (5)
C60.13841 (10)0.2672 (2)0.28959 (18)0.0260 (5)
C10.22833 (10)0.0375 (3)0.28392 (19)0.0307 (6)
H10.22460.11510.24650.037*
C50.19175 (10)0.2883 (3)0.36968 (19)0.0312 (6)
H50.21830.22290.39930.037*
C30.27773 (10)0.0370 (3)0.3294 (2)0.0358 (6)
H30.30990.01350.32510.043*
C210.01907 (11)0.3958 (3)0.0982 (2)0.0426 (7)
H210.00730.48210.10760.051*
C80.15717 (11)0.4972 (3)0.3474 (2)0.0394 (7)
H80.15680.58660.35810.047*
C200.07546 (11)0.3638 (3)0.0395 (2)0.0390 (7)
H200.10070.43190.01130.047*
C170.06273 (10)0.2195 (3)0.0506 (2)0.0332 (6)
H170.03910.29090.07640.040*
C40.27329 (10)0.1460 (3)0.3795 (2)0.0381 (7)
H40.30190.20560.41400.046*
C220.01805 (11)0.2963 (2)0.1410 (2)0.0340 (6)
H220.05570.31430.18150.041*
C70.20172 (10)0.4207 (3)0.4020 (2)0.0344 (6)
H70.23550.45140.45530.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0269 (3)0.0271 (3)0.0511 (4)0.0011 (3)0.0089 (3)0.0050 (3)
S20.0289 (4)0.0258 (3)0.0491 (4)0.0013 (3)0.0075 (3)0.0031 (3)
C130.0225 (12)0.0267 (13)0.0261 (12)0.0035 (10)0.0085 (10)0.0005 (10)
C160.0202 (11)0.0317 (13)0.0231 (11)0.0009 (10)0.0089 (9)0.0029 (10)
N40.0266 (11)0.0325 (12)0.0386 (12)0.0080 (9)0.0096 (10)0.0036 (10)
C110.0197 (11)0.0297 (13)0.0236 (12)0.0034 (10)0.0093 (9)0.0021 (10)
C120.0225 (12)0.0267 (12)0.0242 (11)0.0015 (10)0.0105 (9)0.0012 (10)
N10.0210 (10)0.0258 (10)0.0271 (10)0.0020 (8)0.0077 (8)0.0001 (9)
C90.0223 (12)0.0258 (12)0.0238 (11)0.0011 (9)0.0096 (9)0.0005 (10)
N20.0212 (10)0.0274 (11)0.0262 (10)0.0008 (8)0.0079 (8)0.0010 (9)
N30.0218 (10)0.0381 (12)0.0305 (11)0.0004 (9)0.0074 (9)0.0013 (10)
C150.0211 (12)0.0328 (13)0.0243 (12)0.0022 (10)0.0092 (10)0.0044 (10)
C140.0230 (12)0.0335 (13)0.0251 (12)0.0046 (10)0.0106 (10)0.0016 (11)
C100.0210 (12)0.0264 (12)0.0233 (12)0.0029 (10)0.0077 (9)0.0020 (10)
C180.0293 (14)0.0332 (14)0.0412 (15)0.0082 (11)0.0117 (12)0.0007 (12)
C190.0182 (12)0.0503 (17)0.0353 (14)0.0029 (12)0.0077 (10)0.0054 (13)
C20.0237 (12)0.0233 (12)0.0279 (12)0.0011 (9)0.0071 (10)0.0027 (10)
C60.0221 (12)0.0245 (12)0.0284 (12)0.0001 (9)0.0089 (10)0.0002 (10)
C10.0243 (12)0.0342 (14)0.0315 (13)0.0010 (11)0.0108 (10)0.0010 (11)
C50.0257 (13)0.0311 (14)0.0311 (13)0.0022 (10)0.0080 (10)0.0045 (11)
C30.0226 (13)0.0481 (17)0.0348 (14)0.0024 (12)0.0113 (11)0.0099 (13)
C210.0339 (15)0.0288 (14)0.0552 (18)0.0039 (11)0.0117 (13)0.0015 (13)
C80.0373 (15)0.0282 (14)0.0492 (17)0.0078 (12)0.0167 (13)0.0104 (13)
C200.0330 (14)0.0303 (14)0.0443 (16)0.0113 (12)0.0094 (12)0.0040 (12)
C170.0268 (13)0.0314 (14)0.0368 (14)0.0008 (11)0.0104 (11)0.0034 (12)
C40.0225 (13)0.0377 (15)0.0418 (15)0.0073 (11)0.0041 (11)0.0071 (13)
C220.0247 (13)0.0293 (13)0.0417 (15)0.0030 (10)0.0097 (11)0.0014 (12)
C70.0265 (13)0.0337 (14)0.0363 (14)0.0067 (11)0.0083 (11)0.0085 (12)
Geometric parameters (Å, º) top
S1—C41.707 (3)C18—C171.374 (3)
S1—C21.723 (2)C18—C191.394 (4)
S2—C81.704 (3)C18—H180.9300
S2—C61.727 (2)C19—H190.9300
C13—C221.395 (3)C2—C11.371 (3)
C13—C141.411 (3)C6—C51.378 (3)
C13—C111.449 (3)C1—C31.414 (3)
C16—C171.394 (3)C1—H10.9300
C16—C151.402 (3)C5—C71.418 (4)
C16—C121.462 (3)C5—H50.9300
N4—C201.318 (3)C3—C41.351 (4)
N4—C141.349 (3)C3—H30.9300
C11—N11.350 (3)C21—C221.364 (4)
C11—C121.391 (3)C21—C201.401 (4)
C12—N21.343 (3)C21—H210.9300
N1—C101.331 (3)C8—C71.345 (4)
C9—N21.342 (3)C8—H80.9300
C9—C101.437 (3)C20—H200.9300
C9—C61.463 (3)C17—H170.9300
N3—C191.321 (3)C4—H40.9300
N3—C151.356 (3)C22—H220.9300
C15—C141.468 (3)C7—H70.9300
C10—C21.467 (3)
C4—S1—C292.22 (13)C1—C2—C10129.5 (2)
C8—S2—C692.10 (13)C1—C2—S1110.35 (18)
C22—C13—C14117.7 (2)C10—C2—S1119.32 (18)
C22—C13—C11121.9 (2)C5—C6—C9133.1 (2)
C14—C13—C11120.3 (2)C5—C6—S2110.26 (19)
C17—C16—C15118.8 (2)C9—C6—S2116.07 (17)
C17—C16—C12121.6 (2)C2—C1—C3112.8 (2)
C15—C16—C12119.6 (2)C2—C1—H1123.6
C20—N4—C14117.2 (2)C3—C1—H1123.6
N1—C11—C12120.7 (2)C6—C5—C7112.5 (2)
N1—C11—C13119.1 (2)C6—C5—H5123.7
C12—C11—C13120.2 (2)C7—C5—H5123.7
N2—C12—C11121.0 (2)C4—C3—C1113.0 (2)
N2—C12—C16118.4 (2)C4—C3—H3123.5
C11—C12—C16120.5 (2)C1—C3—H3123.5
C10—N1—C11119.0 (2)C22—C21—C20117.9 (3)
N2—C9—C10119.5 (2)C22—C21—H21121.1
N2—C9—C6113.5 (2)C20—C21—H21121.1
C10—C9—C6126.9 (2)C7—C8—S2112.2 (2)
C9—N2—C12119.1 (2)C7—C8—H8123.9
C19—N3—C15117.3 (2)S2—C8—H8123.9
N3—C15—C16122.1 (2)N4—C20—C21124.6 (2)
N3—C15—C14117.8 (2)N4—C20—H20117.7
C16—C15—C14120.0 (2)C21—C20—H20117.7
N4—C14—C13122.7 (2)C18—C17—C16118.9 (2)
N4—C14—C15118.0 (2)C18—C17—H17120.5
C13—C14—C15119.3 (2)C16—C17—H17120.5
N1—C10—C9120.2 (2)C3—C4—S1111.7 (2)
N1—C10—C2114.8 (2)C3—C4—H4124.2
C9—C10—C2125.0 (2)S1—C4—H4124.2
C17—C18—C19118.3 (2)C21—C22—C13119.9 (2)
C17—C18—H18120.9C21—C22—H22120.0
C19—C18—H18120.9C13—C22—H22120.0
N3—C19—C18124.5 (2)C8—C7—C5112.9 (2)
N3—C19—H19117.7C8—C7—H7123.5
C18—C19—H19117.7C5—C7—H7123.5

Experimental details

Crystal data
Chemical formulaC22H12N4S2
Mr396.48
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)27.016 (5), 10.267 (2), 13.835 (3)
β (°) 117.04 (3)
V3)3418.1 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.763, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9577, 3867, 3057
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.130, 1.14
No. of reflections3867
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.45

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful for financial support from the Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.

References

First citationAragoni, M. C., Arca, M., Demartin, F., Devillanova, F. A., Isaia, F., Garau, A., Lippolis, V., Jalali, F., Papke, U., Shamsipur, M., Tei, L., Yari, A. & Verani, G. (2002). Inorg. Chem. 41, 6623–6632.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationArmaroli, N., Cola, L. D., Balzani, V., Sauvage, J. P., Buchecker, C. O. D. & Kern, J. M. (1992). J. Chem. Soc. Faraday Trans. 88, 553–556.  CrossRef CAS Web of Science Google Scholar
First citationBencini, A., Bernardo, M. A., Bianchi, A., Fusi, V., Giorgi, C., Pina, F. & Valtancoli, B. (1999). Eur. J. Inorg. Chem. pp. 1911–1918.  CrossRef Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J. P. & Li, X. C. C. (2004). US Patent 6713781 B1.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1443
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds