organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1390

5,6,7,5′-Tetra­meth­­oxy-3′,4′-methyl­ene­di­oxy­flavone monohydrate

aSchool of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China, and bSchool of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: lanwj@mail.sysu.edu.cn

(Received 21 February 2012; accepted 5 April 2012; online 13 April 2012)

The title compound [systematic name: 5,6,7-trimeth­oxy-2-(7-meth­oxy-1,3-dihydro-2-benzofuran-5-yl)-4H-chromen-4-one monohydrate], C20H18O8·H2O, was isolated from the popular Chinese medicinal plant Entada phaseoloides. In the crystal, inversion-related mol­ecules are joined by pairs of weak C—H⋯O hydrogen bonds. The dimers are further inter­connected by a bridging water mol­ecule via weak C—H⋯Owater and pairs of (O—H)water⋯O hydrogen bonds into a linear tape running parallel to the b axis.

Related literature

For the isolation of 5,6,7,5′-tetra­meth­oxy-3′,4′-methyl­ene­dioxy­flavone, see: Chen et al. (1984[Chen, C. C., Chen, Y. P., Hsu, H. Y. & Chen, Y. L. (1984). Chem. Pharm. Bull. 32, 166-169.]); Vyas et al. (1986a[Vyas, A. V. & Mulchandani, N. B. (1986a). Phytochemistry, 25, 2625-2627.]); Souza et al. (1995[Souza, J. P. I., Arruda, A. C. & Arruda, M. P. S. (1995). Fitoterapia, 66, 465-466.]); Tomazela et al. (2000[Tomazela, D. M., Pupo, M. T., Passador, E. A. P., da Silva, M. F., d, G. F., Vieira, P. C., Fernandes, J. B., Rodrigues Fo, E., Oliva, G. & Pirani, J. R. (2000). Phytochemistry, 55, 643-651.]). For the NMR spectroscopic studies, see Vyas et al. (1986b[Vyas, A. V. & Mulchandani, N. B. (1986b). Magn. Reson. Chem. 24, 421-423.]). For the biological activity of flavonoids, see: Genoux et al. (2011[Genoux, E., Nicolle, E. & Boumendjel, A. (2011). Curr. Org. Chem. 15, 2608-2615.]); Bodewes et al. (2011[Bodewes, T. C. F., Luttikhold, J., van Stijn, M. F. M., Visser, M., van Norren, K., Vermeulen, M. A. R. & van Leeuwen, P. A. M. (2011). Curr. Org. Chem. 15, 2616-2626.]); Jacob et al. (2011[Jacob, V., Hagai, T. & Soliman, K. (2011). Curr. Org. Chem. 15, 2641-2657.]); Veitch & Grayer (2011[Veitch, N. C. & Grayer, R. J. (2011). Nat. Prod. Rep. 28, 626-1695.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18O8·H2O

  • Mr = 404.36

  • Triclinic, [P \overline 1]

  • a = 9.3014 (17) Å

  • b = 9.3146 (17) Å

  • c = 11.009 (2) Å

  • α = 105.413 (3)°

  • β = 91.798 (3)°

  • γ = 100.985 (3)°

  • V = 899.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 173 K

  • 0.41 × 0.35 × 0.32 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.772, Tmax = 1.000

  • 6560 measured reflections

  • 3181 independent reflections

  • 2608 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.117

  • S = 1.07

  • 3181 reflections

  • 270 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11⋯O5 0.83 (2) 2.03 (2) 2.823 (2) 160 (3)
O1W—H12⋯O4 0.83 (2) 2.33 (3) 2.987 (2) 137 (3)
C3—H3A⋯O5i 0.95 2.41 3.255 (2) 147
C8—H8A⋯O1Wii 0.95 2.42 3.372 (2) 175
Symmetry codes: (i) -x+1, -y, -z; (ii) x, y+1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Flavonoids are an important secondary metabolites produced in some medicinal or dietary plants. They are reported to show diverse biological activities, including antioxidant, anti-inflammatory, anti-cancer activities, as well as slowing down the progression of cardiovascular and neurodegenerative diseases (Genoux et al., 2011; Bodewes et al., 2011; Jacob et al., 2011; Veitch et al., 2011).

Entada phaseoloides (L.) Merr., a popular Chinese medicinal plant, is distributed widely in the South China and the trunk has been used clinically for a long time to treat rheumatism. The title compound, 5,6,7,5'-tetramethoxy-3',4'-methylenedioxyflavone was isolated from the ethanol extract of Entada phaseoloides. In the crystals, the methoxy oxygen atom and the adjacent carbonyl oxygen atom are bridged by a water molecule via O1w—H11···O5 and O1w—H12···O4 hydrogen bonds. Neighboring molecules related by an inversion centre are joined together via a pair of weak C3—H···O5C4 hydrogen bonds. The molecules are further cross linked by a weak C8'-H···O5C and C8—H8A···O1w intermolecular interactions.

Related literature top

For the isolation of 5,6,7,5'-tetramethoxy-3',4'-methylenedioxyflavone, see: Chen et al. (1984); Vyas et al. (1986a); Souza et al. (1995); Tomazela et al. (2000). For the NMR spectroscopic studies, see Vyas et al. (1986b). For the biological activity of flavonoids, see: Genoux et al. (2011); Bodewes et al. (2011); Jacob et al. (2011); Veitch & Grayer (2011). Scheme: please revise to show solvent molecule

Experimental top

The trunk of Entada phaseoloides (L.) Merr. was successively extracted three times with ethanol. The extract was concentrated by low-temperature rotary evaporation and chromatographed on a silica gel column with a petroleum ether–EtOAc–MeOH gradient as the eluent to afford 20 fractions (Fr. 1–Fr. 20). Fr. 8–10 were further purified by RP-HPLC eluted with H2O–MeCN (60:40, v/v) to yield 5,6,7,5'-tetramethoxy-3',4'-methylenedioxyflavone. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the compound in EtOAc.

Refinement top

The H atoms on carbon atoms were placed geometrically and treated as riding on their parent atoms with C—H = 0.98 Å (methyl) or 0.95 Å (aromatic) with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecule were found in a difference Fourier map and refined with an O—H distance restraint of 0.82 (1)Å and free Uiso(H). An antibumping condition between symmetry-related H's was applied in order to preserve a meaningful geometry.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing displacement ellipsoids at the 50% probability level.
5,6,7-trimethoxy-2-(7-methoxy-1,3-dihydro-2-benzofuran-5-yl)- 4H-chromen-4-one monohydrate top
Crystal data top
C20H18O8·H2OZ = 2
Mr = 404.36F(000) = 424
Triclinic, P1Dx = 1.493 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3014 (17) ÅCell parameters from 4354 reflections
b = 9.3146 (17) Åθ = 2.2–27.0°
c = 11.009 (2) ŵ = 0.12 mm1
α = 105.413 (3)°T = 173 K
β = 91.798 (3)°Block, colourless
γ = 100.985 (3)°0.41 × 0.35 × 0.32 mm
V = 899.3 (3) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
3181 independent reflections
Radiation source: fine-focus sealed tube2608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scanθmax = 25.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1111
Tmin = 0.772, Tmax = 1.000k = 1111
6560 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.3125P]
where P = (Fo2 + 2Fc2)/3
3181 reflections(Δ/σ)max < 0.001
270 parametersΔρmax = 0.49 e Å3
4 restraintsΔρmin = 0.32 e Å3
Crystal data top
C20H18O8·H2Oγ = 100.985 (3)°
Mr = 404.36V = 899.3 (3) Å3
Triclinic, P1Z = 2
a = 9.3014 (17) ÅMo Kα radiation
b = 9.3146 (17) ŵ = 0.12 mm1
c = 11.009 (2) ÅT = 173 K
α = 105.413 (3)°0.41 × 0.35 × 0.32 mm
β = 91.798 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3181 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2608 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 1.000Rint = 0.018
6560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0404 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.49 e Å3
3181 reflectionsΔρmin = 0.32 e Å3
270 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53779 (12)0.48854 (12)0.20513 (10)0.0240 (3)
O1W0.4889 (2)0.09163 (18)0.36332 (16)0.0525 (4)
H110.487 (3)0.071 (4)0.295 (2)0.093 (11)*
H120.422 (2)0.055 (5)0.3978 (15)0.23 (3)*
O20.22755 (13)0.59084 (13)0.53871 (11)0.0311 (3)
O30.14023 (13)0.30245 (14)0.51890 (12)0.0341 (3)
O40.25387 (13)0.08319 (13)0.34924 (11)0.0286 (3)
O50.44095 (14)0.03101 (13)0.16068 (11)0.0317 (3)
O60.93016 (15)0.40373 (14)0.22376 (12)0.0388 (3)
O70.97888 (14)0.66696 (14)0.17464 (12)0.0363 (3)
O80.85089 (14)0.85819 (13)0.01787 (12)0.0356 (3)
C20.59340 (17)0.39067 (18)0.11252 (14)0.0218 (3)
C30.56048 (18)0.23941 (18)0.09729 (15)0.0241 (4)
H3A0.60180.17530.03160.029*
C40.46578 (18)0.17052 (18)0.17582 (15)0.0237 (4)
C50.30091 (18)0.23401 (18)0.35496 (15)0.0234 (4)
C60.24590 (17)0.34069 (19)0.44266 (15)0.0244 (4)
C70.29046 (17)0.49663 (19)0.45016 (15)0.0243 (4)
C80.38842 (17)0.54320 (18)0.36968 (15)0.0229 (4)
H8A0.41820.64790.37380.027*
C90.44252 (17)0.43264 (18)0.28223 (14)0.0214 (3)
C100.40336 (17)0.27721 (18)0.27200 (15)0.0215 (3)
C110.1301 (2)0.0098 (2)0.2581 (2)0.0422 (5)
H11A0.10080.09710.25790.063*
H11B0.15710.01530.17390.063*
H11C0.04790.06100.28040.063*
C120.1733 (2)0.2124 (2)0.59780 (18)0.0384 (5)
H12A0.09010.19210.64760.058*
H12B0.26110.26710.65490.058*
H12C0.19160.11580.54530.058*
C130.2578 (2)0.7486 (2)0.54402 (18)0.0372 (4)
H13A0.20630.80380.61160.056*
H13B0.22400.76100.46290.056*
H13C0.36380.78930.56120.056*
C161.01507 (19)0.5318 (2)0.25493 (16)0.0295 (4)
H16A0.99200.52530.34490.035*
H16B1.12130.53400.24130.035*
C1'0.69092 (17)0.46871 (18)0.03700 (15)0.0222 (3)
C2'0.75922 (19)0.38195 (19)0.06075 (16)0.0270 (4)
H2'A0.74080.27400.08140.032*
C3'0.85314 (18)0.46137 (19)0.12415 (15)0.0261 (4)
C4'0.88199 (18)0.61765 (19)0.09635 (15)0.0257 (4)
C5'0.81543 (18)0.70520 (18)0.00182 (15)0.0247 (4)
C6'0.71763 (17)0.62730 (18)0.06452 (15)0.0231 (4)
H6'A0.66860.68320.12940.028*
C8'0.7778 (2)0.95003 (19)0.11035 (17)0.0326 (4)
H8'A0.81321.05750.11480.049*
H8'B0.79820.93390.19310.049*
H8'C0.67160.92180.08680.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0278 (6)0.0202 (6)0.0242 (6)0.0049 (5)0.0109 (5)0.0057 (5)
O1W0.0677 (11)0.0415 (8)0.0526 (10)0.0061 (8)0.0019 (8)0.0246 (7)
O20.0364 (7)0.0241 (6)0.0331 (7)0.0078 (5)0.0176 (5)0.0059 (5)
O30.0319 (7)0.0366 (7)0.0437 (7)0.0131 (5)0.0209 (6)0.0218 (6)
O40.0325 (6)0.0218 (6)0.0335 (7)0.0043 (5)0.0092 (5)0.0113 (5)
O50.0449 (7)0.0193 (6)0.0331 (7)0.0082 (5)0.0145 (6)0.0087 (5)
O60.0485 (8)0.0321 (7)0.0413 (7)0.0131 (6)0.0296 (6)0.0134 (6)
O70.0420 (7)0.0320 (7)0.0404 (7)0.0088 (6)0.0233 (6)0.0162 (6)
O80.0439 (8)0.0223 (6)0.0413 (7)0.0049 (5)0.0173 (6)0.0097 (5)
C20.0217 (8)0.0242 (8)0.0195 (8)0.0070 (6)0.0031 (6)0.0041 (6)
C30.0261 (8)0.0234 (8)0.0235 (8)0.0075 (7)0.0064 (7)0.0057 (7)
C40.0254 (8)0.0226 (8)0.0236 (8)0.0055 (7)0.0018 (7)0.0067 (7)
C50.0227 (8)0.0223 (8)0.0266 (8)0.0039 (6)0.0024 (7)0.0098 (7)
C60.0217 (8)0.0279 (9)0.0265 (8)0.0058 (7)0.0074 (7)0.0114 (7)
C70.0228 (8)0.0264 (9)0.0234 (8)0.0071 (7)0.0038 (7)0.0047 (7)
C80.0237 (8)0.0203 (8)0.0238 (8)0.0034 (6)0.0036 (6)0.0053 (6)
C90.0206 (8)0.0237 (8)0.0206 (8)0.0031 (6)0.0041 (6)0.0081 (6)
C100.0213 (8)0.0228 (8)0.0214 (8)0.0056 (6)0.0027 (6)0.0069 (6)
C110.0330 (10)0.0297 (10)0.0580 (13)0.0048 (8)0.0017 (9)0.0104 (9)
C120.0452 (11)0.0461 (11)0.0305 (9)0.0121 (9)0.0147 (8)0.0186 (9)
C130.0461 (11)0.0255 (9)0.0400 (10)0.0096 (8)0.0178 (9)0.0057 (8)
C160.0284 (9)0.0347 (10)0.0293 (9)0.0097 (7)0.0120 (7)0.0125 (7)
C1'0.0206 (8)0.0251 (8)0.0213 (8)0.0045 (6)0.0027 (6)0.0072 (7)
C2'0.0310 (9)0.0239 (8)0.0284 (9)0.0079 (7)0.0092 (7)0.0086 (7)
C3'0.0273 (9)0.0299 (9)0.0239 (8)0.0108 (7)0.0083 (7)0.0083 (7)
C4'0.0240 (8)0.0314 (9)0.0250 (8)0.0058 (7)0.0052 (7)0.0134 (7)
C5'0.0267 (8)0.0231 (8)0.0253 (8)0.0047 (7)0.0024 (7)0.0085 (7)
C6'0.0232 (8)0.0258 (8)0.0213 (8)0.0076 (7)0.0042 (6)0.0063 (7)
C8'0.0386 (10)0.0241 (9)0.0339 (9)0.0072 (7)0.0044 (8)0.0056 (7)
Geometric parameters (Å, º) top
O1—C21.3627 (18)C8—C91.393 (2)
O1—C91.3723 (19)C8—H8A0.9500
O1W—H110.829 (17)C9—C101.397 (2)
O1W—H120.826 (19)C11—H11A0.9800
O2—C71.3564 (19)C11—H11B0.9800
O2—C131.427 (2)C11—H11C0.9800
O3—C61.369 (2)C12—H12A0.9800
O3—C121.422 (2)C12—H12B0.9800
O4—C51.3732 (19)C12—H12C0.9800
O4—C111.436 (2)C13—H13A0.9800
O5—C41.240 (2)C13—H13B0.9800
O6—C3'1.374 (2)C13—H13C0.9800
O6—C161.428 (2)C16—H16A0.9900
O7—C4'1.367 (2)C16—H16B0.9900
O7—C161.438 (2)C1'—C6'1.398 (2)
O8—C5'1.356 (2)C1'—C2'1.411 (2)
O8—C8'1.426 (2)C2'—C3'1.365 (2)
C2—C31.347 (2)C2'—H2'A0.9500
C2—C1'1.470 (2)C3'—C4'1.376 (2)
C3—C41.436 (2)C4'—C5'1.383 (2)
C3—H3A0.9500C5'—C6'1.400 (2)
C4—C101.465 (2)C6'—H6'A0.9500
C5—C61.377 (2)C8'—H8'A0.9800
C5—C101.417 (2)C8'—H8'B0.9800
C6—C71.412 (2)C8'—H8'C0.9800
C7—C81.381 (2)
C2—O1—C9119.79 (12)O3—C12—H12B109.5
H11—O1W—H12103 (3)H12A—C12—H12B109.5
C7—O2—C13117.60 (13)O3—C12—H12C109.5
C6—O3—C12116.78 (13)H12A—C12—H12C109.5
C5—O4—C11112.69 (13)H12B—C12—H12C109.5
C3'—O6—C16106.39 (13)O2—C13—H13A109.5
C4'—O7—C16105.55 (13)O2—C13—H13B109.5
C5'—O8—C8'117.93 (13)H13A—C13—H13B109.5
C3—C2—O1121.29 (14)O2—C13—H13C109.5
C3—C2—C1'125.84 (14)H13A—C13—H13C109.5
O1—C2—C1'112.86 (13)H13B—C13—H13C109.5
C2—C3—C4123.01 (15)O6—C16—O7107.82 (13)
C2—C3—H3A118.5O6—C16—H16A110.1
C4—C3—H3A118.5O7—C16—H16A110.1
O5—C4—C3121.05 (15)O6—C16—H16B110.1
O5—C4—C10124.15 (15)O7—C16—H16B110.1
C3—C4—C10114.80 (14)H16A—C16—H16B108.5
O4—C5—C6118.34 (14)C6'—C1'—C2'120.90 (15)
O4—C5—C10120.27 (14)C6'—C1'—C2119.88 (14)
C6—C5—C10121.39 (14)C2'—C1'—C2119.20 (14)
O3—C6—C5122.89 (14)C3'—C2'—C1'116.46 (15)
O3—C6—C7117.07 (14)C3'—C2'—H2'A121.8
C5—C6—C7119.88 (15)C1'—C2'—H2'A121.8
O2—C7—C8124.83 (15)C2'—C3'—O6127.60 (15)
O2—C7—C6114.65 (14)C2'—C3'—C4'123.06 (15)
C8—C7—C6120.50 (15)O6—C3'—C4'109.34 (14)
C7—C8—C9118.29 (15)O7—C4'—C3'110.80 (14)
C7—C8—H8A120.9O7—C4'—C5'127.57 (15)
C9—C8—H8A120.9C3'—C4'—C5'121.61 (15)
O1—C9—C8114.47 (14)O8—C5'—C4'117.04 (15)
O1—C9—C10122.08 (14)O8—C5'—C6'126.13 (15)
C8—C9—C10123.45 (14)C4'—C5'—C6'116.82 (15)
C9—C10—C5116.48 (14)C1'—C6'—C5'121.13 (15)
C9—C10—C4118.96 (14)C1'—C6'—H6'A119.4
C5—C10—C4124.54 (14)C5'—C6'—H6'A119.4
O4—C11—H11A109.5O8—C8'—H8'A109.5
O4—C11—H11B109.5O8—C8'—H8'B109.5
H11A—C11—H11B109.5H8'A—C8'—H8'B109.5
O4—C11—H11C109.5O8—C8'—H8'C109.5
H11A—C11—H11C109.5H8'A—C8'—H8'C109.5
H11B—C11—H11C109.5H8'B—C8'—H8'C109.5
O3—C12—H12A109.5
C9—O1—C2—C32.1 (2)C6—C5—C10—C4179.51 (14)
C9—O1—C2—C1'178.78 (12)O5—C4—C10—C9178.31 (15)
O1—C2—C3—C40.1 (2)C3—C4—C10—C91.8 (2)
C1'—C2—C3—C4179.04 (14)O5—C4—C10—C53.6 (3)
C2—C3—C4—O5178.26 (15)C3—C4—C10—C5176.28 (14)
C2—C3—C4—C101.8 (2)C3'—O6—C16—O73.22 (18)
C11—O4—C5—C693.10 (18)C4'—O7—C16—O62.76 (18)
C11—O4—C5—C1086.81 (18)C3—C2—C1'—C6'178.88 (15)
C12—O3—C6—C557.9 (2)O1—C2—C1'—C6'0.2 (2)
C12—O3—C6—C7126.79 (17)C3—C2—C1'—C2'0.4 (2)
O4—C5—C6—O34.0 (2)O1—C2—C1'—C2'178.63 (13)
C10—C5—C6—O3175.91 (14)C6'—C1'—C2'—C3'1.0 (2)
O4—C5—C6—C7179.23 (14)C2—C1'—C2'—C3'177.43 (14)
C10—C5—C6—C70.7 (2)C1'—C2'—C3'—O6178.60 (16)
C13—O2—C7—C84.0 (2)C1'—C2'—C3'—C4'0.0 (2)
C13—O2—C7—C6174.70 (15)C16—O6—C3'—C2'178.74 (17)
O3—C6—C7—O23.6 (2)C16—O6—C3'—C4'2.46 (18)
C5—C6—C7—O2179.09 (14)C16—O7—C4'—C3'1.28 (19)
O3—C6—C7—C8175.18 (14)C16—O7—C4'—C5'179.85 (16)
C5—C6—C7—C80.3 (2)C2'—C3'—C4'—O7179.62 (15)
O2—C7—C8—C9179.16 (14)O6—C3'—C4'—O70.7 (2)
C6—C7—C8—C90.5 (2)C2'—C3'—C4'—C5'0.7 (3)
C2—O1—C9—C8177.44 (13)O6—C3'—C4'—C5'178.20 (15)
C2—O1—C9—C102.1 (2)C8'—O8—C5'—C4'176.80 (14)
C7—C8—C9—O1179.29 (13)C8'—O8—C5'—C6'3.2 (2)
C7—C8—C9—C100.3 (2)O7—C4'—C5'—O81.0 (3)
O1—C9—C10—C5178.32 (13)C3'—C4'—C5'—O8179.78 (15)
C8—C9—C10—C51.2 (2)O7—C4'—C5'—C6'178.95 (15)
O1—C9—C10—C40.1 (2)C3'—C4'—C5'—C6'0.2 (2)
C8—C9—C10—C4179.43 (14)C2'—C1'—C6'—C5'1.5 (2)
O4—C5—C10—C9178.51 (13)C2—C1'—C6'—C5'176.92 (14)
C6—C5—C10—C91.4 (2)O8—C5'—C6'—C1'179.14 (15)
O4—C5—C10—C40.4 (2)C4'—C5'—C6'—C1'0.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O50.83 (2)2.03 (2)2.823 (2)160 (3)
O1W—H12···O40.83 (2)2.33 (3)2.987 (2)137 (3)
C3—H3A···O5i0.952.413.255 (2)147
C8—H8A···O1Wii0.952.423.372 (2)175
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H18O8·H2O
Mr404.36
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.3014 (17), 9.3146 (17), 11.009 (2)
α, β, γ (°)105.413 (3), 91.798 (3), 100.985 (3)
V3)899.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.41 × 0.35 × 0.32
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.772, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6560, 3181, 2608
Rint0.018
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.07
No. of reflections3181
No. of parameters270
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.32

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O50.829 (17)2.03 (2)2.823 (2)160 (3)
O1W—H12···O40.826 (19)2.33 (3)2.987 (2)137 (3)
C3—H3A···O5i0.952.413.255 (2)147
C8—H8A···O1Wii0.952.423.372 (2)175
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 30973633), the Guangdong Provincial Science and Technology Research Program (Nos. 2009B030801199, 2010B030800002 and 2010B030600011), the Research Program from the Administration of Traditional Chinese Medicine of Guangdong Province (No. 20111164) and the Fund for Undergraduate Innovative Experiment and Research of Guangdong Province (No.1055811012).

References

First citationBodewes, T. C. F., Luttikhold, J., van Stijn, M. F. M., Visser, M., van Norren, K., Vermeulen, M. A. R. & van Leeuwen, P. A. M. (2011). Curr. Org. Chem. 15, 2616–2626.  CAS Google Scholar
First citationBruker (1998). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C. C., Chen, Y. P., Hsu, H. Y. & Chen, Y. L. (1984). Chem. Pharm. Bull. 32, 166–169.  CrossRef CAS Google Scholar
First citationGenoux, E., Nicolle, E. & Boumendjel, A. (2011). Curr. Org. Chem. 15, 2608–2615.  CrossRef CAS Google Scholar
First citationJacob, V., Hagai, T. & Soliman, K. (2011). Curr. Org. Chem. 15, 2641–2657.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, J. P. I., Arruda, A. C. & Arruda, M. P. S. (1995). Fitoterapia, 66, 465–466.  CAS Google Scholar
First citationTomazela, D. M., Pupo, M. T., Passador, E. A. P., da Silva, M. F., d, G. F., Vieira, P. C., Fernandes, J. B., Rodrigues Fo, E., Oliva, G. & Pirani, J. R. (2000). Phytochemistry, 55, 643–651.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVeitch, N. C. & Grayer, R. J. (2011). Nat. Prod. Rep. 28, 626–1695.  Web of Science CrossRef Google Scholar
First citationVyas, A. V. & Mulchandani, N. B. (1986a). Phytochemistry, 25, 2625–2627.  CrossRef CAS Web of Science Google Scholar
First citationVyas, A. V. & Mulchandani, N. B. (1986b). Magn. Reson. Chem. 24, 421–423.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1390
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds